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1 Introduction

The GNU Compiler Collection (GCC) is a standard system compiler for GNU systems,
including GNU/Linux. It is often an alternate compiler on many platforms due to it’s
wide spread availability. The FSF model of development has reduced the costs and GCC
is also a strong candidate for new systems, like embedded systems, that require a software
development system. However, porting GCC to new platforms is an involved task. And
then, there is no suitable description of the internals that can serve porting endeavors.
The GCC internals document found on the GCC site (see [GCC Internals (by Richard
Stallman)], page 34), has more of a “reference” flavor than a conceptual description of the
GCC architecture. Most porting exercises rely on descriptions of personal experiences in
GCC porting (see [Porting GCC for Dunces (by Hans-Peter Nilsson)], page 34), or as parts
of other works (see [GCC Internals (by Deigo Novillo)], page 34 and [GCC – Yesterday
Today and Tomorrow (by Deigo Novillo)], page 34). An attempt has also been made (see
[GCC Wiki Book], page 34) to describe the internals more completely. It is a collective
effort but focuses on the implementation details. The lack of a description of the internals
at a sufficiently abstract level makes porting attempts an expensive affair unless the people
involved are well versed with compiler internals. The availability of such a description is
useful for general study of compilation techniques, and in particular, can help GCC become
a system of choice for researchers in languages and compilation, especially those who wish
to deal with real life engineering issues.

This document views GCC version 4.0.2 as a chain of lowering operations in terms of the
“abstraction lowering” phases that are required to lower a C like HLL to a typical 32 bit
target. We show how these lowering operations connect with the implementation, and thus
serve to conceptually understand the otherwise complex implementation. In particular, we
demonstrate the utility and implementation strategies for the GCC machine description
system that is a consequence of the retargetability requirements of GCC.

The document contributes to bridging the gap between the known concepts and a com-
plex implementation. In particular, we hope that the identification of the sequence of
lowering operations encourages a more formal effort in GCC internals. The work is or-
ganized as follows. First, we identify the basic abstraction mechanisms in programming
languages. These are used to motivate an intuitive concept of an abstraction gap between
the source language and target language of a compiler. Having identified this gap, this
section ends with an empirical prescription to obtain the phase sequence of a compiler for
lowering the HLL abstractions. Such a phase sequence of operations would be followed
by a compiler in operation and the goal of design and implementation is to specify the
desired phase sequence. With the backdrop of these abstraction mechanisms and the need
for retargetability, we identify three parts of the GCC system: the compiler generation
framework architecture, the build system and the compiler operation architecture. The
views are cleanly separated from each other by identifying the time durations of work for
each. In fact, these time durations are used throughout all our documents and serve as
“hooks” from which the different views of GCC may be obtained. For the compiler opera-
tion view we identify the IRs of GCC. One of the IR languages, the RTL, is also used in at
development time to specify machine descriptions, and is the connecting link between the
development time and compiler operation time of GCC. The identification of these three
parts of the GCC system, the architecture of the compiler generation framework, the build
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system and the compiler operation architecture, are the central contributions of this work.
We mention the front end processing IR for completeness but our main focus is the rest of
the system. The C language is used as an illustrative HLL; GCC was born as a C compiler.
We also ignore optimisations that GCC performs, partly because they are large in number
and mainly because they do not contribute to the translation process. We conclude with a
note on future directions.

In short, we focus on the compilation phase sequence and the backend architecture using
C as an illustrative HLL. The following are a few issues that we ignore:

1. front end architecture,

2. standards compliance,

3. optimisations, and

4. supporting code like memory management and error detection and reporting.
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2 Language Abstractions

There are four main kinds of abstractions that programming languages use: data abstrac-
tion, control flow abstraction, procedural abstraction and name space abstractions.

Data abstractions involve identification of useful data types and their definitions in terms
of available ones. Languages support data abstraction by providing a set of data types, and
mechanisms to compose newer ones from the given ones, or the ones already composed.
Given a pair of programming languages it is possible to intuitively grasp their respective
levels of data abstraction. A typical machine language fares poorly in relation to an HLL
like C. C provides richer data types and data structuring mechanisms than typical machine
languages.

Control flow abstractions, minimally, are sequencing and unrestricted branching. Higher
order flow constructs include loops, function calls (in the sense of current state preservation,
loading new state, passing control to it, and returning back to previous state through state
restoration), exception handling, coroutines and continuations. Most higher order control
flow constructs are not provided by typical machine languages.

Procedural abstractions isolate computations from the state. Having named the com-
putations, they can be reused by supplying the state under which the evaluation is to be
performed. Function calls are procedural abstractions in that named computations are
invoked for various values. Higher order functions, nested functions etc. are procedural
abstractions.

Name space abstractions emerge because computation objects are named. However, since
there are a large number of objects, program specifications are under a “naming pressure”
to create unique names that can be bound to unique addresses on target hardware. Naming
pressure is alleviated by defining the lifetime and access rules for names of the objects.
Scope rules, name privacy, mangling techniques are examples of name space abstractions
that serve to manage the name pressure.

2.1 The Abstraction Gap

Given the various abstractions in programming language design, it is possible to intuitively
grasp the abstraction gap between a pair of languages. For the purposes of compilation, we
consider a 〈 HLL, machine language 〉 pair. For concreteness, we illustrate using C as the
HLL and the i386 as the machine language.

For C, we have

• Data Abstraction: Character, unsigned integers and string data types.

• Control Abstraction: If-then-else branching, finite and infinite iteration loops and func-
tion calls.

• Procedural Abstraction: Function calls.

• Name Space Abstraction: statically scoped variables, file scoping.

For the i386, we have

• Data Abstraction: Unsigned integers between 0 and a MAX_INT.

• Control Abstraction: Auto-incrementing program counter to support sequencing, and
an unrestricted branch.



Chapter 2: Language Abstractions 4

• Procedural Abstraction: None (the call instruction does not perform a true procedure
call).

• Name Space Abstraction: None.

Despite a partial listing, the enumeration of the abstractions clearly points out to an
abstraction gap. A compiler is required to bridge this abstraction gap. We suggest an
empirical rule for bridging this abstraction gap: handle largest gap first. Thus the compiler
should start bridging either the procedural abstraction or the name space abstraction first.
Note that the suggestion does not imply completing the handling of a given abstraction
before starting to deal with the next. Also, since the gap is intuitive in nature, we do not
have a unique lowering sequence.

The phase sequence of a compiler is the sequence of lowering these abstractions from the
HLL to the target. The GCC lowering sequence (for C) is: procedural → name space →
control flow → data.



Chapter 3: The GCC System 5

3 The GCC System

This section describes the main ideas of the three views that are useful to understand
the GCC system at three distinct time periods described in Section 3.1 [The Impact of
Retargetability], page 5 and depicted in Figure 3.1. Figure 3.2 succinctly captures the
structure of the entire GCC system. It’s components are described in the various subsections
of this section. The figure can be vertically divided into three parts each corresponding to
the various time periods. The top box of the figure is described in Section 3.2 [The GCC
Compiler Generation Architecture], page 6. The middle part is described in Section 3.4
[The GCC Build System Architecture], page 9 and the bottom part is in Section 3.3 [The
GCC Compiler Architecture], page 8. Finally, Section 3.5 [The GCC IRs], page 10 describes
the concepts that go in realising these ideas using the intermediate representations.

3.1 The Impact of Retargetability

From the GCC project point of view retargetability is a desirable feature for the project to
be useful to a broad community of users. GCC is also resourcable.1 Retargetability implies
that the target specific information is not available at implementation time and must be
incorporated at a later point of time, namely the build time, denoted by tbuild . The build
time is a critical time period in GCC. It separates the GCC system into two different views
on it’s either sides as shown below in Figure 3.1.

