
Workshop on Essential Abstractions in GCC

Parallelization and Vectorization in GCC

GCC Resource Center

(www.cse.iitb.ac.in/grc)

Department of Computer Science and Engineering,

Indian Institute of Technology, Bombay

3 July 2012

3 July 2012 gcc-par-vect: Outline 1/81

Outline

• Transformation for parallel and vector execution

• Data dependence

• Auto-parallelization and auto-vectorization in Lambda Framework

• Conclusion

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: Outline 2/81

The Scope of This Tutorial

• What this tutorial does not address

◮ Details of algorithms, code and data structures used for
parallelization and vectorization

◮ Machine level issues related to parallelization and vectorization

• What this tutorial addresses
◮ GCC’s approach of discovering and exploiting parallelism
◮ Illustrated using carefully chosen examples

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

Part 1

Transformations for Parallel and

Vector Execution

3 July 2012 gcc-par-vect: Introduction to Parallelization and Vectorization 3/81

Vectorization: SISD ⇒ SIMD

• Parallelism in executing operation on shorter operands
(8-bit, 16-bit, 32-bit operands)

• Existing 32 or 64-bit arithmetic units used to perform multiple
operations in parallel
A 64 bit word ≡ a vector of 2×(32 bits), 4×(16 bits), or 8×(8 bits)

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: Introduction to Parallelization and Vectorization 4/81

Example 1

Vectorization (SISD ⇒ SIMD) : Yes
Parallelization (SISD ⇒ MIMD) : Yes

Original Code

int A[N], B[N], i;

for (i=1; i<N; i++)

A[i] = A[i] + B[i-1];

Observe reads and writes
into a given location

. . .

. . .

A[0..N]

B[0..N]

Iteration # 1 2 3 4 5 6 7 8 9 10 11 12 . . .

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: Introduction to Parallelization and Vectorization 4/81

Example 1

Vectorization (SISD ⇒ SIMD) : Yes
Parallelization (SISD ⇒ MIMD) : Yes

Original Code Vectorized Code

int A[N], B[N], i;

for (i=1; i<N; i++)

A[i] = A[i] + B[i-1];

int A[N], B[N], i;

for (i=1; i<N; i=i+ 4)

A[i:i+3] = A[i:i+3] + B[i-1:i+2];

. . .

. . .

A[0..N]

B[0..N]

Iteration #

Vectorization
Factor

1 2 3 . . .

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: Introduction to Parallelization and Vectorization 5/81

Example 1

Vectorization (SISD ⇒ SIMD) : Yes
Parallelization (SISD ⇒ MIMD) : Yes

Original Code

int A[N], B[N], i;

for (i=1; i<N; i++)

A[i] = A[i] + B[i-1];

Observe reads and writes
into a given location

. . .

. . .

A[0..N]

B[0..N]

Iteration #

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: Introduction to Parallelization and Vectorization 5/81

Example 1

Vectorization (SISD ⇒ SIMD) : Yes
Parallelization (SISD ⇒ MIMD) : Yes

Original Code Parallelized Code

int A[N], B[N], i;

for (i=1; i<N; i++)

A[i] = A[i] + B[i-1];

int A[N], B[N], i;

for-all (i=1 to N)

A[i] = A[i] + B[i-1];

. . .

. . .

A[0..N]

B[0..N]

Iteration # 1

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: Introduction to Parallelization and Vectorization 6/81

Example 1: The Moral of the Story

Vectorization (SISD ⇒ SIMD) : Yes
Parallelization (SISD ⇒ MIMD) : Yes

int A[N], B[N], i;

for (i=1; i<N; i++)

A[i] = A[i] + B[i-1];

Observe reads and writes
into a given location

. . .

. . .

A[0..N]

B[0..N]

A[0..N]

B[0..N]

When the same location is accessed across different iter-
ations, the order of reads and writes must be preserved

Nature of accesses in our example

Iteration i Iteration i + k Observation

Read Write No

Write Read No

Write Write No

Read Read Does not matter

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: Introduction to Parallelization and Vectorization 7/81

Example 2

Vectorization (SISD ⇒ SIMD) : Yes
Parallelization (SISD ⇒ MIMD) : No

Original Code

int A[N], B[N], i;

for (i=0; i<N; i++)

A[i] = A[i+1] + B[i];

Observe reads and writes
into a given location

. . .

. . .

A[0..N]

B[0..N]

Iteration # 1 2 3 4 5 6 7 8 9 10 11 1212 . . .

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: Introduction to Parallelization and Vectorization 7/81

Example 2

Vectorization (SISD ⇒ SIMD) : Yes
Parallelization (SISD ⇒ MIMD) : No

Original Code

int A[N], B[N], i;

for (i=0; i<N; i++)

A[i] = A[i+1] + B[i];

• Vector instruction is synchronized: All
reads before writes in a given instruction

• Read-writes across multiple instructions ex-
ecuting in parallel may not be synchronized

. . .

. . .

A[0..N]

B[0..N]

Iteration # 1 2 . . .3

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: Introduction to Parallelization and Vectorization 8/81

Example 2: The Moral of the Story

Vectorization (SISD ⇒ SIMD) : Yes
Parallelization (SISD ⇒ MIMD) : No

Original Code

int A[N], B[N], i;

for (i=0; i<N; i++)

A[i] = A[i+1] + B[i];

Observe reads and writes
into a given location

. . .

. . .

A[0..N]

B[0..N]

A[0..N]

B[0..N]

When the same location is accessed across different iter-
ations, the order of reads and writes must be preserved

Nature of accesses in our example

Iteration i Iteration i + k Observation

Read Write Yes

Write Read No

Write Write No

Read Read Does not matter

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: Introduction to Parallelization and Vectorization 9/81

Example 3

Vectorization (SISD ⇒ SIMD) : No
Parallelization (SISD ⇒ MIMD) : No

int A[N], B[N], i;

for (i=0; i<N; i++)

A[i+1] = A[i] + B[i+1];

Observe reads and writes
into a given location

. . .

. . .

A[0..N]

B[0..N]

Iteration # 1 2 3 4 5 6 7 8 9 10 11 1212 . . .

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: Introduction to Parallelization and Vectorization 9/81

Example 3

Vectorization (SISD ⇒ SIMD) : No
Parallelization (SISD ⇒ MIMD) : No

int A[N], B[N], i;

for (i=0; i<N; i++)

A[i+1] = A[i] + B[i+1];

. . .

. . .

A[0..N]

B[0..N]

Iteration # 1 2 3 4 5 6 7 8 9 10 11 1212 . . .

Nature of accesses in our example

Iteration i Iteration i + k Observation

Read Write No

Write Read Yes

Write Write No

Read Read Does not matter

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: Introduction to Parallelization and Vectorization 10/81

Example 4

Vectorization (SISD ⇒ SIMD) : No
Parallelization (SISD ⇒ MIMD) : Yes

• This case is not possible

• Vectorization is a limited granularity parallelization

• If parallelization is possible then vectorization is trivially possible

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: Introduction to Parallelization and Vectorization 11/81

Data Dependence

Let statements Si and Sj access memory location m at time instants t
and t + k

Access in Si Access in Sj Dependence Notation

Read m Write m Anti (or Pseudo) Si δ̄ Sj

Write m Read m Flow (or True) Si δ Sj

Write m Write m Output (or Pseudo) Si δ
o Sj

Read m Read m Does not matter

• Pseudo dependences may be eliminated by some transformations

• True dependence cannot be eliminated

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: Introduction to Parallelization and Vectorization 12/81

Data Dependence

Consider dependence between statements Si and Sj in a loop

• Loop independent dependence. t and t + k occur in the same
iteration of a loop

◮ Si and Sj must be executed sequentially
◮ Different iterations of the loop can be parallelized

• Loop carried dependence. t and t + k occur in the different
iterations of a loop

◮ Within an iteration, Si and Sj can be executed in parallel
◮ Different iterations of the loop must be executed sequentially

• Si and Sj may have both loop carried and loop independent
dependences

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: Introduction to Parallelization and Vectorization 13/81

Dependence in Example 1

• Program

int A[N], B[N], i;

for (i=1; i<N; i++)

A[i] = A[i] + B[i-1]; /* S1 */

• Dependence graph

S1 δ̄∞δ̄∞

Dependence in the
same iteration

• No loop carried dependence
Both vectorization and parallelization are possible
Vectorization is possible since all reads are done before all writes

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: Introduction to Parallelization and Vectorization 14/81

Dependence in Example 2

• Program

int A[N], B[N], i;

for (i=0; i<N; i++)

A[i] = A[i+1] + B[i]; /* S1 */

• Dependence graph

S1 δ̄1̄δ 1

Dependence due to
the outermost loop

• Loop carried anti-dependence
Parallelization is not possible
Vectorization is possible since all reads are done before all writes

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: Introduction to Parallelization and Vectorization 15/81

Dependence in Example 3

• Program

int A[N], B[N], i;

for (i=0; i<N; i++)

