
Workshop on Essential Abstractions in GCC

Introduction to Machine Descriptions

GCC Resource Center

(www.cse.iitb.ac.in/grc)

Department of Computer Science and Engineering,

Indian Institute of Technology, Bombay

2 July 2012

2 July 2012 MD Intro: Outline 1/21

Outline

• Influences on GCC Machine Descriptions

• Organization of GCC Machine Descriptions

• Machine description constructs

• The essence of retargetability in GCC

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

Part 1

Influences on Machine Descriptions

2 July 2012 MD Intro: Influences on Machine Descriptions 2/21

Examples of Influences on the Machine Descriptions

Machine
Description

Source Language

• INT TYPE SIZE

• Activation Record

<target>.h

GCC Architecture
• Generation of nop
• tree covers for
instruction selection
• define predicate

<target>.h

Build System Host System

hwint.h

Target System

• Instruction Set
Architecture
• Assembly and
executable
formats

{

<target>.md

<target>.h

{

<target>.h

other headers

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

Part 2

Organization of GCC MD

2 July 2012 MD Intro: Organization of GCC MD 3/21

GCC Machine Descriptions

• Processor instructions useful to GCC

• Processor characteristics useful to GCC

• Target ASM syntax

• Target specific optimizations as IR-RTL → IR-RTL transformations

(GCC code performs the transformation computations,
MD supplies their target patterns)

◮ Peephole optimizations
◮ Transformations for enabling scheduling

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

2 July 2012 MD Intro: Organization of GCC MD 4/21

Syntactic Entities in GCC MD

• Necessary Specifications

◮ Processor instructions useful to GCC
◮ One GIMPLE → One IR-RTL define insn

◮ One GIMPLE → More than one IR-RTL define expand

◮ Processor characteristics useful to GCC define cpu unit
◮ Target ASM syntax part of define insn
◮ IR-RTL → IR-RTL transformations define split
◮ Target Specific Optimizations define peephole2

• Programming Conveniences

(eg. define insn and split, define constants, define cond exec,
define automaton)

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

2 July 2012 MD Intro: Organization of GCC MD 5/21

File Organization of GCC MD

The GCC MD comprises of

• <target>.h: A set of C macros that describe

◮ HLL properties: e.g. INT TYPE SIZE to h/w bits
◮ Activation record structure
◮ Target Register (sub)sets, and characteristics

(lists of read-only regs, dedicated regs, etc.)
◮ System Software details: formats of assembler, executable etc.

• <target>.md: Target instructions described using MD constructs.

(Our main interest!)

<target>.md: Target instructions described using MD constructs.

(Our main interest!)

• <target>.c: Optional, but usually required.
C functions that implement target specific code
(e.g. target specific activation layout).

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

Part 3

Essential Constructs in

Machine Descriptions

2 July 2012 MD Intro: Essential Constructs in Machine Descriptions 6/21

The GCC Phase Sequence

Target Independent Target Dependent

Parse Gimplify
Tree SSA
Optimize

Generate
RTL

Optimize RTL
Generate
ASM

GIMPLE → RTL RTL → ASM

MD Info Required

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

2 July 2012 MD Intro: Essential Constructs in Machine Descriptions 7/21

The GCC Phase Sequence

Observe that

• RTL is a target specific IR

• GIMPLE → non strict RTL → strict RTL.

• Standard Pattern Name (SPN):

“Semantic Glue” between GIMPLE and RTL

◮ operator match + coarse operand match, and
◮ refine the operand match

• Finally: Strict RTL ⇔ Unique target ASM string

Consider generating RTL expressions of GIMPLE nodes

• Two constructs available: define insn and define expand

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

2 July 2012 MD Intro: Essential Constructs in Machine Descriptions 8/21

Running Example

Consider a data move operation

• reads data from source location, and

• writes it to the destination location.

• GIMPLE node: GIMPLE ASSIGN

• SPN: “movsi”

Some possible combinations are:

• Reg ← Reg : Register move

• Reg ← Mem : Load

• Reg ← Const : Load immediate

• Mem ← Reg : Store

• Mem ← Mem : Illegal instruction

• Mem ← Const : Illegal instruction

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

2 July 2012 MD Intro: Essential Constructs in Machine Descriptions 9/21

Specifying Target Instruction Semantics

(define_insn

"movsi"

(set

(match_operand 0 "register_operand" "=r")

(match_operand 1 "const_int_operand" "k")

)

"" /* C boolean expression, if required */

"li %0, %1"

)

Define instruction pattern Standard Pattern Name

RTL Expression (RTX):
Semantics of target instruction

target asm inst. =
Concrete syntax for RTX

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

2 July 2012 MD Intro: Essential Constructs in Machine Descriptions 9/21

Specifying Target Instruction Semantics

(define_insn

"movsi"

(set

(match_operand 0 "register_operand" "=r")

(match_operand 1 "const_int_operand" "k")

)

"" /* C boolean expression, if required */

"li %0, %1"

)

RTL operator MD constructs

ConstraintsPredicates

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

2 July 2012 MD Intro: Essential Constructs in Machine Descriptions 10/21

Instruction Specification and Translation

Target Independent Target Dependent

Parse Gimplify
Tree SSA
Optimize

Generate
RTL

Optimize RTL Generate
ASM

GIMPLE → RTL RTL → ASM
• GIMPLE: target independent
• RTL: target dependent
• Need: associate the semantics

⇒GCC Solution: Standard Pattern Names

GIMPLE ASSIGN

RTL Template ASM

(define_insn "movsi"
(set (match_operand 0 "register_operand" "=r")

(match_operand 1 "const_int_operand" "k"))
"" /* C boolean expression, if required */

"li %0, %1"

)

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

2 July 2012 MD Intro: Essential Constructs in Machine Descriptions 11/21

General Move Instruction

(define_insn "maybe_spn_like_movsi"

(set (match_operand 0 "general_operand" "")

(match_operand 1 "general_operand" ""))

""

"mov %0, %1"

)

• This define insn can generate data movement patterns of all
combinations

• Even Mem → Mem is possible.