Build Time tbuildDevelopment Time tdevelop Operation Time top

Source
tarball ready

Compiler
binary ready

Generation Time tgen Compilation Time tcomp

Figure 3.1: Important time durations in GCC. tdevelop is the time during which a given
version of GCC is being developed. tbuild is the time during which GCC is built, and trun

is the time when the binary is used by programmers to compile their programs. tbuild may
be further sharpened into tgen and tcomp . During tgen the GCC sources are processed to
generate the target specific parts of the (retargetable) compiler system created at tdevelop .
During tcomp the compilation of GCC starts to yield a binary.

Before tbuild , the compiler is being developed and the architecture described is used by
the GCC developer. Implementing retargetability in GCC at development time, denoted
by tdevelop , results in three logically distinct parts of the compiler namely

1. the compiler code parameterized with respect to retargetability issues,

2. a set of per target specifications of the parameter “values” listed for each supported
target, and

1 Resourcability implies being able to use the compiler to compile some other HLL. This term is not very
common, but we use it for precision.
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3. the “generator” code that will be used to incorporate the target information selected
at tbuild into the parameterized compiler code.

At the end of tdevelop , the compiler generation framework is ready in source form and is
distributed as versioned tarball from the official GCC website. When the compiler is built
from the sources at tbuild the specifications of the chosen target are incorporated into the
parameterised code resulting in a compiler source that would yield a compiler for the chosen
target. Thus, at tdevelop , GCC exists as a parameterised part and set of target specifications.
The conceptual view that is useful to understand GCC at tdevelop is described in Section 3.2
[The GCC Compiler Generation Architecture], page 6.

At the end of tbuild we have a complete target specific compiler program that program-
mers can use to compile their programs. These times after tbuild when the binary is used
will be denoted by trun . The architectural view that is useful to understand the operation
of the compiler at trun is described in Section 3.3 [The GCC Compiler Architecture], page 8.
Occasionally it may be necessary to distinguish the system at tbuild into the time when the
target specific parts of the compiler are being generated, denoted by tgen and the subsequent
compilation time, denoted by tcomp , where the final compiler binary is created. The views
at tdevelop and trun come together at build time tbuild . The compiler generation framework
implemented during tdevelop is used to obtain the target specific compiler (operation) phase
sequence at trun at this time. The operations that are required to occur at tbuild forms
the build system described in Section 3.4 [The GCC Build System Architecture], page 9.
Figure 3.1 shows these time period labels.

3.2 The GCC Compiler Generation Architecture

Prior to tbuild the GCC system is the system that a GCC developer actually works with.
The code base is made up of the parameterised compiler and the set of target specifications
of the parameters. We refer to this as the GCC Compiler Generation Framework, or CGF
for short, or simply GCC2. The top half of Figure 3.2 shows the major components of this
part.

2 Note the upper case.
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HLL Specific
Code, per

HLL

Language and
Machine

Independent
Generic Code

Machine
dependent
Generator

Code

Set of
Machine

Descriptions

GCC

Parser Genericizer Gimplifier
Tree SSA

Opti-
mizer

RTL
Genera-

tor

Optimizer
Code

Genera-
tor

cc1/gcc

Choose HLL

Selected Copied

Choose Target MD

Generated

Source Program Assembly Program

Figure 3.2: The GCC Compiler Generation Framework (CGF) and it’s use to gener-
ate the target specific compiler (cc1/gcc) components. Some components of the compiler
(cc1/gcc) are selected from the CGF, some are copied from the CGF and some are generated
from the framework.

Since a number of different source languages are supported by GCC, the parsers and
generisers for each supported front end form the details of the “language specific code”
component in this block. At build time the processing code of the chosen front end language
is selected from amongst the available ones and included. Thus the front end developer
view of the GCC system is just addition of the processing code which finally produces the
AST/Generic representation.

The CGF also contains code that is independent of the characteristics of the target
system or the front end language. For instance, the gimplifier converts the generic rep-
resentation into the gimple IR (described in Chapter 4 [The Gimple IR], page 12). The
gimple IR is independent of the target properties too, and many machine independent op-
timisations that can be performed on this IR are implemented in the CGF. Such code is
simply copied3 into the compiler created at build time and is shown as the second box in
the “GCC” block of Figure 3.2. The RTL expresses the Gimple code in a target specific
manner. However, the code that works on the RTL IR can be generically expressed and is
a component of this box. This part forms the bulk of the compiler code.

Perhaps the most interesting part of the CGF is the code that is dependent on target
properties, but has been “parameterized”. For instance, the target code generator of the
compiler in operation needs to emit the target assembly code in the syntax of the target
assembly language! Thus details like the layout structure of the assembly program must be
known. Parameterization is a consequence of retargetability and the CGF can then

• name the various target properties in the main compiler code, and

3 The code is only conceptually copied. In practice, this code is simple picked up from the $GCCHOME (see
[GCC – An Introduction], page 34) rather than a physically copying it into the $BUILDDIR.
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• separately list out their target specific values for each target.

This is the main emphasis at development time. The parameter values are separately
listed at development time for each supported target. Most parameter values can be cap-
tured through simple C preprocessor expressions. However some “values” like expressing
target instruction semantics need a better mechanism than that provided by the C prepro-
cessing system. But employing such a different mechanism invites developing a processing
system to incorporate the information into compiler! Simply put, the target machine de-
scriptions must be processed at build time to generate the target specific parts of the com-
piler. This processing system must be developed at development time. This is indicated in
the third box.

The set of machine descriptions that GCC supports, i.e. for which the values of the
parameterised entities of the compiler have been specified, form the contents of the fourth
box. GCC uses the RTL language to capture the target instruction semantics. The RTL
also serves as the language for IR at operation time trun . Using RTL for both these purposes
makes it easy since the data structures and operations are the same for both purposes. At
tbuild one of the targets from this set is chosen and presented to the processing system to
generate the target specific parts of the compiler.

3.3 The GCC Compiler Architecture

Once the target specific parts of the compiler are generated from the CGF, we have a
complete compiler source code for the chosen front end HLL and the chosen target machine.
The structure and operation of this compiler, which we refer to as “gcc”4 in Figure 3.2,
follows the approach outlined in Chapter 2 [Language Abstractions], page 3, especially the
sequence pointed out at the end of Section 2.1 [Abstraction Gap], page 3. Figure 3.3 shows
the relationship between the lowering of abstractions and the phase sequence of the “gcc”
compiler. Additionally, it also shows the various optimisation opportunities that open up
at each phase. We have ignored the processing of the front end and hence the parsing phase
that starts lowering the procedure (functions in C) is not shown5.

Generic Gimple RTL Target ASMHLL

Lower
name space

Lower
control flow

Lower
data

Figure 3.3: The relationship between the GCC phase sequence and sequence of language
abstract lowerings done one at a time.

4 Note the lower case.
5 Recent versions of GCC can also start lowering a file of C functions rather than just one function as

indicated here.
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The RTL is the connecting link between the CGF view and the operation view of the
compiler. In the CGF it is used to specify target instruction semantics. In operation, it
is used to express computations in a target specific manner. We observe that the RTL is
the last IR in the phase sequence. The gcc compiler attempts to perform as many target
independent operations as possible before becoming target specific6. The input program is
then represented in RTL form that contains target specific information. In particular, the
input data representations, i.e. data structures and data objects, are lowered. The implicit
goal in this phase is to perform all machine dependent operations in a generic manner so
that every RTL computation construct maps to at least one target syntax. One, therefore,
expects that at the end of this phase all that remains is converting the RTL representation
to target assembly syntax.

The phase sequence of gcc is captured in the bottom part of Figure 3.2. We detail out
the conceptual structure of the Gimple and RTL IRs in Section 3.5 [The GCC IRs], page 10.

3.4 The GCC Build System Architecture

The CGF at tdevelop in the top half of Figure 3.2, needs to be transformed into the compiler
architecture that is used at trun and shown in the bottom half of Figure 3.2. As discussed in
Section 3.1 [The Impact of Retargetability], page 5 the two views differ. At tdevelop there is
no notion of which target the compiler is to generate output for. Once the target is chosen
at tbuild these target specific parts need to be generated from the specifications at tdevelop .
In this section we examine the architecture of this part of GCC.