A[i+1] = A[i] + B[i+1]; /* S1 */

• Dependence graph

S1 δ1

• Loop carried flow-dependence
Neither parallelization not vectorization is possible
Vectorization is possible since all reads are done before all writes

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: Introduction to Parallelization and Vectorization 16/81

Iteration Vectors and Index Vectors: Example 1

for (i=0, i<4; i++)

for (j=0; j<4; j++)

{

a[i+1][j] = a[i][j] + 2;

}

Loop carried dependence exists if

• there are two distinct iteration
vectors such that

• the index vectors of LHS and RHS
are identical

Conclusion: Dependence exists

Iteration Index Vector
Vector LHS RHS

0, 0 1, 0 0, 0
0, 1 1, 1 0, 1
0, 2 1, 2 0, 2
0, 3 1, 3 0, 3
1, 0 2, 0 1, 0
1, 1 2, 1 1, 1
1, 2 2, 2 1, 2
1, 3 2, 3 1, 3
2, 0 3, 0 2, 0
2, 1 3, 1 2, 1
2, 2 3, 2 2, 2
2, 3 3, 3 2, 3
3, 0 4, 0 3, 0
3, 1 4, 1 3, 1
3, 2 4, 2 3, 2
3, 3 4, 3 3, 3

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: Introduction to Parallelization and Vectorization 17/81

Iteration Vectors and Index Vectors: Example 2

for (i=0, i<4; i++)

for (j=0; j<4; j++)

{

a[i][j] = a[i][j] + 2;

}

Loop carried dependence exists if

• there are two distinct iteration
vectors such that

• the index vectors of LHS and RHS
are identical

Conclusion: No dependence

Iteration Index Vector
Vector LHS RHS

0, 0 0, 0 0, 0
0, 1 0, 1 0, 1
0, 2 0, 2 0, 2
0, 3 0, 3 0, 3
1, 0 1, 0 1, 0
1, 1 1, 1 1, 1
1, 2 1, 2 1, 2
1, 3 1, 3 1, 3
2, 0 2, 0 2, 0
2, 1 2, 1 2, 1
2, 2 2, 2 2, 2
2, 3 2, 3 2, 3
3, 0 3, 0 3, 0
3, 1 3, 1 3, 1
3, 2 3, 2 3, 2
3, 3 3, 3 3, 3

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: Introduction to Parallelization and Vectorization 18/81

Example 4: Dependence

Program to swap arrays Dependence Graph

for (i=0; i<N; i++)

{

T = A[i]; /* S1 */

A[i] = B[i]; /* S2 */

B[i] = T; /* S3 */

}

S1

S3 S2

δ̄∞

δ̄∞

δ∞

δ̄1

δo1

Loop independent anti dependence due to A[i]

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: Introduction to Parallelization and Vectorization 18/81

Example 4: Dependence

Program to swap arrays Dependence Graph

for (i=0; i<N; i++)

{

T = A[i]; /* S1 */

A[i] = B[i]; /* S2 */

B[i] = T; /* S3 */

}

S1

S3 S2

δ̄∞

δ̄∞

δ∞

δ̄1

δo1

Loop independent anti dependence due to A[i]

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: Introduction to Parallelization and Vectorization 18/81

Example 4: Dependence

Program to swap arrays Dependence Graph

for (i=0; i<N; i++)

{

T = A[i]; /* S1 */

A[i] = B[i]; /* S2 */

B[i] = T; /* S3 */

}

S1

S3 S2

δ̄∞

δ̄∞

δ∞

δ̄1

δo1

Loop independent anti dependence due to B[i]

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: Introduction to Parallelization and Vectorization 18/81

Example 4: Dependence

Program to swap arrays Dependence Graph

for (i=0; i<N; i++)

{

T = A[i]; /* S1 */

A[i] = B[i]; /* S2 */

B[i] = T; /* S3 */

}

S1

S3 S2

δ̄∞

δ̄∞

δ∞

δ̄1

δo1

Loop independent flow dependence due to T

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: Introduction to Parallelization and Vectorization 18/81

Example 4: Dependence

Program to swap arrays Dependence Graph

for (i=0; i<N; i++)

{

T = A[i]; /* S1 */

A[i] = B[i]; /* S2 */

B[i] = T; /* S3 */

}

S1

S3 S2

δ̄∞

δ̄∞

δ∞

δ̄1

δo1

Loop carried anti dependence due to T

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: Introduction to Parallelization and Vectorization 18/81

Example 4: Dependence

Program to swap arrays Dependence Graph

for (i=0; i<N; i++)

{

T = A[i]; /* S1 */

A[i] = B[i]; /* S2 */

B[i] = T; /* S3 */

}

S1

S3 S2

δ̄∞

δ̄∞

δ∞

δ̄1

δo1

Loop carried output dependence due to T

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: Introduction to Parallelization and Vectorization 18/81

Example 4: Dependence

Program to swap arrays Dependence Graph

for (i=0; i<N; i++)

{

T = A[i]; /* S1 */

A[i] = B[i]; /* S2 */

B[i] = T; /* S3 */

}

S1

S3 S2

δ̄∞

δ̄∞

δ∞

δ̄1

δo1

Loop independent anti dependence due to A[i]

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: Introduction to Parallelization and Vectorization 19/81

Data Dependence Theorem

There exists a dependence from statement S1 to statement S2 in
common nest of loops if and only if there exist two iteration vectors i
and j for the nest, such that

1. i < j or i = j and there exists a path from S1 to S2 in the body of
the loop,

2. statement S1 accesses memory location M on iteration i and
statement S2 accesses location M on iteration j, and

3. one of these accesses is a write access.

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: Introduction to Parallelization and Vectorization 20/81

Anti Dependence and Vectorization

Read precedes Write lexicographically

int A[N], B[N], C[N], i;

for (i=0; i<N; i++) {

S1: C[i] = A[i+2];

S2: A[i] = B[i];

}

int A[N], B[N], C[N], i;

for (i=0; i<N; i=i+4) {

S1: C[i:i+3] = A[i+2:i+5];

S2: A[i:i+3] = B[i:i+3];

}

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: Introduction to Parallelization and Vectorization 21/81

Anti Dependence and Vectorization

Write precedes Read lexicographically

int A[N], B[N], C[N], i;

for (i=0; i<N; i++) {

S1: A[i] = B[i];

S2: C[i] = A[i+2];

}

int A[N], B[N], C[N], i;

for (i=0; i<N; i++) {

S2: C[i] = A[i+2];

S1: A[i] = B[i];

}

int A[N], B[N], C[N], i;

for (i=0; i<N; i=i+4) {

S2: C[i:i+3] = A[i+2:i+5];

S1: A[i:i+3] = B[i:i+3];

}

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: Introduction to Parallelization and Vectorization 22/81

True Dependence and Vectorization

Write precedes Read lexicographically

int A[N], B[N], C[N], i;

for (i=0; i<N; i++) {

S1: A[i+2] = C[i];

S2: B[i] = A[i];

}

int A[N], B[N], C[N], i;

for (i=0; i<N; i=i+4) {

S1: A[i+2:i+5] = C[i:i+3];

S1: B[i:i+3] = A[i:i+3];

}

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: Introduction to Parallelization and Vectorization 23/81

Multiple Dependences and Vectorization

Anti Dependence and True Dependence

int A[N], i;

for (i=0; i<N; i++) {

L1: A[i] = A[i+2];

}

int A[N], i, temp;

for (i=0; i<N; i++) {

S1: temp = A[i+2];

S2: A[i] = temp;

}

int A[N], T[N], i;

for (i=0; i<N; i=i+4) {

S1: T[i:i+3] = A[i+2:i+5];

S2: A[i:i+3] = T[i:i+3];

}

int A[N], T[N], i;

for (i=0; i<N; i++) {

S1: T[i] = A[i+2];

S2: A[i] = T[i];

}

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: Introduction to Parallelization and Vectorization 24/81

Multiple Dependences and Vectorization

True Dependence and Anti Dependence

int A[N], B[N], i;

for (i=0; i<N; i++) {

S1: A[i] = B[i];

S2: B[i+2] = A[i+1];

}

int A[N], B[N], i;

for (i=0; i<N; i++) {

S2: B[i+2] = A[i+1];

S1: A[i] = B[i];

}

int A[N], B[N], i;

for (i=0; i<N; i=i+4) {

S2: B[i+2:i+5] = A[i+1:i+4];

S1: A[i:i+3] = B[i:i+3];

}

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: Introduction to Parallelization and Vectorization 25/81

Observation: Feasibility of Vectorization

• If the source statement lexicographically precedes sink statement in
the program, they can be vectorized.

