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1 Introduction

In this document we note the details of the GCC 4.0.2 implementation given the background
of the architecture described in [The Conceptual Structure of GCC], page 10, and the cor-
responding implementation described in [The Implementation of GCC], page 10. Figure 1.1
that appears below succinctly captures the core concepts in GCC. We also take support from
the GCC Internals documentation (see [GCC Internals (by Richard Stallman)], page 10)
available for a few versions of GCC which describe in detail the uses of various macros and
RTL objects in detail. The source layout structure described in [GCC – An Introduction],
page 10 is used.
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Figure 1.1: The GCC Compiler Generation Framework (CGF).

The various details follow. Some more details can also be added as reference in the
future. For instance, systematic grouping and description of accessor macros that are used
to access and manipulate internal data structures like the AST/Generic trees, RTL objects
and details of target characteristics etc. can be added here. In some cases, the description
has been derived from the comments in the source files themselves.
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2 Pristine File Groups

See section “Source Organization” in GCC – An Introduction.
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3 The Machine Description Processing Programs

This section summarises a few “generator” programs that process the information in the
selected MD at tbuild . Most of the synopses and descriptions are extracted from the com-
mentary in the source files themselves. These form the first of the details of the target
specific code generation activity at build time. The main goal is to generate the target
specific RTL part of the Gimple → translation table (see [The Implementation of GCC],
page 10, [The Conceptual Structure of GCC], page 10). The code number of an insn is
simply its position in the machine description. They are assigned sequentially to entries in
the description, starting with code number 0.

gensupport.c Support routines for the various generation passes.
genconditions.c Calculate constant conditions.
genconstants.c Generate a series of #defines, one for each constant named

in a (define_constants ...) pattern.

genflags.c Generate flags HAVE_... saying which standard instructions
are available for this machine.

genconfig.c Generate some #define configuration flags.
gencodes.c Generate some macros CODE_FOR_... giving the

insn code number value for each of the defined standard
insn names.

genpreds.c Generate some macros CODE_FOR_... giving the
insn code number value for each of the defined standard
insn names.

genattr.c Generate attribute information (insn-attr.h).
genattrtab.c Generate code to compute values of attributes.
genemit.c Generate code to emit insns as rtl.
genextract.c Generate code to extract operands from insn
genopinit.c Generate code to initialize optabs from machine description.
genoutput.c Generate code to output assembler insns as recognized from

RTL.

genpeep.c Generate code to perform peephole optimizations.
genrecog.c Generate code to recognize rtl as insns.
gencheck.c Generate check macros for tree codes.
gengenrtl.c Generate code to allocate RTL structures.
genrtl.c Generated automatically by gengenrtl from rtl.def.

gengtype.c Process source files and output type information.
genautomata.c Pipeline hazard description translator.
gengtype-lex.c A lexical scanner generated by flex
gengtype-yacc.c A Bison parser, made from gengtype-yacc.y.
gen-protos.c Massages a list of prototypes, for use by fixproto.

Table 3.1: A brief description of the various gen files. These files are compiled to the
programs that process the chosen machine description to convert the information for internal
use.

3.1 gensupport



Chapter 3: The Machine Description Processing Programs 4

Synopsis: Support routines for the various generation passes.

This file has a number of functions that are useful at various points of the target compiler
generation. In particular, init_md_reader and read_md_rtx are used to setup the reading
of a machine description file and reading a single rtx in it. The function maybe_eval_c_

test takes a string representing a C test expression, looks it up in the condition table and
reports whether or not its value is known at compile time.

3.2 genconditions

Synopsis: Calculate constant conditions.

Generates: insn-conditions.c

In a machine description, all of the insn patterns - define_insn, define_expand,
define_split, define_peephole, define_peephole2 - contain an optional C expression
which makes the final decision about whether or not this pattern is usable. That expression
may turn out to be always false when the compiler is built. If it is, most of the programs
that generate code from the machine description can simply ignore the entire pattern.

3.3 genconstants

Synopsis: Generate a series of #define statements, one for each constant named in a
(define_constants ...) pattern.

Generates: insn-constants.h

This program does not use gensupport.c because it does looks only at the define_

constants.

3.4 genflags

Synopsis: Generate flags HAVE_... saying which simple standard instructions are available
for this machine.

Generates: insn-flags.h

We scan the define_insn’s and define_expand’s in the machine description and look
at “instructions” with names that are either not NULL or begin with any other character
except a *. In other words, the so-called “standard instructions” are accepted, the rest are
ignored. Thus we create a list of those “standard instructions” that the given processor
“knows”. An instruction in the MD file could have an associated condition expressed in C.
This is the second “field” of the description of the instruction. The genconditions program
would have already looked at each of these and memoized the compile time constants. The
instruction pattern is practically non existent if the condition is false. We therefore, list
out only those instruction patterns for which the condition is known to be true or it’s
value is not known at compile time. If the condition is known to be true, we define an
“existence” macro. If the condition is not known at compile time, then we define the macro
to be the condition itself. Note that the genconditions program is concerned with the
conditions in all the RTL constructs, while we focus only on the “instructions” constructs,
i.e. define_insn and define_expand. However, since the genconditions program has
already looked at all the condition expressions and memoized them, we directly use the
table that it constructs.
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3.5 genconfig

Synopsis: Generate some #define configuration flags.