The above two sections each point to the need of using languages for their specific
purposes. The CGF requires a language to specify the semantics of the target instructions.
The compiler that runs requires a language to represent a compilation internally. It is best
to consider that conceptually these are two separate languages. We refer to the language
used to specify target instructions as the “Machine Description RTL” or MD-RTL for short.
The language used to represent a program being compiled by the compiler will be referred
to as the “Intermediate Representation RTL” or IR-RTL for short. At tbuild , then, we need
to convert the MD-RTL based information at tdevelop into data structures and operations
that would yield IR-RTL at trun . The MD-RTL based information is shown in the box
labeled “Set of Machine Descriptions” (fourth box) in the top half of Figure 3.2. The box
labeled “RTL Generator” (fifth box) in the bottom half of Figure 3.2 stands for the internal
representation in terms of IR-RTL. The arrows labeled “Generated” denote the conversion
at tbuild from MD-RTL to IR-RTL.

The implementation of the conversion is eased by choosing some part of the two lan-
guages, MD-RTL and IR-RTL, to be common. This part is used to specify (at tdevelop ) or
represent (at trun ) the semantics of the target instructions. The current7 GCC documenta-
tion does not distinguish between these two separate languages. Instead both the languages
are simply referred to as “RTL” often leading to confusion. Chapter 5 [The RTL], page 19
describes these two languages in detail.

6 This was not cleanly evident in earlier versions which did not use the Gimple IR. After the parser lowered
the input to an AST representation it was directly converted to RTL representation until GCC version
3. The target independent operations were mostly performed on the RTL representation resulting in a
complex code. Dealing with this code base required a knowledge of what parts of the code were machine
dependent and what parts were not – something that is not a priori evident.

7 As of 2007.
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At tbuild , the MD-RTL based specifications are selected according to the chosen target
and transformed to generate the IR-RTL based target specific parts of the final compiler.
It is because of the generation of target specific source code from the target properties
specifications at build time that we refer to GCC prior to tbuild as a Compiler Generation
Framework.

Thus two crucial steps must be taken at tbuild given the chosen target:

1. The parameterised information in the header files of the chosen target must be included
into the source tree, and

2. the MD-RTL based target specifications must be processed to obtain a IR-RTL based
representation system.

On completing these steps we have a compiler source code that has front end processing
code for the “selected” HLL, the “copied” main body of the compiler and the “generated”
target specific code for the chosen target as shown in Figure 3.2. This source is then
compiled to obtain the compiler binary.

3.5 The GCC IRs

GCC 4.0.2 uses three IRs: The AST/Generic, the Gimple and the IR-RTL. The AST is the
output of the front end parser and depends on the particular language features. Since the
parser starts the lowering process the moment a function is found in the input, we say that
GCC handles procedural abstractions first. Generic is intended as the common IR to which
front end ASTs are reduced to. However the AST and Generic have not been well separated
as yet, and we consider them as a single IR called AST/Generic. At this level, GCC starts
handling the name space abstractions of C. The local scope variables are marked so that
the later phases can lower them. The Gimple is a front end and back end independent IR
that lowers the control flow.

The most interesting IR in GCC is the IR-RTL – a syntactically Lisp like IR. GCC
attempts to capture all target specific information in the IR-RTL representation. This is
required since the final lowering to target specific code requires a knowledge of the target
properties. IR-RTL lowers the data abstractions, and the target specific lowering of the
other abstractions. In particular, it unfolds the data structures into bits, bytes, words etc.
sequences and creates the activation record8. Lifetime rules of local variables are handled
by placing them on the activation record under a stack discipline. The activation record
also handles the implementation of the procedural abstraction.

An implicit goal of the IR-RTL IR is to do all target specific manipulations as completely
as possible so that at the end of the IR-RTL passes, the program representation contains
all the information of the assembly language version except for the syntactic details.

Thus the overall gcc phase sequence shown in Figure 3.3 can be written as: (parser :
procedural abstraction) → (Generic : name space abstraction) → (Gimple : control flow
abstraction) → (IR-RTL : data abstraction), where “(parser : procedural abstraction)”
reads as “parser deals with procedural abstraction”, and “→” reads as “lowers to”. Each
phase deals with lowering a particular HLL abstraction and has it’s own IR designed for

8 In earlier versions of GCC, the activation record used to be constructed during the ASM emission time.
The trend is to have the IR-RTL IR do as much target specific work as possible and in recent versions,
the responsibility of creating the activation record is with the RTL subsystem.
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that purpose.9 The compilation process occursduring the chaining of these phases where
a transition is made from the representation in a given phase to the representation in the
next phase. Each transition can be realized as a translation table.

The next section details these ideas for the Gimple IR. The IR-RTL is used to construct
the IR at trun and is detailed as a part of the RTL in section Chapter 5 [The RTL], page 19.

9 The introduction of Gimple tuples in GCC 4.3 branch actually aggrandises this view that the IR is
designed for the purpose. As of GCC 4.0.2 the Gimple IR is conceptually distinct from the AST/Generic,
but uses the same data structures as the AST/Generic.
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4 The Gimple IR

Section Section 3.5 [The GCC IRs], page 10 mentioned the IRs that GCC uses and indicated
that the compilation is effected by translating the representation in one IR to the next
through translation tables for each. In this section, we expand the concept for Gimple.
Ignoring the front end, gcc will have a Generic to Gimple translation table and a Gimple to
IR-RTL translation table. Note that the former is a target independent table and the latter
is a target dependent table. This implies that the former table can be expressed in the
generic part of GCC at tdevelop but the latter table cannot be. For the Gimple to IR-RTL
translation table, the Gimple part is known at tdevelop but the IR-RTL part is not known
at tdevelop . At tdevelop the Gimple to IR-RTL table is incomplete. It is completed at tbuild

time when the IR-RTL part of the table is generated from the specifications of the target.

The Generic to Gimple table is detailed in section Chapter 4 [The Gimple IR], page 12
and the Gimple to IR-RTL table requires two different views: the one at tdevelop is described
in section Section 4.1 [Development time Gimple to IR-RTL conversion issues], page 15 and
the one at tbuild is in section Section 4.2 [Build time Gimple to IR-RTL conversion issues],
page 17. The RTL subsystem of GCC (section Chapter 5 [The RTL], page 19) requires a
more detailed treatment.

In Gimple, the data objects retain their form in the AST/Generic machine. The code
objects do, while, for, break, switch, continue from the AST/Generic representation
are re-expressed using the if and goto statements. In other words, representation in terms
of the Gimple IR lowers the control flow abstractions. For all other purposes the Gimple
machine is identical to the C machine. Until about GCC version 4.3, the data structures
for Gimple representation have been identical to the Generic tree structures. Recently
they have been changed to Gimple tuples. We discuss the tree based structures. The
Gimple representation also simplifies complex expressions to a set of simple expressions by
introducing any additional temporaries that may be required. Lowering only the control
flow enables implementing control flow based machine independent optimizations through
representation in static single assignment (SSA) form. The GCC community often refers to
Gimple representation as Tree-SSA form. The Gimple is thus a target and source language
independent IR, and hence the views at development time and operation time are identical
except for the details of the conversion to the IR-RTL representation. Since the Gimple is
target independent and the IR-RTL is target dependent, the design, build and operation
of the conversion is complex process that is described in sections~Section 4.1 [Development
time Gimple to IR-RTL conversion issues], page 15 and Section 4.2 [Build time Gimple to
IR-RTL conversion issues], page 17