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: Introduction to Parallelization and Vectorization 26/81

True Dependence and Vectorization

Read precedes Write lexicographically

int A[N], i;

for (i=0; i<N; i++) {

L1: A[i+5] = A[i];

}

int A[N], i, temp;

for (i=0; i<N; i++) {

S1: temp = A[i];

S2: A[i+5] = temp;

}

int A[N], T[N], i;

for (i=0; i<N; i=i+4) {

S1: T[i:i+3] = A[i:i+3];

S2: A[i+5:i+8] = T[i:i+3];

}

int A[N], T[N], i;

for (i=0; i<N; i++) {

S1: T[i] = A[i];

S2: A[i+5] = T[i];

}

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: Introduction to Parallelization and Vectorization 27/81

Cyclic Dependences and Vectorization

Cyclic True Dependence

int A[N], B[N], i;

for (i=0; i<N; i++) {

S1: B[i+2] = A[i];

S2: A[i+1] = B[i];

}

Cyclic Anti Dependence

int A[N], B[N], i;

for (i=0; i<N; i++) {

S1: B[i] = A[i+1];

S2: A[i] = B[i+2];

}

• Rescheduling of statements will not break the cyclic dependence

• The dependence distance from S2 to S1 < VF

Cannot Vectorize

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: Introduction to Parallelization and Vectorization 28/81

Cyclic Dependences and Vectorization

Cyclic True Dependence

int A[N], B[N], i;

for (i=0; i<N; i++) {

S1: B[i+2] = A[i];

S2: A[i+5] = B[i];

}

Cyclic Anti Dependence

int A[N], B[N], i;

for (i=0; i<N; i++) {

S1: B[i] = A[i+1];

S2: A[i] = B[i+5];

}

• Rescheduling of statements will not break the cyclic dependence

• The dependence distance from S2 to S1 ≥ VF

Can Vectorize

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: Introduction to Parallelization and Vectorization 29/81

Observation: Feasibility of Vectorization

• If the source statement lexicographically precedes sink statement in
the program, they can be vectorized.

• If the dependence distance for all backward dependences between
two statements is greater than or equal to Vectorization Factor, the
statements can be vectorized.

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: Introduction to Parallelization and Vectorization 30/81

Feasibility of Parallelization

Outer Parallel

for (i=1; i<n; i++)

for (j=1; j<n; j++)

A[i][j] = A[i][j+1];

0 1 2 3 . . . n j

1

2

3

...

n

i

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: Introduction to Parallelization and Vectorization 30/81

Feasibility of Parallelization

Outer Parallel

for-all (i=1 to n)

for (j=1; j<n; j++)

A[i][j] = A[i][j+1];

0 1 2 3 . . . n j

1

2

3

...

n

i

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: Introduction to Parallelization and Vectorization 31/81

Feasibility of Parallelization

Inner Parallel

for (i=2; i<n; i++)

for (j=1; j<n; j++)

A[i][j] = A[i-1][j];

0 1 2 3 . . . n j

1

2

3

...

n

i

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: Introduction to Parallelization and Vectorization 31/81

Feasibility of Parallelization

Inner Parallel

for (i=2; i<n; i++)

for-all (j=1 to n)

A[i][j] = A[i-1][j];

0 1 2 3 . . . n j

1

2

3

...

n

i

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

Part 2

The Lambda Framework

3 July 2012 gcc-par-vect: The Lambda Framework 32/81

Lambda Framework for Loop Transforms

• Getting loop information (Loop discovery)

• Finding value spaces of induction variables, array subscript
functions, and pointer accesses

• Analyzing data dependence

• Performing loop transformations

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: The Lambda Framework 33/81

Loop Transformation Passes in GCC
NEXT PASS (pass tree loop);

{

struct opt pass **p = &pass tree loop.pass.sub;

NEXT PASS (pass tree loop init);

NEXT PASS (pass lim);

...

NEXT PASS (pass check data deps);
NEXT PASS (pass loop distribution);
NEXT PASS (pass copy prop);

NEXT PASS (pass graphite);
{

struct opt pass **p = &pass graphite.pass.sub;

NEXT PASS (pass graphite transforms);

...

}

NEXT PASS (pass iv canon);

NEXT PASS (pass if conversion);

NEXT PASS (pass vectorize);
{

struct opt pass **p = &pass vectorize.pass.sub;

NEXT PASS (pass lower vector ssa);

NEXT PASS (pass dce loop);

}

NEXT PASS (pass predcom);

NEXT PASS (pass complete unroll);

NEXT PASS (pass slp vectorize);

NEXT PASS (pass parallelize loops);
NEXT PASS (pass loop prefetch);

NEXT PASS (pass iv optimize);

NEXT PASS (pass tree loop done);

}

• Passes on tree-SSA form
A variant of Gimple IR

• Discover parallelism and
transform IR

• Parameterized by some
machine dependent features
(Vectorization factor,
alignment etc.)

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: The Lambda Framework 34/81

Loop Transformation Passes in GCC: Our Focus

Data Dependence

Pass variable name pass check data deps

Enabling switch -fcheck-data-deps

Dump switch -fdump-tree-ckdd

Dump file extension .ckdd

Loop Distribution

Pass variable name pass loop distribution

Enabling switch -ftree-loop-distribution

Dump switch -fdump-tree-ldist

Dump file extension .ldist

Vectorization

Pass variable name pass vectorize

Enabling switch -ftree-vectorize

Dump switch -fdump-tree-vect

Dump file extension .vect

Parallelization

Pass variable name pass parallelize loops

Enabling switch -ftree-parallelize-loops=n

Dump switch -fdump-tree-parloops

Dump file extension .parloops

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: The Lambda Framework 35/81

Compiling for Emitting Dumps

• Other necessary command line switches

◮ -O2 -fdump-tree-all

-O3 enables -ftree-vectorize. Other flags must be enabled
explicitly

• Processor related switches to enable transformations apart from
analysis

◮ -mtune=pentium -msse4

• Other useful options

◮ Suffixing -all to all dump switches
◮ -S to stop the compilation with assembly generation
◮ --verbose-asm to see more detailed assembly dump

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: The Lambda Framework 36/81

Representing Value Spaces of Variables and Expressions

Chain of Recurrences: 3-tuple 〈Starting Value, modification, stride〉

for (i=3; i<=15; i=i+3)

{

for (j=11; j>=1; j=j-2)

{

A[i+1][2*j-1] = ...

}

}

Entity CR

Induction variable i {3,+, 3}
Induction variable j {11,+,−2}
Index expression i+1 {4,+, 3}
Index expression 2*j-1 {21,+,−4}

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: The Lambda Framework 37/81

Example 1: Observing Data Dependence

Step 0: Compiling

int a[200];

int main()

{

int i;

for (i=0; i<150; i++)

{

a[i] = a[i+1] + 2;

}

return 0;

}

gcc -fcheck-data-deps -fdump-tree-ckdd-all -O2 -S datadep.c

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: The Lambda Framework 38/81

Example 1: Observing Data Dependence

Step 1: Examining the control flow graph

Program Control Flow Graph

int a[200];

int main()

{

int i;

for (i=0; i<150; i++)

{

a[i] = a[i+1] + 2;

}

return 0;

}

<bb 3>:

i 13 = PHI <i 3(4), 0(2)>

i 3 = i 13 + 1;

D.1955 4 = a[i 3];

D.1956 5 = D.1955 4 + 2;

a[i 13] = D.1956 5;

if (i 3 != 150)

goto <bb 4>;

else

goto <bb 5>;

<bb 4>:

goto <bb 3>;

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: The Lambda Framework 39/81

Example 1: Observing Data Dependence

Step 2: Understanding the chain of recurrences

<bb 3>:

i 13 = PHI <i 3(4), 0(2)>

i 3 = i 13 + 1;

D.1955 4 = a[i 3];

D.1956 5 = D.1955 4 + 2;

a[i 13] = D.1956 5;

if (i 3 != 150)

goto <bb 4>;

else

goto <bb 5>;

<bb 4>:

goto <bb 3>;

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: The Lambda Framework 39/81

Example 1: Observing Data Dependence

Step 2: Understanding the chain of recurrences

<bb 3>:

i 13 = PHI <i 3(4), 0(2)>

i 3 = i 13 + 1;

D.1955 4 = a[i 3];

D.1956 5 = D.1955 4 + 2;

a[i 13] = D.1956 5;

if (i 3 != 150)

goto <bb 4>;

else

goto <bb 5>;

<bb 4>:

goto <bb 3>;

(scalar evolution = {0, +, 1} 1)

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: The Lambda Framework 39/81

Example 1: Observing Data Dependence

Step 2: Understanding the chain of recurrences

<bb 3>:

i 13 = PHI <i 3(4), 0(2)>

i 3 = i 13 + 1;

D.1955 4 = a[i 3];

D.1956 5 = D.1955 4 + 2;

a[i 13] = D.1956 5;

if (i 3 != 150)

goto <bb 4>;

else

goto <bb 5>;

<bb 4>:

goto <bb 3>;

(scalar evolution = {1, +, 1} 1)

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: The Lambda Framework 39/81

Example 1: Observing Data Dependence

Step 2: Understanding the chain of recurrences

<bb 3>:

i 13 = PHI <i 3(4), 0(2)>

i 3 = i 13 + 1;