Generates: insn-config.h

e.g. (am i sure that what follows is an example of the comment above ?) flags to
determine output of machine description dependent #define’s.

3.6 gencodes

Synopsis: Generate some macros CODE_FOR_... giving the insn code number value for
each of the defined standard insn names.

Generates: insn-codes.h

3.7 genpreds

Synopsis: Generate some macros CODE_FOR_... giving the insn code number value for
each of the defined standard insn names.

3.8 genattr

Synopsis: Generate attribute information (insn-attr.h).

Generates: insn-attr.h

3.9 genattrtab

Synopsis: Generate code to compute values of attributes.

Generates: insn-attrtab.c

Uses: genautomata.c (for pipeline hazard description system in MD files)

This program handles insn attributes and the define_delay and define_-function_

unit definitions.

It produces a series of functions named ‘get attr ...’, one for each insn attribute. Each
of these is given the rtx for an insn and returns a member of the enum for the attribute.

These subroutines have the form of a ‘switch’ on the INSN CODE (via ‘recog -
memoized’). Each case either returns a constant attribute value or a value that depends
on tests on other attributes, the form of operands, or some random C expression (encoded
with a SYMBOL REF expression).

If the attribute ‘alternative’, or a random C expression is present, ‘constrain ope-rands’
is called. If either of these cases of a reference to an operand is found, ‘extract insn’ is
called.

The special attribute ‘length’ is also recognized. For this operand, expressions involving
the address of an operand or the current insn, (address (pc)), are valid. In this case, an
initial pass is made to set all lengths that do not depend on address. Those that do are
set to the maximum length. Then each insn that depends on an address is checked and
possibly has its length changed. The process repeats until no further changed are made.
The resulting lengths are saved for use by ‘get attr length’.

A special form of define_attr, where the expression for default value is a CONST
expression, indicates an attribute that is constant for a given run of the compiler. The
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subroutine generated for these attributes has no parameters as it does not depend on any
particular insn. Constant attributes are typically used to specify which variety of processor
is used.

Internal attributes are defined to handle define_delay and define_function_unit.
Special routines are output for these cases.

This program works by keeping a list of possible values for each attribute. These include
the basic attribute choices, default values for attribute, and all derived quantities.

As the description file is read, the definition for each insn is saved in a ‘struct insn def’.
When the file reading is complete, a ‘struct insn ent’ is created for each insn and chained
to the corresponding attribute value, either that specified, or the default.

An optimization phase is then run. This simplifies expressions for each insn. EQ ATTR
tests are resolved, whenever possible, to a test that indicates when the attribute has the
specified value for the insn. This avoids recursive calls during compilation.

The strategy used when processing define_delay and define_function_unit defini-
tions is to create arbitrarily complex expressions and have the optimization simplify them.

Once optimization is complete, any required routines and definitions will be written.

An optimization that is not yet implemented is to hoist the constant expressions entirely
out of the routines and definitions that are written. A way to do this is to iterate over
all possible combinations of values for constant attributes and generate a set of functions
for that given combination. An initialization function would be written that evaluates the
attributes and installs the corresponding set of routines and definitions (each would be
accessed through a pointer).

We use the flags in an RTX as follows:

‘unchanging’ (ATTR IND SIMPLIFIED P): This rtx is fully simplified independent of
the insn code.

‘in struct’ (ATTR CURR SIMPLIFIED P): This rtx is fully simplified for the insn code
currently being processed (see optimize attrs).

‘integrated’ (ATTR PERMANENT P): This rtx is permanent and unique (see attr rtx).

‘volatil’ (ATTR EQ ATTR P): During simplify by exploding the value of an EQ ATTR
rtx is true if !volatil and false if volatil.

3.10 genemit

Synopsis: Generate code to emit insns as rtl.

3.11 genextract

Synopsis: Generate code to extract operands from insn as rtl.

3.12 genopinit

Synopsis: Generate code to initialize optabs from machine description.

Generates: insn-opinit.c

Many parts of GCC use arrays that are indexed by machine mode and contain the insn
codes for pattern in the MD file that perform a given operation on operands of that mode.
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These patterns are present in the MD file with names that contain the mode(s) used and
the name of the operation. This program writes a function ‘init all op-tabs’ that initializes
the optabs with all the insn codes of the relevant patterns present in the MD file.