The Gimple nodes are a subset of the AST/Generic nodes. All the AST/Generic nodes
are listed in the ‘$GCCHOME/gcc/tree.def’ file in the GCC code base at tdevelop , where
$GCCHOME is the location on the file system where the pristine GCC (4.0.2) sources have
been extracted. Table Table 4.1 lists the Gimple node types for the C front end.
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lt_expr le_expr gt_expr

ge_expr eq_expr ne_expr

unordered_expr ordered_expr unlt_expr

unle_expr ungt_expr unge_expr

uneq_expr fix_trunc_expr fix_ceil_expr

fix_floor_expr fix_round_expr float_expr

negate_expr abs_expr ffs_expr

bit_not_expr convert_expr nop_expr

non_lvalue_expr view_convert_expr conj_expr

realpart_expr imagpart_expr sizeof_expr

alignof_expr plus_expr minus_expr

mult_expr trunc_div_expr ceil_div_expr

floor_div_expr round_div_expr trunc_mod_expr

ceil_mod_expr floor_mod_expr round_mod_expr

rdiv_expr exact_div_expr min_expr

max_expr lshift_expr rshift_expr

lrotate_expr rrotate_expr bit_ior_expr

bit_xor_expr bit_and_expr bit_andtc_expr

complex_expr block integer_cst

real_cst complex_cst vector_cst

string_cst function_decl label_decl

const_decl type_decl var_decl

parm_decl result_decl field_decl

namespace_decl compound_expr modify_expr

init_expr target_expr cond_expr

bind_expr call_expr with_cleanup_expr

cleanup_point_expr with_record_expr truth_andif_expr

truth_orif_expr truth_and_expr truth_or_expr

truth_xor_expr truth_not_expr save_expr

unsave_expr rtl_expr addr_expr

reference_expr entry_value_expr fdesc_expr

predecrement_expr preincrement_expr postdecrement_expr

postincrement_expr va_arg_expr goto_subroutine

labeled_block_expr expr_with_file_

location

exit_block_expr

arrow_expr expr_stmt compound_stmt

decl_stmt if_stmt return_stmt

goto_stmt label_stmt asm_stmt

scope_stmt file_stmt case_label

stmt_expr compound_literal_expr cleanup_stmt

component_ref bit_field_ref indirect_ref

array_ref array_range_ref label_expr

goto_expr return_expr exit_expr

void_type integer_type real_type

enumeral_type pointer_type offset_type

reference_type array_type record_type

union_type qual_union_type function_type

error_mark identifier_node tree_list

tree_vec placeholder_expr srcloc

Table 4.1: The Gimple nodes.
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A Gimple representation of input function is a “tree” of nodes. It corresponds to a
linearised control flow representation of the AST/Generic tree and hence actually is more
of a linear list of “tree” nodes. A Gimple node is represented using the following (annotated)
structure in the file ‘$GCCHOME/gcc/tree.h’:

struct tree_common

{

tree chain; /* Chaining ptr */

tree type; /* Expression type ptr */

union tree_ann_d *ann;

ENUM_BITFIELD(tree_code) code : 8; /* Node type (tree.def) */

/* Various flags */

unsigned side_effects_flag : 1;

unsigned constant_flag : 1;

unsigned addressable_flag : 1;

unsigned volatile_flag : 1;

unsigned readonly_flag : 1;

unsigned unsigned_flag : 1;

unsigned asm_written_flag: 1;

unsigned nowarning_flag : 1;

unsigned used_flag : 1;

unsigned nothrow_flag : 1;

unsigned static_flag : 1;

unsigned public_flag : 1;

unsigned private_flag : 1;

unsigned protected_flag : 1;

unsigned deprecated_flag : 1;

unsigned invariant_flag : 1;

unsigned lang_flag_0 : 1;

unsigned lang_flag_1 : 1;

unsigned lang_flag_2 : 1;

unsigned lang_flag_3 : 1;

unsigned lang_flag_4 : 1;

unsigned lang_flag_5 : 1;

unsigned lang_flag_6 : 1;

unsigned visited : 1;

};

This structure represents information common to every Gimple node type. More spe-
cific information of each node type resides in the corresponding structure declarations in
‘$GCCHOME/gcc/tree.h’.

Lowering the control flow is done by replacing control flow nodes for loop constructs
(for, while etc.) and complex branch constructs (switch) with simple conditional
control flow, if, and the unrestricted branch, goto. The AST/Generic to Gimple
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translation table is directly implemented as a case analysis over the code nodes
above in ‘$GCCHOME/gcc/gimple.c’. The translation is initiated by the function
gimplify_function_tree () with the translation table in the function gimplify_expr

().

4.1 Gimple → IR-RTL Conversion Issues at tdevelop

One critical part of GCC is the implementation of the Gimple → IR-RTL translation re-
quired at trun . This is critical since the Gimple is target independent while the IR-RTL
is target specific. The problem then is to design and implement the translation at tdevelop

given that the actual target would be known only at tbuild as shown in Figure 4.1.

HLL Specific
Code, per

HLL

Language and
Machine

Independent
Generic Code

Machine
dependent
Generator

Code

Set of
Machine

Descriptions

Parser Genericizer Gimplifier
Tree SSA

Opti-
mizer

RTL
Genera-

tor

Optimizer
Code

Genera-
tor

Choose HLL

Selected Copied

Choose Target MD

Generated

Source Program Asm Program
AST → Gimple

Gimple → IR-RTL RTL → ASM

• Generic → Gimple

• Gimple → IR-RTL

• IR-RTL → ASM

Implement here

Need here

Figure 4.1: The Gimple → IR-RTL translation is required at trun . It must be imple-
mented at tdevelop and converted at tbuild .

The GCC technique is to separate the two parts – the target independent Gimple and
the target specific IR-RTL – of the table at tdevelop , and join them at tbuild . The separation
at tdevelop only separates the table data structure. However, the use of the data structure
in performing the translation can still be implemented at tdevelop . As shown in Figure 4.2,
at tdevelop , therefore, GCC does the following:
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HLL Specific
Code, per

HLL

Language and
Machine

Independent
Generic Code

Machine
dependent
Generator

Code

Set of
Machine

Descriptions

Parser Genericizer Gimplifier
Tree SSA

Opti-
mizer

RTL
Genera-

tor

Optimizer
Code

Genera-
tor

Choose HLL

Selected Copied

Choose Target MD

Generated

Source Program Asm Program
AST → Gimple

Gimple → IR-RTL RTL → ASM

(tdevelop )

Gimple → PN

PN → MD-RTL

(tbuild )

Gimple → IR-RTL

Figure 4.2: At tdevelop , the Gimple → IR-RTL translation is separated into two tables
connected by “Pattern Names” (“PN”). The “Gimple → PN” part is implemented in the
language independent code base and the “PN → MD-RTL” part is implemented in the
machine descriptions. At tbuild , the “PN → MD-RTL” part is converted to obtain the IR-
RTL based “Gimple → IR-RTL” table. The “generation” code required for the conversion
is implemented at tdevelop .

• implements the Gimple part of the table,

• implements the target specifications in the RTL language, and

• implements the generation code that would be used at tbuild to generate the IR-RTL
part of the table using the target specifications.

To facilitate the joining, GCC needs some mechanism to specify at development time
tdevelop the semantic identity between the Gimple part and the IR-RTL part of the trans-
lation table. In other words, it needs to find out which IR-RTL pattern can cover a given
Gimple subtree. GCC does this statically by defining arbitrary strings, called “pattern
names” (PN), some of which are “standard” (SPN). Conceptually, the PNs give rise to two
distinct tables: the Gimple to PN and the PN to IR-RTL. The first table can be imple-
mented at tdevelop while the second can be implemented using IR-RTL based specification
system at tdevelop and converted to the IR-RTL table at tbuild . This is pictorially depicted
in Figure 4.3
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MODIFY EXPR (set (<dest>) (<src>))

MODIFY EXPR (set (<dest>) (<src>))
To Do

"movsi"

Standard Pattern Name

Separate to generic code and MD

MODIFY EXPR "movsi" "movsi" (set (<dest>) (<src>))

Implement at tdevelop

MODIFY EXPR "movsi" "movsi" (set (<dest>) (<src>))

Unnecessary in
CGF;
hard code

Implement in MD at tdevelop

Figure 4.3: Separating the Gimple to IR-RTL translation finite function into target
independent LHS and target dependent RHS at design time. The MODIFY_EXPR is a Gimple
construct that represents an assignment operation. The (set (<dest> (<src>))) is an IR-
RTL construct that represents the same operation in a target specific way. The “ movsi”
is an SPN that logically glues the two sides. (CGF: Compiler Generation Framework; see
text.)

which describes the concepts behind the separation of the desired table (at the top) into the
two tables (at the bottom). The syntactic issues of the implementation in the machine de-
scription will be discussed in section Section 5.3.1 [MD-RTL - Describing Target Machines],
page 24.