D.1955 4 = a[i 3];

D.1956 5 = D.1955 4 + 2;

a[i 13] = D.1956 5;

if (i 3 != 150)

goto <bb 4>;

else

goto <bb 5>;

<bb 4>:

goto <bb 3>;

base address: &a

offset from base address: 0

constant offset from base

address: 4

aligned to: 128

(chrec = {1, +, 1} 1)

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: The Lambda Framework 39/81

Example 1: Observing Data Dependence

Step 2: Understanding the chain of recurrences

<bb 3>:

i 13 = PHI <i 3(4), 0(2)>

i 3 = i 13 + 1;

D.1955 4 = a[i 3];

D.1956 5 = D.1955 4 + 2;

a[i 13] = D.1956 5;

if (i 3 != 150)

goto <bb 4>;

else

goto <bb 5>;

<bb 4>:

goto <bb 3>;

base address: &a

offset from base address: 0

constant offset from base

address: 0

aligned to: 128

base object: a[0]

(chrec = {0, +, 1} 1)

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: The Lambda Framework 40/81

Example 1: Observing Data Dependence

Step 3: Observing the data dependence information

iterations that access an element twice in A: [1 + 1*x 1]

last conflict: 149

iterations that access an element twice in B: [0 + 1*x 1]

last conflict: 149

Subscript distance: 1

inner loop index: 0

loop nest: (1)

distance vector: 1

direction vector: +

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: The Lambda Framework 41/81

Example 2: Observing Vectorization and Parallelization

Step 0: Compiling the code with -O2

int a[256], b[256];

int main()

{

int i;

for (i=0; i<256; i++)

{

a[i] = b[i];

}

return 0;

}

• Additional options for parallelization
-ftree-parallelize-loops=2 -fdump-tree-parloops-all

• Additional options for vectorization
-fdump-tree-vect-all -msse4 -ftree-vectorize

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: The Lambda Framework 42/81

Example 2: Observing Vectorization and Parallelization

Step 1: Examining the control flow graph

Program Control Flow Graph

int a[256], b[256];

int main()

{

int i;

for (i=0; i<256; i++)

{

a[i] = b[i];

}

return 0;

}

<bb 3>:

i 11 = PHI <i 4(4), 0(2)>

D.2836 3 = b[i 11];

a[i 11] = D.2836 3;

i 4 = i 11 + 1;

if (i 4 != 256)

goto <bb 4>;

else

goto <bb 5>;

<bb 4>:

goto <bb 3>;

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: The Lambda Framework 43/81

Example 2: Observing Vectorization and Parallelization

Step 2: Observing the final decision about vectorization

parvec.c:5: note: LOOP VECTORIZED.

parvec.c:2: note: vectorized 1 loops in function.

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: The Lambda Framework 44/81

Example 2: Observing Vectorization and Parallelization

Step 3: Examining the vectorized control flow graph

Original control flow graph Transformed control flow graph

<bb 3>:

i 11 = PHI <i 4(4), 0(2)>

D.2836 3 = b[i 11];

a[i 11] = D.2836 3;

i 4 = i 11 + 1;

if (i 4 != 256)

goto <bb 4>;

else

goto <bb 5>;

<bb 4>:

goto <bb 3>;

<bb 2>:

vect pb.7 10 = &b;

vect pa.12 15 = &a;

<bb 3>:

vect pb.4 6 = PHI <vect pb.4 13,

vect pb.7 10>

vect pa.9 16 = PHI <vect pa.9 17,

vect pa.12 15>

vect var .8 14 = MEM[vect pb.4 6];

MEM[vect pa.9 16] = vect var .8 14;

vect pb.4 13 = vect pb.4 6 + 16;

vect pa.9 17 = vect pa.9 16 + 16;

ivtmp.13 19 = ivtmp.13 18 + 1;

if (ivtmp.13 19 < 64)

goto <bb 4>;

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: The Lambda Framework 45/81

Example 2: Observing Vectorization and Parallelization

Step 4: Understanding the strategy of parallel execution

• Create threads ti for 1 ≤ i ≤ MAX THREADS

• Assigning start and end iteration for each thread
⇒ Distribute iteration space across all threads

• Create the following code body for each thread ti

for (j=start_for_thread_i; j<=end_for_thread_i; j++)

{

/* execute the loop body to be parallelized */

}

• All threads are executed in parallel

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: The Lambda Framework 46/81

Example 2: Observing Vectorization and Parallelization

Step 5: Examining the thread creation in parallelized control flow graph

D.1996 6 = builtin omp get num threads ();

D.1998 8 = builtin omp get thread num ();

D.2000 10 = 255 / D.1997 6;

D.2001 11 = D.2000 10 * D.1997 6;

D.2002 12 = D.2001 11 != 255;

D.2003 13 = D.2002 12 + D.2000 10;

ivtmp.7 14 = D.2003 13 * D.1999 8;

D.2005 15 = ivtmp.7 14 + D.2003 13;

D.2006 16 = MIN EXPR <D.2005 15, 255>;

if (ivtmp.7 14 >= D.2006 16)

goto <bb 3>;

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: The Lambda Framework 46/81

Example 2: Observing Vectorization and Parallelization

Step 5: Examining the thread creation in parallelized control flow graph

D.1996 6 = builtin omp get num threads ();

D.1998 8 = builtin omp get thread num ();

D.2000 10 = 255 / D.1997 6;

D.2001 11 = D.2000 10 * D.1997 6;

D.2002 12 = D.2001 11 != 255;

D.2003 13 = D.2002 12 + D.2000 10;

ivtmp.7 14 = D.2003 13 * D.1999 8;

D.2005 15 = ivtmp.7 14 + D.2003 13;

D.2006 16 = MIN EXPR <D.2005 15, 255>;

if (ivtmp.7 14 >= D.2006 16)

goto <bb 3>;

Get the number of threads

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: The Lambda Framework 46/81

Example 2: Observing Vectorization and Parallelization

Step 5: Examining the thread creation in parallelized control flow graph

D.1996 6 = builtin omp get num threads ();

D.1998 8 = builtin omp get thread num ();

D.2000 10 = 255 / D.1997 6;

D.2001 11 = D.2000 10 * D.1997 6;

D.2002 12 = D.2001 11 != 255;

D.2003 13 = D.2002 12 + D.2000 10;

ivtmp.7 14 = D.2003 13 * D.1999 8;

D.2005 15 = ivtmp.7 14 + D.2003 13;

D.2006 16 = MIN EXPR <D.2005 15, 255>;

if (ivtmp.7 14 >= D.2006 16)

goto <bb 3>;

Get thread identity

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: The Lambda Framework 46/81

Example 2: Observing Vectorization and Parallelization

Step 5: Examining the thread creation in parallelized control flow graph

D.1996 6 = builtin omp get num threads ();

D.1998 8 = builtin omp get thread num ();

D.2000 10 = 255 / D.1997 6;

D.2001 11 = D.2000 10 * D.1997 6;

D.2002 12 = D.2001 11 != 255;

D.2003 13 = D.2002 12 + D.2000 10;

ivtmp.7 14 = D.2003 13 * D.1999 8;

D.2005 15 = ivtmp.7 14 + D.2003 13;

D.2006 16 = MIN EXPR <D.2005 15, 255>;

if (ivtmp.7 14 >= D.2006 16)

goto <bb 3>;

Perform load calculations

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: The Lambda Framework 46/81

Example 2: Observing Vectorization and Parallelization

Step 5: Examining the thread creation in parallelized control flow graph

D.1996 6 = builtin omp get num threads ();

D.1998 8 = builtin omp get thread num ();

D.2000 10 = 255 / D.1997 6;

D.2001 11 = D.2000 10 * D.1997 6;

D.2002 12 = D.2001 11 != 255;

D.2003 13 = D.2002 12 + D.2000 10;

ivtmp.7 14 = D.2003 13 * D.1999 8;

D.2005 15 = ivtmp.7 14 + D.2003 13;

D.2006 16 = MIN EXPR <D.2005 15, 255>;

if (ivtmp.7 14 >= D.2006 16)

goto <bb 3>;

Assign start iteration to the chosen thread

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: The Lambda Framework 46/81

Example 2: Observing Vectorization and Parallelization

Step 5: Examining the thread creation in parallelized control flow graph

D.1996 6 = builtin omp get num threads ();

D.1998 8 = builtin omp get thread num ();

D.2000 10 = 255 / D.1997 6;

D.2001 11 = D.2000 10 * D.1997 6;

D.2002 12 = D.2001 11 != 255;

D.2003 13 = D.2002 12 + D.2000 10;

ivtmp.7 14 = D.2003 13 * D.1999 8;

D.2005 15 = ivtmp.7 14 + D.2003 13;

D.2006 16 = MIN EXPR <D.2005 15, 255>;

if (ivtmp.7 14 >= D.2006 16)

goto <bb 3>;