This array contains a list of optabs that need to be initialized. Within each string, the
name of the pattern to be matched against is delimited with $( and $). In the string, $a
and $b are used to match a short mode name (the part of the mode name not including
‘mode’ and converted to lower-case). When writing out the initializer, the entire string is
used. $A and $B are replaced with the full name of the mode; $a and $b are replaced with
the short form of the name, as above.

If $N is present in the pattern, it means the two modes must be consecutive widths in
the same mode class (e.g, QImode and HImode). $I means that only full integer modes
should be considered for the next mode, and $F means that only float modes should be
considered. $P means that both full and partial integer modes should be considered.

$V means to emit ’v’ if the first mode is a MODE FLOAT mode.

For some optabs, we store the operation by RTL codes. These are only used for compar-
isons. In that case, $c and $C are the lower-case and upper-case forms of the comparison,
respectively.

3.13 genoutput

Synopsis: Generate code to output assembler insns as recognized from rtl.

Generates: insn-output.c

This program reads the machine description for the compiler target machine and pro-
duces a file containing these things:

1. An array of ‘struct insn data’, which is indexed by insn code number, which contains:

1. ‘name’ is the name for that pattern. Nameless patterns are given a name.

2. ‘output’ hold either the output template, an array of output templates, or an
output function.

3. ‘genfun’ is the function to generate a body for that pattern, given operands as
arguments.

4. ‘n operands’ is the number of distinct operands in the pattern for that insn,

5. ‘n dups’ is the number of match dup’s that appear in the insn’s pattern. This says
how many elements of ‘recog data.dup loc’ are significant after an insn has been
recognized.

6. ‘n alternatives’ is the number of alternatives in the constraints of each pattern.

7. ‘output format’ tells what type of thing ‘output’ is.

8. ‘operand’ is the base of an array of operand data for the insn.

2. An array of ‘struct insn operand data’, used by ‘operand’ above.

1. ‘predicate’, an int-valued function, is the match operand predicate for this
operand.

2. ‘constraint’ is the constraint for this operand. This exists only if register con-
straints appear in match ope-rand rtx’s.

3. ‘address p’ indicates that the operand appears within ADDRESS rtx’s. This exists
only if there are *no* register constraints in the match operand rtx’s.
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4. ‘mode’ is the machine mode that that operand is supposed to have.

5. ‘strict low’, is nonzero for operands contained in a STRICT LOW -PART.

6. ‘eliminable’, is nonzero for operands that are matched normally by
MATCH OPERAND; it is zero for operands that should not be changed during
register elimination such as MATCH OPERATORs.

Since the code number of an insn is simply its position in the machine description, the
following entry in the machine description

(define_insn "clrdf"

[(set (match_operand:DF 0 "general_operand" "")

(const_int 0))]

""

"clrd %0")

assuming it is the 25th entry present, would cause insn_data[24].template to be "clrd
%0", and insn_data[24].n_operands to be 1.

3.14 genpeep

Synopsis: Generate code to perform peephole optimizations.

3.15 genrecog

Synopsis: Generate code to recognize rtl as insns.

Generates: insn-recog.c

This program is used to produce insn-recog.c, which contains a function called ‘recog’
plus its subroutines. These functions contain a decision tree that recognizes whether an rtx,
the argument given to recog, is a valid instruction.

recog returns -1 if the rtx is not valid. If the rtx is valid, recog returns a nonnegative
number which is the insn code number for the pattern that matched. This is the same as the
order in the machine description of the entry that matched. This number can be used as an
index into various insn * tables, such as insn template, insn outfun, and insn n operands
(found in insn-output.c).

The third argument to recog is an optional pointer to an int. If present, recog will accept
a pattern if it matches except for missing CLOBBER expressions at the end. In that case,
the value pointed to by the optional pointer will be set to the number of CLOBBERs that
need to be added (it should be initialized to zero by the caller). If it is set nonzero, the
caller should allocate a PARALLEL of the appropriate size, copy the initial entries, and
call add clobbers (found in insn-emit.c) to fill in the CLOBBERs.

This program also generates the function ‘split insns’, which returns 0 if the rtl could
not be split, or it returns the split rtl as an INSN list.

This program also generates the function ‘peephole2 insns’, which returns 0 if the rtl
could not be matched. If there was a match, the new rtl is returned in an INSN list, and
LAST INSN will point to the last recognized insn in the old sequence.



Chapter 3: The Machine Description Processing Programs 9

3.16 gencheck

Synopsis: Generate check macros for tree codes.

3.17 gengenrtl

Synopsis: Generate code to allocate RTL structures.

3.18 genrtl

Synopsis: Generated automatically by gengenrtl from rtl.def.

3.19 gengtype

Synopsis: Process source files and output type information.

3.20 genautomata

Synopsis: Pipeline hazard description translator.

3.21 gen-protos

Synopsis: A lexical scanner generated by flex

3.22 gengtype-lex

Synopsis: A Bison parser, made from gengtype-yacc.y.

3.23 gengtype-yacc

Synopsis: Massages a list of prototypes, for use by fixproto.
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