4.2 Gimple → IR-RTL Conversion Issues at tbuild

Having separated the Gimple → IR-RTL translation table at development time and imple-
mented code to join them back at build time, we now conceptually expose the events that
occur during tbuild . Figure 4.4 explains them. The figure is divided into
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MODIFY EXPR "movsi"

The CGF
"movsi",(set (<dest>) (<src>))

MD1

"movsi",(set (<dest>) (<src>))

MDn

Basic Approach: Tabulate

GIMPLE – IR-RTL Selected MD

struct optab [] struct insn data []

Convert SPNs to indices

Figure 4.4: Joining the Gimple to IR-RTL translation finite function target independent
LHS (optab[]) and target dependent RHS (insn_data[]) at build time, tbuild . The con-
tents of insn_data[] are from the selected machine description. Above the dashed line
we have the GCC system as developed during tdevelop . Below the dashed lines we have the
situation at tbuild .

two parts by the dashed line. Above the line we depict the situation at tdevelop and
below the line we have the situation at tbuild . At tdevelop , GCC is the implementation of
the target independent part of the Gimple → IR-RTL table, and a collection of machine
descriptions (MD1 . . . MDn) that each implement the target specific (the IR-RTL) part of
that table. One of the machine descriptions is chosen at tbuild . The MD-RTL specifications
are converted to C code and the RTL expression of PN is stored in the array struct insn_

data []. The indices into this array are stored in the struct optab [] array which is itself
arranged according to the PNs. Since the PN for a given Gimple node is known, the optab

array is can be used to obtain the index of the corresponding IR-RTL pattern. It is in this
sense that the PNs are converted to “indices” and are used to join the separated parts of
the Gimple → IR-RTL table. Note that the insn_data [] array is filled in the sequence
written in the machine description by the machine description author.

4.3 Gimple → IR-RTL Conversion at trun

At the end of tbuild the Gimple → IR-RTL table for the chosen target is complete and can be
used at trun to perform the translation. The Gimple representation is traversed in a depth
first manner. The child nodes that (usually) represent the operands are thus first expanded
to RTXs representing the operands – typically RTXs that represent pseudoregisters, but
could also be home locations. Given a Gimple node, the optab table is consulted to obtain
the location of the corresponding IR-RTL in the insn_data table. Using this index to
lookup the insn_data table yields the function that emits the IR-RTX of the Gimple node.
This function is called to emit the IR-RTX with the generated operand RTXs passed as
arguments. The complete program is thus a linear (doubly) linked list of IR-RTXs.
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5 The RTL

The main point of section Chapter 3 [The GCC System], page 5 is that three different time
periods, tdevelop , tbuild and trun , need different mental views to understand their structure.
The GCC system at tdevelop and the gcc system at trun are connected through the RTL
representation that undergoes conversion at tbuild from form at tdevelop to the form to be
used at trun . This section describes the purpose of the RTL system and the consequent two
languages for each purpose in Section 5.2 [The Two Languages - MD-RTL and IR-RTL],
page 19.

5.1 Some RTL Concepts

The RTL subsystem abstracts out the essential characteristics of typical hardware. It
conceptually uses two semi-infinite discrete memories that we call as the RTL core memory
and the RTL pseudoregisters. These are conceptual objects that mimic the primary memory
and register sets respectively of the supported CPUs.

One memory, called the RTL core memory, represents the layout in virtual memory of
the real target, and is linear and byte addressable. The RTL memory model is close to most
target hardware and the data abstraction gap is quite small. The mapping of RTL core
memory to target memory is done on a per target basis in the GCC machine description
system through a set of C preprocessor macros. The information is incorporated into the
compiler at compiler build time. Conceptually, the Gimple objects will be mapped to
RTL memory, and then be lowered to target memory. Note that as a result of mapping
Gimple objects to a linear addressable memory, the named objects now can have computable
addresses. In other words, the name to address association can now be determined. The
RTL provides data types that are fractions and multiples of the word size similar to typical
target hardware.

The other type of unbounded memory that RTL has is a set of pseudo registers. The
RTL register tape is used to allocate pseudo registers. During the conversion from Gimple
representation to RTL representation, objects are allocated fresh pseudo registers from this
semi infinite pool. In later phases, when register allocation is performed, the program
objects get the hard registers or are spilled on to the RTL core memory. Different targets
have different number of registers. The RTL register memory designates the first $N$
registers to correspond to the $N$ hardware registers of the target. Thus the actual pseudo
registers start from the N

th location in the RTL register tape since the registers are indexed
starting from zero.

5.2 The Two Languages: MD-RTL and IR-RTL

The RTL subsystem of GCC is used for two distinct purposes in GCC:

1. specification of target instruction semantics at tdevelop , and

2. representation of a program being compiled at trun .

At tdevelop the RTL is in human readable MD-RTL form while at trun it is in machine
readable IR-RTL form.1 The IR-RTL form is the result of compiling a C representation
that is generated at tbuild from the MD-RTL specifications.

1 IR-RTL is dumped in a human readable Lisp like syntax.
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5.2.1 MD-RTL: Capturing Target Instruction Semantics

To specify the semantics of a target instruction, we need to:

• capture the semantics of the instruction, and

• describe it’s properties that are relevant at trun .

The specification process is analogous to the emulation of another processor, say a MIPS,
on a given processor, say an i386. The operational part of a target (say MIPS) instruction
can be captured using the operations of a given processor (i386). Next, the operands have
to be mapped. Some information of this part can be captured at tdevelop , for instance the
sizes. The rest, like the actual values, cannot be as they are run time dependent. However
the nature of the values, integer or floating point and such, can be specified at tdevelop . The
MD-RTL language is made up of a few constructs used to describe the target instruction
properties and operators of a fictitious processor to capture target instruction semantics as
shown in Figure 5.1.

OperatorsMD construct

MD-RTL

Figure 5.1: The MD-RTL language. The MD constructs describe properties of target
instructions and the operators (of the fictitious processor) capture the target instruction
semantics.

5.2.2 IR-RTL: Expressing a Compilation

To express a program being compiled in an IR-RTL based target specific (linear) represen-
tation, we need to:

• express the target specific semantics of the instruction in the sequence, and

• describe it’s control flow properties and layout that are relevant at trun .

This expression process is analogous to writing the program in target assembly code, but
in a target independent, IR-RTL based syntax. The operational part of a target instruction
can be expressed using the same operators used in the MD-RTL specification language.
Thus the operators used in the IR-RTL are the same as those used in MD-RTL. Next, the
layout can be described by augmenting the expression with the linking information about
the predecessor and successor expressions. In case the expression, i.e. the operational part,
has branching semantics, an explicit jump or return for example, then such control flow
effects are separately described. The IR-RTL language is shown in Figure 5.2 and is made
up of the same operators as the MD-RTL and additional constructs that describe the other
aspects of intermediate representation at trun .
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Operators IR construct

IR-RTL

Figure 5.2: The IR-RTL language. The the operators (of the fictitious processor) capture
the target instruction semantics and the IR constructs describe the control flow and layout
properties of target instruction sequence.