Assign end iteration to the chosen thread

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: The Lambda Framework 46/81

Example 2: Observing Vectorization and Parallelization

Step 5: Examining the thread creation in parallelized control flow graph

D.1996 6 = builtin omp get num threads ();

D.1998 8 = builtin omp get thread num ();

D.2000 10 = 255 / D.1997 6;

D.2001 11 = D.2000 10 * D.1997 6;

D.2002 12 = D.2001 11 != 255;

D.2003 13 = D.2002 12 + D.2000 10;

ivtmp.7 14 = D.2003 13 * D.1999 8;

D.2005 15 = ivtmp.7 14 + D.2003 13;

D.2006 16 = MIN EXPR <D.2005 15, 255>;

if (ivtmp.7 14 >= D.2006 16)

goto <bb 3>;

Start execution of iterations of the chosen thread

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: The Lambda Framework 47/81

Example 2: Observing Vectorization and Parallelization

Step 6: Examining the loop body to be executed by a thread

Control Flow Graph Parallel loop body

<bb 3>:

i 11 = PHI <i 4(4), 0(2)>

D.1956 3 = b[i 11];

a[i 11] = D.1956 3;

i 4 = i 11 + 1;

if (i 4 != 256)

goto <bb 4>;

else

goto <bb 5>;

<bb 4>:

goto <bb 3>;

<bb 5>:

i.8 21 = (int) ivtmp.7 18;

D.2010 23 = *b.10 4[i.8 21];

*a.11 5[i.8 21] = D.2010 23;

ivtmp.7 19 = ivtmp.7 18 + 1;

if (D.2006 16 > ivtmp.7 19)

goto <bb 5>;

else

goto <bb 3>;

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: The Lambda Framework 48/81

Example 3: Vectorization but No Parallelization

Step 0: Compiling with
-O2 -fdump-tree-vect-all -msse4 -ftree-vectorize

int a[624];

int main()

{

int i;

for (i=0; i<619; i++)

{

a[i] = a[i+4];

}

return 0;

}

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: The Lambda Framework 49/81

Example 3: Vectorization but No Parallelization

Step 1: Observing the final decision about vectorization

vecnopar.c:5: note: LOOP VECTORIZED.

vecnopar.c:2: note: vectorized 1 loops in function.

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: The Lambda Framework 50/81

Example 3: Vectorization but No Parallelization

Step 2: Examining vectorization

Control Flow Graph Vectorized Control Flow Graph

<bb 3>:

i 12 = PHI <i 5(4), 0(2)>

D.2834 3 = i 12 + 4;

D.2835 4 = a[D.2834 3];

a[i 12] = D.2835 4;

i 5 = i 12 + 1;

if (i 5 != 619)

goto <bb 4>;

else

goto <bb 5>;

<bb 4>:

goto <bb 3>;

<bb 2>:

vect pa.10 26 = &a[4];

vect pa.15 30 = &a;

<bb 3>:

vect pa.7 27 = PHI <vect pa.7 28,

vect pa.10 26>

vect pa.12 31 = PHI <vect pa.12 32,

vect pa.15 30>

vect var .11 29 = MEM[vect pa.7 27];

MEM[vect pa.12 31] = vect var .11 29;

vect pa.7 28 = vect pa.7 27 + 16;

vect pa.12 32 = vect pa.12 31 + 16;

ivtmp.16 34 = ivtmp.16 33 + 1;

if (ivtmp.16 34 < 154)

goto <bb 4>;

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: The Lambda Framework 51/81

Example 3: Vectorization but No Parallelization

• Step 3: Observing the conclusion about dependence information

inner loop index: 0

loop nest: (1)

distance_vector: 4

direction_vector: +

• Step 4: Observing the final decision about parallelization

FAILED: data dependencies exist across iterations

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: The Lambda Framework 52/81

Example 4: No Vectorization and No Parallelization

Step 0: Compiling the code with -O2

int a[256], b[256];

int main ()

{

int i;

for (i=0; i<216; i++)

{

a[i+2] = b[i] + 5;

b[i+1] = a[i] + 10;

}

return 0;

}

• Additional options for parallelization
-ftree-parallelize-loops=2 -fdump-tree-parloops-all

• Additional options for vectorization
-fdump-tree-vect-all -msse4 -ftree-vectorize

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: The Lambda Framework 53/81

Example 4: No Vectorization and No Parallelization

• Step 1: Observing the final decision about vectorization

noparvec.c:5: note: vectorized 0 loops in function.

• Step 2: Observing the final decision about parallelization

FAILED: data dependencies exist across iterations

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: The Lambda Framework 54/81

Example 4: No Vectorization and No Parallelization

Step 3: Understanding the dependences that prohibit vectorization and
parallelization

a[i+2] = b[i] + 5

b[i+1] = a[i] + 10

δ1 δ1

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

Part 3

Transformations Enhancing

Vectorization and Parallelization

3 July 2012 gcc-par-vect: Transformations Enhancing Vectorization and Parallelization 55/81

Transformations Enhancing Vectorization and Parallelization

Some transformations increase the scope of parallelization and
vectorization by either enabling them, or by improving their run time
performance. Most important of such transformations are:

• Loop Interchange

• Loop Distribution

• Loop Fusion

• Peeling

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: Transformations Enhancing Vectorization and Parallelization 56/81

Loop Interchange

Loop Interchange for Vectorization

Original Code

for (i=0; i<200; i++) {

for (j=0; j<200; j++)

a[j][i] = a[j][i+1];

}

0
1 2 3 4 . . .n i

1

2

3

4

.

.

.

n

j

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

cache

• Outer loop is vectorizable

• Mismatch between nesting order of loops and array access

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: Transformations Enhancing Vectorization and Parallelization 56/81

Loop Interchange

Loop Interchange for Vectorization

Original Code

for (i=0; i<200; i++) {

for (j=0; j<200; j++)

a[j][i] = a[j][i+1];

}

After Interchange

for (j=0; j<200; j++) {

for (i=0; i<200; i++)

a[j][i] = a[j][i+1];

}

• Innermost loop is vectorizable

• Loop Interchange improves data locality

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: Transformations Enhancing Vectorization and Parallelization 57/81

Loop Interchange

Loop Interchange for Parallelization

Original Code

for (i=1; i<n; i++) {

for (j=0; j<n; j++)

A[i][j] = A[i-1][j];

}

• Outer Loop - dependence on i, can not be parallelized

• Inner Loop - parallelizable, but synchronization barrier required

Total number of synchronizations required = n

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: Transformations Enhancing Vectorization and Parallelization 57/81

Loop Interchange

Loop Interchange for Parallelization

Original Code

for (i=1; i<n; i++) {

for (j=0; j<n; j++)

A[i][j] = A[i-1][j];

}

After Interchange

for (j=0; j<n; j++) {

for (i=1; i<n; i++)

A[i][j] = A[i-1][j];

}

• Outer Loop - parallelizable

Total number of synchronizations required = 1

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: Transformations Enhancing Vectorization and Parallelization 58/81

Loop Distribution

Original Code

for (i=0; i<230; i++) {

S1 : a[i+3] = a[i];

S2 : b[i] = c[i];

}

• True dependence in S1, no dependence in S2

• Loop cannot be vectorized or parallelized, but S2 can be vectorized
and parallelized independently

Compile with
gcc -O2 -ftree-loop-distribution -fdump-tree-ldist

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: Transformations Enhancing Vectorization and Parallelization 59/81

Loop Distribution

Control Flow Graph Distributed Control Flow Graph

<bb 3>:

i 13 = PHI <i 6(4), 0(2)>

D.2692 3 = i 13 + 3;

D.2693 4 = a[i 13];

a[D.2692 3] = D.2693 4;

D.2694 5 = c[i 13];

b[i 13] = D.2694 5;

i 6 = i 13 + 1;

if (i 6 != 230)

goto <bb 4>;

else

goto <bb 5>;

<bb 4>:

goto <bb 3>;

<bb 6>:

i 11 = PHI <i 18(7), 0(2)>

D.2692 12 = i 11 + 3;

D.2693 7 = a[i 11];

a[D.2692 12] = D.2693 7;

i 18 = i 11 + 1;

if (i 18 != 230)

goto <bb 6>;

<bb 8>:

i 13 = PHI <i 6(4), 0(8)>

D.2694 5 = c[i 13];

b[i 13] = D.2694 5;

i 6 = i 13 + 1;

if (i 6 != 230)

goto <bb 8>;

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: Transformations Enhancing Vectorization and Parallelization 60/81

Loop Distribution

After Distribution

for (i=0; i<230; i++)

S1 : a[i+3] = a[i];

for (i=0; i<230; i++)

S2 : b[i] = c[i];

• S2 can now be independently parallelized or vectorized

• S1 runs sequentially

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: Transformations Enhancing Vectorization and Parallelization 61/81