• We need a mechanism to generate more restricted data movement RTX
instances!

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

2 July 2012 MD Intro: Essential Constructs in Machine Descriptions 12/21

The define expand Construct

(define_expand "movsi"

[(set (match_operand:SI 0 "nonimmediate_operand" "")

(match_operand:SI 1 "general_operand" "")

)]

""

{

if (GET_CODE (operands[0]) == MEM &&

GET_CODE (operands[1]) != REG)

if (can_create_pseudo_p())

operands[1] = force_reg (SImode, operands[1]);

}

)

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

2 July 2012 MD Intro: Essential Constructs in Machine Descriptions 13/21

Relationship Between <target>.md, <target>.c, and
<target>.h Files

Example:

• Register class constraints are used in <target>.md file

• Register class is defined in <target>.h file

• Checks for register class are implemented in <target>.c file

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

2 July 2012 MD Intro: Essential Constructs in Machine Descriptions 14/21

Register Class Constraints in <target>.md File

;; Here z is the constraint character defined in

;; REG_CLASS_FROM_LETTER_P

;; The register $zero is used here.

(define_insn "IITB_move_zero"

[(set

(match_operand:SI 0 "nonimmediate_operand" "=r,m")

(match_operand:SI 1 "zero_register_operand" " z ,z")

)]

""

"@

move \t%0,%1

sw \t%1, %m0"

)

The Register Class letter code

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

2 July 2012 MD Intro: Essential Constructs in Machine Descriptions 15/21

Register Class specification in <target>.h File

/* From spim.h */

#define REG_CLASS_FROM_LETTER_P \

reg_class_from_letter

enum reg_class \

{ \

NO_REGS, ZERO_REGS , \

CALLER_SAVED_REGS, CALLEE_SAVED_REGS, \

BASE_REGS, GENERAL_REGS, \

ALL_REGS, LIM_REG_CLASSES \

};

#define REG_CLASS_CONTENTS \

{0x00000000, 0x00000001 , 0xff00ffff, 0x00ff0000, \

0xf0000000, 0x0cfffff3, 0xffffffff}

The Register Classes The Register Class Enumeration

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

2 July 2012 MD Intro: Essential Constructs in Machine Descriptions 16/21

The <target>.c File

enum reg_class

reg_class_from_letter (char ch)

{

switch(ch)

{

case ’b’:return BASE_REGS;

case ’x’:return CALLEE_SAVED_REGS;

case ’y’:return CALLER_SAVED_REGS;

case ’z’:return ZERO_REGS;

}

return NO_REGS;

}

Get the enumeration from the Register class letter

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

Part 4

The Essence of Retargetability

2 July 2012 MD Intro: The Essence of Retargetability 17/21

Instruction Specification and Translation: A Recap

Target Independent Target Dependent

Parse Gimplify
Tree SSA
Optimize

Generate
RTL

Optimize RTL Generate
ASM

GIMPLE → RTL RTL → ASM
• GIMPLE: target independent
• RTL: target dependent
• Need: associate the semantics

⇒GCC Solution: Standard Pattern Names

GIMPLE ASSIGN

RTL Template ASM

(define_insn "movsi"
(set (match_operand 0 "register_operand" "=r")

(match_operand 1 "const_int_operand" "k"))
"" /* C boolean expression, if required */

"li %0, %1"

)

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

2 July 2012 MD Intro: The Essence of Retargetability 18/21

Translation Sequence in GCC

(define_insn

"movsi"

(set

(match_operand 0 "register_operand" "=r")

(match_operand 1 "const_int_operand" "k")

)

"" /* C boolean expression, if required */

"li %0, %1"

)

D.1283 = 10;

(set
(reg:SI 58 [D.1283])
(const int 10: [0xa])

)

li $t0, 10

D
e
v
e
lo
p
m
e
n
t

U
se

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

2 July 2012 MD Intro: The Essence of Retargetability 19/21

The Essence of Retargetability

When are the machine descriptions read?

• During the build process

• When a program is compiled by gcc the information gleaned from
machine descriptions is consulted

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

2 July 2012 MD Intro: The Essence of Retargetability 20/21

Retargetability Mechanism of GCC

Language
Specific
Code

Language and
Machine

Independent
Generic Code

Machine
Dependent
Generator
Code

Machine
Descriptions

Compiler Generation Framework

Input Language Target Name

Parser Gimplifier
Tree SSA
Optimizer

RTL
Generator

Optimizer
Code

Generator

Selected Copied

Copied

Generated

Generated

Generated Compiler

Development
Time

Build
Time

Use
Time

GIMPLE → PN
+

PN → IR-RTL
+

IR-RTL → ASM

GIMPLE → IR-RTL
+

IR-RTL → ASM

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

Part 5

Summary

2 July 2012 MD Intro: Summary 21/21

Summary

• GCC achieves retargetability by reading the machine descriptions and
generating a back end customised to the machine descriptions

• Machine descriptions are influenced by:
The HLLs, GCC architecture, and properties of target, host and build
systems

• Writing machine descriptions requires:
specifying the C macros, target instructions and any required support
functions

• define insn and define expand are used to convert a GIMPLE
representation to RTL

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

	Outline
	Influences on Machine Descriptions
	Organization of GCC MD
	3inEssential Constructs in Machine Descriptions
	Essential Constructs in Machine Descriptions
	The Essence of Retargetability
	Summary