An intermediate representation may also be required to propagate information computed
in various passes. Rather than using any explicit constructs, GCC adds such information
as the operands of the IR-RTL objects – both, the objects that express and the objects
that describe. In terms of the “processor emulation” analogy, the IR-RTL represents the
program being compiled in terms of the “emulated processor”!

5.2.3 GCC Implementation of MD-RTL and IR-RTL

Although we have viewed the MD-RTL and IR-RTL as two distinct languages, GCC imple-
ments them as one whole RTL subsystem, as shown in Figure 5.3. To see the correspondence
between the implementation and the two languages, we divide the RTL objects listed in
‘$GCCHOME/gcc/rtl.def’ into three different kinds as shown in Figure 5.3 and then de-
scribed below:

OperatorsMD construct IR construct

MD-RTL IR-RTL

Implementation (rtl.def)

Figure 5.3: The MD-RTL and IR-RTL languages, and their implementation in GCC
using three kinds of RTL objects. The MD constructs appear only in the MD-RTL lan-
guage. The IR constructs appear only in the IR-RTL language. The operators are com-
mon to both the languages. The implementation lists all the RTL objects together in
‘$GCCHOME/gcc/rtl.def’ and does not distinguish them (except in some comments in the
code).

1. A set of RTL objects called operators that by themselves are basic elementary compu-
tation operations and are used to form RTL expressions (RTX, for short) that express
the target instruction semantics in both – the MD-RTL and the IR-RTL – languages.
Table (Table 5.1) lists the operators. We emphasize: the target semantics are captured
in the RTXs and RTXs are constructed using operators.
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Note that, unlike the current2 GCC documentation, by “RTX” we mean only the
expressions created using operators to express target semantics.

2. A set of RTL objects that are used to describe the control flow layout of a sequence of
RTXs that represent the input program being compiled during trun . We refer to these
as IR (Intermediate Representation) constructs, or Flow Representation constructs and
are listed in table (Table 5.2). Each RTX in the sequence is embedded in a suitable
IR construct object that expresses the nature of the control flow (sequence or branch)
that the RTX is a part of.

Additionally, we also include RTL constructs that are used for book keeping purposes
during a compilation operation as a part of this set of constructs. Constructs like note

are useful to record some information computed in a pass for use at later times, for
instance.3

We will refer to IR-RTL expressions as IR-RTX s. The IR-RTXs contain the RTXs that
express the target instruction semantics. Thus a program being compiled is represented
as a list of IR-RTXs with the RTX within each IR-RTX capturing the semantics of a
target instruction.

3. A set of constructs that specify the semantic patterns of target instructions in terms
of the operators. We refer to these as MD (Machine Description) constructs and are
listed in table (Table 5.3). Each instruction semantics pattern, or simply instruction
pattern (as the GCC documentation calls it) is enveloped by a suitable MD construct
object that expresses the nature of the specification.

We will refer to MD-RTL expressions as MD-RTX s. The MD-RTXs contain the RTXs
that express the target instruction semantics. Thus a machine description of target
instruction semantics is a sequence of MD-RTXs with the RTX within each MD-RTX
capturing the semantics of a target instruction.

2 As of 2007.
3 This does not mean that whenever there is a need to propagate information across passes, the note

construct is used. Global variables within the code are also used, as are extra fields in the IR RTL
expressions. We ignore these details.
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abs addr_diff_vec addressof

addr_vec and ashift

ashiftrt asm_input asm_operands

call call_placeholder cc0

clobber compare concat

cond cond_exec const

constant_p_rtx const_double const_int

const_string const_vector div

eq expr_list ffs

fix float float_extend

float_truncate ge geu

gt gtu high

if_then_else include insn_list

ior label_ref le

leu lo_sum lshiftrt

lt ltgt ltu

mem minus mod

mult ne neg

nil not ordered

parallel pc phi

plus post_dec post_inc

post_modify pre_dec prefetch

pre_inc pre_modify queued

range_info range_live range_reg

range_var reg resx

return rotate rotatert

scratch set sign_extend

sign_extract smax smin

sqrt ss_minus ss_plus

ss_truncate strict_low_part subreg

symbol_ref trap_if truncate

udiv umax umin

umod uneq unge

ungt unknown unle

unlt unordered unsigned_fix

unsigned_float unspec unspec_volatile

use us_minus us_plus

us_truncate value vec_concat

vec_duplicate vec_merge vec_select

xor zero_extend zero_extract

Table 5.1: The operators in MD-RTL and IR-RTL.

insn call_insn note

barrier jump_insn code_label

Table 5.2: The IR RTLs.
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absence_set address attr

attr_flag automata_option define_asm_attributes

define_attr define_automaton define_bypass

define_combine define_cond_exec define_cpu_unit

define_delay define_expand define_function_unit

define_insn define_insn_and_split define_insn_

reservation

define_peephole define_peephole2 define_query_cpu_unit

define_reservation define_split eq_attr

exclusion_set match_dup match_insn

match_op_dup match_operand match_operator

match_parallel match_par_dup match_scratch

presence_set sequence set_attr

set_attr_alternative

Table 5.3: The MD RTLs.

These three sets are distinct and disjoint. The operators and MD constructs define
the MD-RTL language and are used to describe target instruction semantics at tdevelop .
The IR constructs and operators define the IR-RTL language and are used to construct the
intermediate representation of a compilation run at trun . The current4 GCC documentation
does not distinguish between the different languages, nor the different RTL objects and RTL
expressions and heavily depends on the context for the distinction.

5.3 How the RTL Works

In this section we describe how the MD-RTL and the IR-RTL machinery described above is
employed by GCC. We use the time durations to fix the details with respect to Figure 3.2.

5.3.1 MD-RTL: Describing Target Machines (tdevelop )

MD-RTL as a specification system is made up of operators and MD constructs. The oper-
ators are used to construct RTXs that capture target instruction semantics and are called
as instruction patterns. Two main issues arise at specification time:

1. At tdevelop , the goal is to create target specific part of the Gimple to IR-RTL translation
table. The MD-RTL is to be used to capture and express the target semantics.

2. During that actual translation from Gimple to IR-RTL at trun not all information
about the target is available. For instance, the target register to be used as an operand
to an instruction. However, it is possible to specify the properties required by the
register object. The MD-RTL should be able to express such run time scenarios.

The RTX within a MD-RTX addresses the first issue by capturing target instruction
semantics. The other MD construct within a MD-RTX address the second issue through
various constructs (e.g. match_operand). Additionally, we may need to capture some target
properties that can provide useful information to the compiler. For example, the pipeline
characteristics of the target, if any. The specification system thus has three main goals.

4 As of 2007.
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1. To create the target specific part of the Gimple to IR-RTL translation table. This is
useful during Gimple to IR-RTL transformation.

2. To provide target specific information that can be used by the compiler to improve the
code. This results in transforming one IR-RTL sequence to another, possibly a better
one.

3. To ensure that at the end of the compilation every IR-RTL object maps to at least one
target instruction.

The last goal is implicit in the GCC (and gcc) system. To facilitate the construction
of the Gimple to IR-RTL table at tbuild , GCC standardises a few pattern semantics called
Standard Pattern Names (SPNs). Target specifications are expected to specify instruction
patterns corresponding to the semantics of these pattern names. It is possible that for
some targets the semantics of a pattern name may correspond to a single instruction while
for others a sequence of RTL expressions may be required. It may also be possible that
a pattern may correspond to different RTXs depending on some target properties which
are known only at trun . In general, the specification system has to be designed with the
possible scenarios that might occur at trun . For such purposes the specification system
needs constructs to capture the exact situation at trun that might occur. The simplest
case is that the semantics of a SPN correspond to a single target instruction through a
single RTX. This is usually the case and the MD construct called define_insn is used to
associate a SPN to the RTX that implements the semantics. Additionally, it also associates
the same RTX that implements the semantics to the corresponding target instruction in
assembly syntax. In case the semantics of an SPN require different RTXs depending on
target properties that are known at runtime (for instance the properties of the register
operand), then the MD construct define_expand is used in the specification.