Loop Fusion for Locality

Original Code

for (i=0; i<n; i++)

for (j=0; j<n; j++)

a[i][j] = b[i];

for (k=0; k<n; k++)

for (l=0; l<n; l++)

b[k] = a[k][l];

• Large reuse distance for array a and b, high chances of cache miss

• If loops i and k are parallelized, 2 synchronizations required

• Outer loops i and k can be fused

• Fusing inner loops j and l will introduce a spurious backward
dependence on b

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: Transformations Enhancing Vectorization and Parallelization 61/81

Loop Fusion for Locality

Original Code

for (i=0; i<n; i++)

for (j=0; j<n; j++)

a[i][j] = b[i];

for (k=0; k<n; k++)

for (l=0; l<n; l++)

b[k] = a[k][l];

Fused Code

for (i=0; i<n; i++) {

for (j=0; j<n; j++)

a[i][j] = b[i];

for (l=0; l<n; l++)

b[i] = a[i][l];

}

• Reduced reuse distance for array a and b, low chances of cache miss

• If outer loop i is parallelized, only 1 synchronization required

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: Transformations Enhancing Vectorization and Parallelization 62/81

Peeling

Peeling for Vectorization

Original Code

for (i=0; i<n; i++)

{

S1: a[i+2] = b[i];

S2: b[i+3] = a[i];

}

a[i+2] = b[i]

b[i+3] = a[i]

δ1 δ1

• Cyclic Dependence, dependence distance for backward dependence
= 3 < VF

• Cannot vectorize

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: Transformations Enhancing Vectorization and Parallelization 62/81

Peeling

Peeling for Vectorization

Transformed Code

for (i=0; i<2; i++)

S2: b[i+3] = a[i];

for (i=2; i<n-2; i++) {

S1: a[i] = b[i-2];

S2: b[i+3] = a[i];

}

a[i] = b[i-2]

b[i+3] = a[i]

δ1 δ1

• Cyclic Dependence, dependence distance for backward dependence
= 5 > VF

• Can vectorize

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: Transformations Enhancing Vectorization and Parallelization 63/81

Peeling

Peeling for Parallelization

Original Code

for (i=1; i<n; i++)

{

S1: a[i] = b[i];

S2: c[i] = a[i-1];

}

• dependence on i, can not be parallelized

Total number of synchronizations required = n

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: Transformations Enhancing Vectorization and Parallelization 63/81

Peeling

Peeling for Parallelization

Original Code

for (i=1; i<n; i++)

{

S1: a[i] = b[i];

S2: c[i] = a[i-1];

}

Transformed Code

c[1] = a[0];

for (i=1; i<n-1; i++) {

S1: a[i] = b[i];

S2: c[i+1] = a[i];

}

• Outer Loop parallelizable

Total number of synchronizations required = 1

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

Part 4

Advanced Issues in Vectorization

and Parallelization

3 July 2012 gcc-par-vect: Advanced Issues in Vectorization and Parallelization 64/81

Advanced Issues in Vectorization and Parallelization

• What code can be vectorized?

• How to force the alignment of data accesses for
◮ compile time misalignment
◮ run time misalignment

• How to handle undetermined aliases?

• When is vectorization profitable?

• When is parallelization profitable?

Understanding the cost model of vectorizer and parallelizer

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: Advanced Issues in Vectorization and Parallelization 65/81

Unvectorizable Loops

int *a, *b;

int main() {

while (*a != NULL)

{

*a++ = *b--;

}

}

novec.c:6: note: not vectorized: number of iterations cannot be
computed.

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: Advanced Issues in Vectorization and Parallelization 66/81

Reducing Compile Time Misalignment by Peeling

int a[256], b[256];

int main ()

{

int i;

for (i=0; i<203; i++)

a[i+2] = b[i+2];

}

peel.c:5: note: misalign = 8 bytes of ref b[D.2836 4]

peel.c:5: note: misalign = 8 bytes of ref a[D.2836 4]

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: Advanced Issues in Vectorization and Parallelization 67/81

Reducing Compile Time Misalignment by Peeling

Observing the final decision about alignment

peel.c:5: note: Try peeling by 2

peel.c:5: note: Alignment of access forced using peeling.

peel.c:5: note: Peeling for alignment will be applied.

peel.c:5: note: known peeling = 2.

peel.c:5: note: niters for prologue loop: 2

peel.c:5: note: Cost model analysis:

prologue iterations: 2

epilogue iterations: 1

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: Advanced Issues in Vectorization and Parallelization 68/81

Reducing Compile Time Misalignment by Peeling

An aligned vectorized code can consist of three parts

• Peeled Prologue - Scalar code for alignment

• Vectorized body - Iterations that are vectorized

• Epilogue - Residual scalar iterations

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: Advanced Issues in Vectorization and Parallelization 69/81

Reducing Compile Time Misalignment by Peeling

Control Flow Graph Vectorized Control Flow Graph

<bb 3>:

i 12 = PHI <i 6(4), 0(2)>

D.2690 4 = i 12 + 2;

D.2691 5 = b[D.2690 4];

a[D.2690 4] = D.2691 5;

i 6 = i 12 + 1;

if (i 6 != 203)

goto <bb 4>;

else

goto <bb 5>;

<bb 4>:

goto <bb 3>;

<bb 3>:

ivtmp.8 27 = PHI <ivtmp.8 28(4),

0(2)>

D.2908 16 = i 7 + 2;

D.2909 17 = b[D.2908 16];

a[D.2908 16] = D.2909 17;

ivtmp.8 28 = ivtmp.8 27 + 1;

if (ivtmp.8 28 < 2)

goto <bb 3>;

else

goto <bb 5>;

2 Iterations of Prologue

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: Advanced Issues in Vectorization and Parallelization 69/81

Reducing Compile Time Misalignment by Peeling

Control Flow Graph Vectorized Control Flow Graph

<bb 3>:

i 12 = PHI <i 6(4), 0(2)>

D.2690 4 = i 12 + 2;

D.2691 5 = b[D.2690 4];

a[D.2690 4] = D.2691 5;

i 6 = i 12 + 1;

if (i 6 != 203)

goto <bb 4>;

else

goto <bb 5>;

<bb 4>:

goto <bb 3>;

<bb 5>:

vect pb.15 4 = &b[4];

vect pa.20 8 = &a[4];

<bb 6>:

vect pb.12 5 = PHI <vect pb.12 6,

vect pb.15 4>

vect pa.17 9 = PHI <vect pa.17 3,

vect pa.20 8>

vect var .16 7 = MEM[vect pb.12 5];

MEM[vect pa.17 9] = vect var .16 7;

vect pb.12 6 = vect pb.12 5 + 16;

vect pa.17 3 = vect pa.17 9 + 16;

ivtmp.21 52 = ivtmp.21 51 + 1;

if (ivtmp.21 52 < 50)

goto <bb 10>;

200 Iterations of Vector Code

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: Advanced Issues in Vectorization and Parallelization 69/81

Reducing Compile Time Misalignment by Peeling

Control Flow Graph Vectorized Control Flow Graph

<bb 3>:

i 12 = PHI <i 6(4), 0(2)>

D.2690 4 = i 12 + 2;

D.2691 5 = b[D.2690 4];

a[D.2690 4] = D.2691 5;

i 6 = i 12 + 1;

if (i 6 != 203)

goto <bb 4>;

else

goto <bb 5>;

<bb 4>:

goto <bb 3>;

<bb 7>:

tmp.10 42 = ivtmp.8 28 + 200;

<bb 8>:

i 29 = PHI <i 35(9), tmp.10 42(7)>

ivtmp.3 31 = PHI <ivtmp.3 36(9),

tmp.11 43(7)>

D.2908 32 = i 29 + 2;

D.2909 33 = b[D.2908 32];

a[D.2908 32] = D.2909 33;

i 35 = i 29 + 1;

ivtmp.3 36 = ivtmp.3 31 - 1;

if (ivtmp.3 36 != 0)

goto <bb 8>;

1 Iteration of Epilogue

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: Advanced Issues in Vectorization and Parallelization 70/81

Cost Model for Peeling

int a[256];

int main ()

{

int i;

for (i=4; i<253; i++)

a[i-3] = a[i-3] + a[i+2];

}

a[1] = a[1] + a[6]a[1]

Peel Factor = 3

a[1]

Peel Factor = 3

a[6]

Peel Factor = 2

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: Advanced Issues in Vectorization and Parallelization 70/81

Cost Model for Peeling

int a[256];

int main ()

{

int i;

for (i=4; i<253; i++)

a[i-3] = a[i-3] + a[i+2];

}

a[1] = a[1] + a[6]

Maximize alignment with minimal peel factor

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: Advanced Issues in Vectorization and Parallelization 70/81

Cost Model for Peeling

int a[256];

int main ()

{

int i;

for (i=4; i<253; i++)

a[i-3] = a[i-3] + a[i+2];

}

Peel the loop by 3

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: Advanced Issues in Vectorization and Parallelization 71/81

Reducing Run Time Misalignment by Versioning

int a[256], b[256];

int main (int x, int y)

{

int i;

for (i=0; i<200; i++)

a[i+y] = b[i+x];

}

version.c:5: note: Unknown alignment for access: b

version.c:5: note: Unknown alignment for access: a

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: Advanced Issues in Vectorization and Parallelization 72/81

Reducing Run Time Misalignment by Versioning

D.2921 16 = (long unsigned int) x 5(D);

base off.6 17 = D.2921 16 * 4;

vect pb.7 18 = &b + base off.6 17;

D.2924 19 = (long unsigned int) vect pb.7 18;

D.2925 20 = D.2924 19 & 15;

D.2926 21 = D.2925 20 >> 2;

D.2927 22 = -D.2926 21;

D.2928 23 = (unsigned int) D.2927 22;

prolog loop niters.8 24 = D.2928 23 & 3;

D.2932 37 = prolog loop niters.8 24 == 0;

if (D.2932 37 != 0)

goto <bb 6>;

else

goto <bb 3>;

Compute address misalignment as ‘addr & (vectype size -1)’

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: Advanced Issues in Vectorization and Parallelization 72/81

Reducing Run Time Misalignment by Versioning

D.2921 16 = (long unsigned int) x 5(D);

base off.6 17 = D.2921 16 * 4;

vect pb.7 18 = &b + base off.6 17;

D.2924 19 = (long unsigned int) vect pb.7 18;

D.2925 20 = D.2924 19 & 15;

D.2926 21 = D.2925 20 >> 2;

D.2927 22 = -D.2926 21;

D.2928 23 = (unsigned int) D.2927 22;

prolog loop niters.8 24 = D.2928 23 & 3;

D.2932 37 = prolog loop niters.8 24 == 0;

if (D.2932 37 != 0)

goto <bb 6>;

else

goto <bb 3>;

Compute number of prologue iterations

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: Advanced Issues in Vectorization and Parallelization 72/81

Reducing Run Time Misalignment by Versioning

D.2921 16 = (long unsigned int) x 5(D);

base off.6 17 = D.2921 16 * 4;

vect pb.7 18 = &b + base off.6 17;

D.2924 19 = (long unsigned int) vect pb.7 18;

D.2925 20 = D.2924 19 & 15;

D.2926 21 = D.2925 20 >> 2;

D.2927 22 = -D.2926 21;

D.2928 23 = (unsigned int) D.2927 22;

prolog loop niters.8 24 = D.2928 23 & 3;

D.2932 37 = prolog loop niters.8 24 == 0;

if (D.2932 37 != 0)

goto <bb 6>;

else

goto <bb 3>;

If accesses can be aligned, go to vectorized code

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: Advanced Issues in Vectorization and Parallelization 72/81

Reducing Run Time Misalignment by Versioning

D.2921 16 = (long unsigned int) x 5(D);

base off.6 17 = D.2921 16 * 4;

vect pb.7 18 = &b + base off.6 17;

D.2924 19 = (long unsigned int) vect pb.7 18;

D.2925 20 = D.2924 19 & 15;

D.2926 21 = D.2925 20 >> 2;

D.2927 22 = -D.2926 21;

D.2928 23 = (unsigned int) D.2927 22;

prolog loop niters.8 24 = D.2928 23 & 3;

D.2932 37 = prolog loop niters.8 24 == 0;

if (D.2932 37 != 0)

goto <bb 6>;

else

goto <bb 3>;

Else go to sequential code

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: Advanced Issues in Vectorization and Parallelization 73/81

Versioning for Undetermined Aliases

int a[256];

int main (int *b)

{

int i;

for (i=0; i<200; i++)

*b++ = a[i];

}

version.c:5: note: misalign = 0 bytes of ref a[i 15]

version.c:5: note: can’t force alignment of ref: *b 14

version.c:5: note: versioning for alias required: can’t

determine dependence between a[i 15] and *b 14

version.c:5: note: create runtime check for data references

a[i 15] and *b 14

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: Advanced Issues in Vectorization and Parallelization 74/81

Versioning for Undetermined Aliases

Control Flow Graph Vectorized Control Flow Graph

<bb 3>:

b 14 = PHI <b 6, b 4(D)>

i 15 = PHI <i 7(4), 0(2)>

D.2907 5 = a[i 15];

*b 14 = D.2907 5;

b 6 = b 14 + 4;

i 7 = i 15 + 1;

if (i 7 != 200)

goto <bb 4>;

else

goto <bb 5>;

<bb 4>:

goto <bb 3>;

<bb 2>:

vect pa.6 12 = &a;

vect p.9 11 = b 4(D);

D.2919 13 = vect pa.6 12 + 16;

D.2920 8 = D.2919 13 < vect p.9 11;

D.2921 17 = vect p.9 11 + 16;

D.2922 18 = D.2921 17 < vect pa.6 12;

D.2923 19 = D.2920 8 || D.2922 18;

if (D.2923 19 != 0)

goto <bb 3>;

else

goto <bb 6>;

Check for dependence within VF

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: Advanced Issues in Vectorization and Parallelization 74/81

Versioning for Undetermined Aliases

Control Flow Graph Vectorized Control Flow Graph

<bb 3>:

b 14 = PHI <b 6, b 4(D)>

i 15 = PHI <i 7(4), 0(2)>

D.2907 5 = a[i 15];

*b 14 = D.2907 5;

b 6 = b 14 + 4;

i 7 = i 15 + 1;

if (i 7 != 200)

goto <bb 4>;

else

goto <bb 5>;

<bb 4>:

goto <bb 3>;

<bb 3>:

#vect pa.10 30 = PHI <vect pa.10 31,

vect pa.13 29>

#vect p.15 34 = PHI <vect p.15 35,

vect p.18 33>

#ivtmp.19 36 = PHI <ivtmp.19 37, 0>

vect var .14 32 = MEM[vect pa.10 30];

MEM[vect p.15 34] = vect var .14 32;

vect pa.10 31 = vect pa.10 30 + 16;

vect p.15 35 = vect p.15 34 + 16;

ivtmp.19 37 = ivtmp.19 36 + 1;

if (ivtmp.19 37 < 50)

goto <bb 3>;

else

goto <bb 9>;

Execute vector code if no aliases within VF

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: Advanced Issues in Vectorization and Parallelization 74/81

Versioning for Undetermined Aliases

Control Flow Graph Vectorized Control Flow Graph

<bb 3>:

b 14 = PHI <b 6, b 4(D)>

i 15 = PHI <i 7(4), 0(2)>

D.2907 5 = a[i 15];

*b 14 = D.2907 5;

b 6 = b 14 + 4;

i 7 = i 15 + 1;

if (i 7 != 200)

goto <bb 4>;

else

goto <bb 5>;

<bb 4>:

goto <bb 3>;

<bb 6>:

#b 20 = PHI <b 4(D)(6), b 26(8)>

#i 21 = PHI <0(6), i 27(8)>

#ivtmp.3 23 = PHI <200, ivtmp.3 28>

D.2907 24 = a[i 21];

*b 20 = D.2907 24;

b 26 = b 20 + 4;

i 27 = i 21 + 1;

ivtmp.3 28 = ivtmp.3 23 - 1;

if (ivtmp.3 28 != 0)

goto <bb 6>;

else

goto <bb 9>;

Execute scalar code if aliases are within VF

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: Advanced Issues in Vectorization and Parallelization 75/81

Profitability of Vectorization

int a[256], b[256];

int main ()

{

int i;

for (i=0; i<50; i++)

a[i] = b[i*4];

}

vec.c:5: note: cost model: the vector iteration cost = 10

divided by the scalar iteration cost = 2 is greater or

equal to the vectorization factor = 4.

vec.c:5: note: not vectorized: vectorization not profitable.

N
o
te
s

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: Advanced Issues in Vectorization and Parallelization 75/81

Profitability of Vectorization

short int a[256], b[256];

int main ()

{

int i;

for (i=0; i<50; i++)

a[i] = b[i*4];

}

Vectorization Factor = 8
VF x scalar iteration cost > vector iteration cost

vec.c:5: note: LOOP VECTORIZED.

vec.c:2: note: vectorized 1 loops in function.