Example: As an example consider the SPN addsi3 that has the addition semantics of
three operands each of size SI (single RTL integer). For concreteness, we assume a fictitious
target that has registers with the same width as SI mode of RTL, and a sum instruction
that adds the integers in the first two register operands and deposits the result in the third
register operand. There is an implicit assignment operation in the instruction. The operator
that expresses addition is plus, and the operator that expresses assignment is set. Since
this is a situation in which the semantics are implemented by a single target instruction,
we use the define_insn construct to specify a MD-RTX as:

;;-----------------------------------------------------------

;; MD-RTX defining the addition operation on the target

(define_insn ; MD construct, at least 4 arguments

; 1. The name of the SPN

"addsi3"

; 2. RTX capturing the semantics of the equivalent (to SPN)

; target instruction (the "sum" instruction)

; RTL assignment operator

(set

; Describe third operand, required to be a register

(match_operand 2 "register_operand" "r")

; RTL addition operator

(plus

; Describe first operand, required to be a register
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(match_operand 0 "register_operand" "r")

; Describe second operand, required to be a register

(match_operand 1 "register_operand" "r")

)

) ; END of RTX implementing the semantics of SPN

; 3. Unused third operand (in this case) of define_insn

""

; 4. The actual target instruction in target assembly syntax

; %1, %2, %3 are replaced by the actual target registers.

"sum %1 %2 %3"

; 5. Unspecified fifth operand that is optional anyway.

)

;;-----------------------------------------------------------

The define_insn construct in the MD-RTX above requires four operands and may take
an optional fifth operand (not shown above). The first operand is the name of the SPN
– addsi3 in the above example. The second operand is an RTX that implements the
specification of the SPN in a target specific manner. In the above case, the RTX ensured
that all the three operands are register operands by describing the operand characteristics
using the match_operand MD construct. This need was particular to the target. Some
other targets could also work with some operands in core memory rather than registers,
and in which case the operand matching specifications would be accordingly written. This
is what makes the RTXs target specific; they capture the target semantics. The third
operand is irrelevant at the moment. The fourth operand is the string that expresses the
same semantics in target specific assembly syntax. In particular, the addition operation
that is semantically identical to addsi3 is written out with the actual hardware registers
expressed as parameters. The values of these parameters, i.e. the actual registers, will be
filled in with pseudoregisters that satisfy the properties expressed by the register_operand
expression in the match_operand construct.

Note that the RTX within the MD-RTX has been constructed using operators and has
been embedded within a suitable specification RTL construct using the MD constructs. We
also observe that the SPN is coarse enough to correspond to some fine detail of the Gimple
representation, and it can be fine tuned to target specific expressions with a little effort.
Also, the specification is in human readable Lisp like syntax. This is converted to C code
at build time. Finally, the syntactic and operational details of each MD construct can be
found on the online GCC internals manual [GCC Internals (by Richard Stallman)], page 34.

5.3.2 From MD-RTL to IR-RTL (tbuild )

At tbuild , the machine description is chosen, the RTXs are extracted from the MD and
processed as described in section Section 4.2 [Build time Gimple to IR-RTL conversion
issues], page 17. Extraction of the RTXs implies converting each object in the MD-RTL
form to an internal representation using the RTL structure in the ‘$GCCHOME/gcc/rtl.h’
file. The RTL structure is (some comments from the original source have been removed):

/* Common union for an element of an rtx. */

union rtunion_def

{

int rt_int;
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unsigned int rt_uint;

const char *rt_str;

rtx rt_rtx;

rtvec rt_rtvec;

enum machine_mode rt_type;

addr_diff_vec_flags rt_addr_diff_vec_flags;

struct cselib_val_struct *rt_cselib;

struct bitmap_head_def *rt_bit;

tree rt_tree;

struct basic_block_def *rt_bb;

mem_attrs *rt_mem;

reg_attrs *rt_reg;

};

typedef union rtunion_def rtunion;

/* RTL expression ("rtx"). */

struct rtx_def

{

/* The kind of expression this is. */

ENUM_BITFIELD(rtx_code) code: 16;

/* The kind of value the expression has. */

ENUM_BITFIELD(machine_mode) mode : 8;

unsigned int jump : 1;

unsigned int call : 1;

unsigned int unchanging : 1;

unsigned int volatil : 1;

unsigned int in_struct : 1;

unsigned int used : 1;

unsigned frame_related : 1;

unsigned return_val : 1;

union u {

rtunion fld[1];

HOST_WIDE_INT hwint[1];

};

};

Each RTL object, particulary the operators and IR constructs, internally corresponds to
an instance of this structure. The operation is identified using the code field whose numer-
ical value in the code field is obtained by simply enumerating all the RTL objects defined
in ‘$GCCHOME/gcc/rtl.def’. Most other details are in the union defined by rtunion. The
Lisp like syntax of MD-RTL makes this an easy internal representation with the expression
syntax defining the structure of the internal lists-of-RTL-objects. To use the RTX in the
specification to represent a computation in a compilation of input program at trun , the
GCC build process generates (i.e. emits) C code that:

1. Task 1: Identify the particular operator code required.
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2. Task 2: Generate a C function to emit an instance of the RTL structure rtx_def

structure with that code.

3. Task 3: Generate a C function that will chain the instantiated RTL object into the
RTL based IR of the input program.

Example: The addsi3 example specification (from the example above)

;;-----------------------------------------------------------

(define_insn "addsi3"

(set (match_operand 2 "register_operand" "r")

(plus (match_operand 0 "register_operand" "r")

(match_operand 1 "register_operand" "r")))

""

"sum %1 %2 %3"

)

;;-----------------------------------------------------------

is converted to the equivalent C code below at generation time tgen during tbuild :

/*----------------------------------------------------*/

rtx

gen_addsi3 (rtx operand0, rtx operand1, rtx operand2)

{

...

emit_insn (gen_rtx_set (SImode, op0, op1, op2));

...

}

/*----------------------------------------------------*/

The generated C functions start with “gen_” prefix and the name of the pattern
(“addsi3” in this example) as the suffix. The specified RTX starts with the set operation.
The operands of the set are themselves other RTXs (e.g. plus) and may be initialised by
their equivalent C code (not shown) before being passed to the gen_rtx_set() function
shown above. The gen_rtx_set () function (task [step2], page 28) is the code to create
an instance of the RTL structure above with the code field initialised to the (enumerated)
value of the SET operator (task [step1], page 27).

Since the internal representation of the RTL object would actually be a part of a (doubly
linked) list while representing an input program at trun , the gen_addsi3 () function calls
the emit_insn() function to chain the output of gen_rtx_set () into the chain (task
[step3], page 28).

All of these steps are bundled into (usually) a single C function that conceptually now
“emits” the entire IR-RTX corresponding to the SPN. This function5 is stored in the insn_
data [] array in Figure 4.4. The index at which this function is stored in insn_data [] is
stored in optab array at the offset indexed using the SPN. All the specified RTXs in the
machine description are thus processed at tbuild and collected into the C data structure
called insn_data. The “SPN” corresponding to a given Gimple construct is known at
tdevelop and can be used to index the optab structure. This returns the index into the
insn_data structure to yield the function pointer that would instantiate the RTX pattern

5 It’s function pointer to be precise.
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specified in the MD. Note that because the MD-RTXs captured target semantics (in it’s
RTX), the RTXs that represent the compilation of a program are also, therefore, target
specific.

At the end of tgen all the required C functions are generated. During tcomp they will be
compiled into the object code which when executed at trun would emit a IR-RTX as a list
of objects of the RTL data structure at trun .

This completes the task of generating the target specific code. The complete target spe-
cific Gimple to IR-RTL translation table is thus implemented through a target independent
data structure that corresponds to the Gimple part and a target specific data structure that
corresponds to the IR-RTL part. Both these are connected using the pattern names.