N
o
te
s

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: Advanced Issues in Vectorization and Parallelization 76/81

Cost Model of Vectorizer

Vectorization is profitable when

SIC ∗niters+SOC > VIC ∗

(

niters − PL ITERS − EP ITERS

VF

)

+VOC

SIC = scalar iteration cost
VIC = vector iteration cost
VOC = vector outside cost
VF = vectorization factor
PL ITERS = prologue iterations
EP ITERS = epilogue iterations
SOC = scalar outside cost

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: Advanced Issues in Vectorization and Parallelization 77/81

Cost Model of Vectorizer

int main (int *a, int *b)

{

int i, n;

for (i=0; i<n; i++)

*a++ = *b--;

}

vec.c:4: note: versioning for alias required: can’t

determine dependence between *b 19 and *a 18

vec.c:4: note: Cost model analysis:

Vector inside of loop cost: 4

Vector outside of loop cost: 14

Scalar iteration cost: 2

Scalar outside cost: 1

prologue iterations: 0

epilogue iterations: 2

Calculated minimum iters for profitability: 12

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: Advanced Issues in Vectorization and Parallelization 78/81

Cost Model of Vectorizer

int main (int * restrict a, int * restrict b)

{

int i, n;

for (i=0; i<n; i++)

*a++ = *b--;

}

vec.c:4: note: Cost model analysis:

Vector inside of loop cost: 3

Vector outside of loop cost: 16

Scalar iteration cost: 2

Scalar outside cost: 7

prologue iterations: 2

epilogue iterations: 2

Calculated minimum iters for profitability: 5

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: Advanced Issues in Vectorization and Parallelization 79/81

Cost Model of Parallelizer

int a[500];

int main ()

{

int i;

for (i=0; i<350; i++)

a[i] = a[i] + 2;

}

Compile with:
gcc -O2 -fdump-tree-parloops -ftree-parallelize-loops=4

Loop not parallelized as number of iterations per thread ≤ 100

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: Advanced Issues in Vectorization and Parallelization 79/81

Cost Model of Parallelizer

int a[500];

int main ()

{

int i;

for (i=0; i<350; i++)

a[i] = a[i] + 2;

}

Compile with:
gcc -O2 -fdump-tree-parloops -ftree-parallelize-loops=3

SUCCESS: may be parallelized

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: Advanced Issues in Vectorization and Parallelization 80/81

Cost Model of Parallelizer

Inner Parallelism

int i, j;

for (i=0; i<450; i++)

for (j=0; j<420; j++)

a[i][j] = a[i-1][j];

Compile with:
gcc -O2 -fdump-tree-parloops -ftree-parallelize-loops=4

distance vector: 1 0

direction vector: + =

FAILED: data dependencies exist across iterations

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: Advanced Issues in Vectorization and Parallelization 80/81

Cost Model of Parallelizer

Outer Parallelism

int i, j;

for (j=0; j<420; j++)

for (i=0; i<450; i++)

a[i][j] = a[i-1][j];

Compile with:
gcc -O2 -fdump-tree-parloops -ftree-parallelize-loops=4

distance vector: 0 1

direction vector: = +

SUCCESS: may be parallelized

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: Advanced Issues in Vectorization and Parallelization 80/81

Cost Model of Parallelizer

D.2000 5 = builtin omp get num threads ();

D.2001 6 = (unsigned int) D.2000 5;

D.2002 7 = builtin omp get thread num ();

D.2003 8 = (unsigned int) D.2002 7;

D.2004 9 = 419 / D.2001 6;

D.2005 10 = D.2004 9 * D.2001 6;

D.2006 11 = D.2005 10 != 419;

D.2007 12 = D.2006 11 + D.2004 9;

ivtmp.7 13 = D.2007 12 * D.2003 8;

D.2009 14 = ivtmp.7 13 + D.2007 12;

D.2010 15 = MIN EXPR <D.2009 14, 419>;

if (ivtmp.7 13 >= D.2010 15)

goto <bb 3>;

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: Advanced Issues in Vectorization and Parallelization 80/81

Cost Model of Parallelizer

D.2000 5 = builtin omp get num threads ();

D.2001 6 = (unsigned int) D.2000 5;

D.2002 7 = builtin omp get thread num ();

D.2003 8 = (unsigned int) D.2002 7;

D.2004 9 = 419 / D.2001 6;

D.2005 10 = D.2004 9 * D.2001 6;

D.2006 11 = D.2005 10 != 419;

D.2007 12 = D.2006 11 + D.2004 9;

ivtmp.7 13 = D.2007 12 * D.2003 8;

D.2009 14 = ivtmp.7 13 + D.2007 12;

D.2010 15 = MIN EXPR <D.2009 14, 419>;

if (ivtmp.7 13 >= D.2010 15)

goto <bb 3>;

Get the number of threads

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: Advanced Issues in Vectorization and Parallelization 80/81

Cost Model of Parallelizer

D.2000 5 = builtin omp get num threads ();

D.2001 6 = (unsigned int) D.2000 5;

D.2002 7 = builtin omp get thread num ();

D.2003 8 = (unsigned int) D.2002 7;

D.2004 9 = 419 / D.2001 6;

D.2005 10 = D.2004 9 * D.2001 6;

D.2006 11 = D.2005 10 != 419;

D.2007 12 = D.2006 11 + D.2004 9;

ivtmp.7 13 = D.2007 12 * D.2003 8;

D.2009 14 = ivtmp.7 13 + D.2007 12;

D.2010 15 = MIN EXPR <D.2009 14, 419>;

if (ivtmp.7 13 >= D.2010 15)

goto <bb 3>;

Get thread identity

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: Advanced Issues in Vectorization and Parallelization 80/81

Cost Model of Parallelizer

D.2000 5 = builtin omp get num threads ();

D.2001 6 = (unsigned int) D.2000 5;

D.2002 7 = builtin omp get thread num ();

D.2003 8 = (unsigned int) D.2002 7;

D.2004 9 = 419 / D.2001 6;

D.2005 10 = D.2004 9 * D.2001 6;

D.2006 11 = D.2005 10 != 419;

D.2007 12 = D.2006 11 + D.2004 9;

ivtmp.7 13 = D.2007 12 * D.2003 8;

D.2009 14 = ivtmp.7 13 + D.2007 12;

D.2010 15 = MIN EXPR <D.2009 14, 419>;

if (ivtmp.7 13 >= D.2010 15)

goto <bb 3>;

Perform load calculations

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: Advanced Issues in Vectorization and Parallelization 80/81

Cost Model of Parallelizer

D.2000 5 = builtin omp get num threads ();

D.2001 6 = (unsigned int) D.2000 5;

D.2002 7 = builtin omp get thread num ();

D.2003 8 = (unsigned int) D.2002 7;

D.2004 9 = 419 / D.2001 6;

D.2005 10 = D.2004 9 * D.2001 6;

D.2006 11 = D.2005 10 != 419;

D.2007 12 = D.2006 11 + D.2004 9;

ivtmp.7 13 = D.2007 12 * D.2003 8;

D.2009 14 = ivtmp.7 13 + D.2007 12;

D.2010 15 = MIN EXPR <D.2009 14, 419>;

if (ivtmp.7 13 >= D.2010 15)

goto <bb 3>;

Assign start iteration to the chosen thread

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: Advanced Issues in Vectorization and Parallelization 80/81

Cost Model of Parallelizer

D.2000 5 = builtin omp get num threads ();

D.2001 6 = (unsigned int) D.2000 5;

D.2002 7 = builtin omp get thread num ();

D.2003 8 = (unsigned int) D.2002 7;

D.2004 9 = 419 / D.2001 6;

D.2005 10 = D.2004 9 * D.2001 6;

D.2006 11 = D.2005 10 != 419;

D.2007 12 = D.2006 11 + D.2004 9;

ivtmp.7 13 = D.2007 12 * D.2003 8;

D.2009 14 = ivtmp.7 13 + D.2007 12;

D.2010 15 = MIN EXPR <D.2009 14, 419>;

if (ivtmp.7 13 >= D.2010 15)

goto <bb 3>;

Assign end iteration to the chosen thread

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: Advanced Issues in Vectorization and Parallelization 80/81

Cost Model of Parallelizer

D.2000 5 = builtin omp get num threads ();

D.2001 6 = (unsigned int) D.2000 5;

D.2002 7 = builtin omp get thread num ();

D.2003 8 = (unsigned int) D.2002 7;

D.2004 9 = 419 / D.2001 6;

D.2005 10 = D.2004 9 * D.2001 6;

D.2006 11 = D.2005 10 != 419;

D.2007 12 = D.2006 11 + D.2004 9;

ivtmp.7 13 = D.2007 12 * D.2003 8;

D.2009 14 = ivtmp.7 13 + D.2007 12;

D.2010 15 = MIN EXPR <D.2009 14, 419>;

if (ivtmp.7 13 >= D.2010 15)

goto <bb 3>;

Start execution of iterations of the chosen thread

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2012 gcc-par-vect: Advanced Issues in Vectorization and Parallelization 81/81

Parallelization and Vectorization in GCC : Conclusions

• Chain of recurrences seems to be a useful generalization

• Interaction between different passes is not clear due to fixed order

• Auto-vectorization and auto-parallelization can be improved by
enhancing the dependence analysis framework

• Efficient cost models are needed to automate legal transformation
composition

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

	Outline
	3.75inTransformations for Parallel and Vector Execution
	Introduction to Parallelization and Vectorization
	The Lambda Framework
	3.75inTransformations Enhancing Vectorization and Parallelization
	Transformations Enhancing Vectorization and Parallelization
	3.75inAdvanced Issues in Vectorization and Parallelization
	Advanced Issues in Vectorization and Parallelization