5.3.3 IR-RTL: Representating a Compilation (trun )

The IR-RTL representation of the input program being compiled is generated by a depth
first traversal of the Gimple representation at trun . During this process the data abstrac-
tions are lowered. The program is linear list of IR-RTXs. Each IR-RTX is is obtained from
the IR-RTX emitting function in insn_data[]. The operands are typically pseudoregisters,
but may also be the home locations, and are already available when the IR-RTX emitting
function runs (due to the depth first traversal). The operands hopefully satisfy the target
specific matching criteria given in the specification in the machine description (e.g. match_
operand says that the operand should be a “register_operand”). The operand matching
criteria are not checked at this stage. Thus the RTX in the IR-RTX has the instantiated
operands rather than their specifications. For example, the instantiated RTX corresponding
to the define_insn example above would look like:

;;-----------------------------------------------------------

(set

; Selected destination (pseudo) register

(reg 20)

; Selected source (pseudo) registers

(plus (reg 29) (reg 8))

)

;;-----------------------------------------------------------

This chain of IR-RTXs is expressed using the IR constructs like insn, jump_insn etc.
to envelope the instantiated RTX as required. The actual operations like data movement,
arithmetic etc. are expressed using the corresponding operators mov, plus etc. within the
RTX. Thus the IR-RTL representation of an input program being compiled is made up
of chaining information expressed using IR RTXs. The insn construct is used to express
linear chaining, while the jump_insn is used to denote that the containing RTX is a branch
operation to some other location thus disrupting the linear control flow chain. It is because
of such constructs that we suggest referring to IR constructs as “(control) flow RTLs”.

Example: As an example, the enveloping of the instantiated RTX above by insn con-
struct would look like:

;;--------------------------------------------------------

(insn

; the current node number in the linear chain

101
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; the previous node number in the linear chain

100

; the next node number in the linear chain

102

; the current RTX

(set

; Selected destination (pseudo) register

(reg 20)

; Selected source (pseudo) registers

(plus (reg 29) (reg 8))

)

...

)

;;--------------------------------------------------------

Expression texts of the above type are dumped by gcc when requested (See: [GCC –
An Introduction], page 34) to dump the IR-RTL IR at various stages of a compilation run.
The IR-RTL representation is obtained from the Gimple representation by translating the
operational semantics of the Gimple nodes using the corresponding IR-RTXs (as determined
by the optab and insn_data data structures). However, not all operand information is
available at this point and the initial conversion to IR-RTL remains incomplete. As the
processing in RTL phase of the compiler proceeds, the required information is obtained (e.g.
the register allocator fixes the actual hardware registers to be used in place of the pseudo
registers). Instruction selection in GCC is partial and is completed over a set of phases.
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6 Summary

In summary, we look at the essentials of the GCC architecture in the sequence of the three
time durations of section Section 3.1 [The Impact of Retargetability], page 5 that are a
consequence of retargetability. We ignore the AST/Generic generation and target assembly
generation. The AST/Generic is the output of the parsing process which is well understood
and hence need not be addressed to in an architectural description. The assembly code
generation is simplified because at the end of the RTL passes, the IR-RTL representation
is complete enough to merely require expression in target assembly syntax. Hence, we look
at Gimple and RTL at tdevelop , tbuild and trun times.

1. tdevelop

1. Gimple

1. Separate target independent and target specific part of the Gimple → IR-RTL
translation,

2. Prepare to join the separated parts by

1. defining SPNs, and

2. writing the generator code for use at tbuild

2. RTL

1. Use MD construct and operators to construct MD-RTXs that specify the
semantics of the target instructions in the corresponding machine description,

2. define the RTL data structure in C that will be used to represent the RTXs
in internal form

2. tbuild

1. Gimple

1. Run the generator programs on the chosen MD to list out the pattern names
of each defined pattern, and

2. use the indices obtained to fill the optab table with the offset of the corre-
sponding pattern expression in the insn_data table.

2. RTL

1. Run the generator programs on the chosen MD to list out the patterns in MD-
RTL, and convert them to C functions that would emit the IR-RTL form, and

2. fill in the insn_data array with the function pointer to the generated C
function.

3. trun

1. Gimple: Index into the optab array to obtain the offset to be used into the insn_
data array.

2. RTL: Use the index obtained from the optab arrat into the target specific insn_

data array and obtain the function pointer that points to the function to emit the
IR-RTL representation.

Note that because the same Lisp like syntax of RTXs1 is used during target specific
compiler build and a later run of the built compiler, no interconversion (between the spec-
ification and runtime internal representation) is required. The MD constructs used for

1 RTXs are constructed from operators!
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specification purposes, and the IR constructs, used for representation purposes are well sep-
arated. This particular feature of the RTL system is not clearly brought out by the current
GCC documentation.2

2 As of 2007.
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7 Conclusion and Future Work

Amongst the many concepts that have gone in into the construction of the GCC system,
three main ones are useful to understand the overall picture. Firstly, the abstraction gap
is useful in obtaining the phase sequence of lowering-one-gap-at-a-time operations. Second,
we identify three time points tdevelop , tbuild , trun (and tgen and tcomp as a part of trun )
that serve to delimit the three different conceptual views:

1. the architecture of the Compiler Generation Framework,

2. the architecture of target specific Compiler operation phase sequence, and

3. the architecture of the build system.

These three views are useful to understand GCC. Retargetability implies postponing
target specific decisions to build time rather than at design time. Hence at design time,
the source is expressed “parameterically” with respect to target properties and the target
properties are separately specified on a per target basis. At build time, the target specific
parts of the compiler are generated from the specifications of the chosen target. The com-
plete compiler then operates on an input program lowering one abstraction gap at a time for
each IR. Thirdly, it is useful to see the implemented RTL system as emerging from the two
languages: MD-RTL and IR-RTL. The first is used for specification purposes at tdevelop and
the second is used to represent a program being compiled at trun . They share the same op-
erators. Hence the common implementation of all RTL objects in ‘$GCCHOME/gcc/rtl.def’
can be seen as composed of three distinct kinds of objects: the MD constructs, the operators
and the IR constructs. The MD constructs and the operators define the MD-RTL language.
The IR constructs and the operators define the IR-RTL language. The operators connect
the target specific semantics expressed at development time to the representations at the
operation time. This connection is explicitly made at build time when the build system
operates.

7.1 Future Work

The identification of three views that describe GCC at various time durations can be em-
ployed for directing future work. A number of possibilities exist, and we list a few interesting
ones.

• Compilation theory:

− Quantifying the abstraction gap and determination of factors that determine the
phase sequence.

− Formalising the IRs as abstract machines and studying their properties.

− Formally modeling compilation phases.

− Study the notion of retargetability.

• Future GCC directions:

− Implementation changes to push choice of target at operation time rather than
build time.

− Changes in the phase sequence to implement new challenges like auto parallelisa-
tion.

− Changes in the implementation to do better instruction selection.
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Appendix A Copyright

This is edition 1.0 of “The Conceptual Structure of GCC”, last updated on January 7,
2008., and is based on GCC version 4.0.2.

Copyright c© 2004-2008 Abhijat Vichare, I.I.T. Bombay.

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation; with no Invariant Sections,
with the Front-Cover Texts being “The Conceptual Structure of GCC,” and
with the Back-Cover Texts as in (a) below. A copy of the license is included in
the section entitled “GNU Free Documentation License.”

(a) The FSF’s Back-Cover Text is: “You have freedom to copy and modify
this GNU Manual, like GNU software. Copies published by the Free Software
Foundation raise funds for GNU development.”

A.1 GNU Free Documentation License
Version 1.2, November 2002

Copyright c© 2000,2001,2002 Free Software Foundation, Inc.
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
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is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ascii without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF

and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.
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A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
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you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.
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K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.
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In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under this
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License will not have their licenses terminated so long as such parties remain in full
compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.
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ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.2

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . .Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.


