
Writing GCC Machine Descriptions
GCC Version 4.0.2

Abhijat Vichare (amvichare@iitb.ac.in)

Indian Institute of Technology, Bombay
(http://www.iitb.ac.in)

This is edition 1.0 of “Writing GCC Machine Descriptions”, last updated on January 7,
2008., and is based on GCC version 4.0.2.

Copyright c© 2004-2008 Abhijat Vichare, I.I.T. Bombay.

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation; with no Invariant Sections,
with the Front-Cover Texts being “Writing GCC Machine Descriptions,” and
with the Back-Cover Texts as in (a) below. A copy of the license is included in
the section entitled “GNU Free Documentation License.”

(a) The FSF’s Back-Cover Text is: “You have freedom to copy and modify
this GNU Manual, like GNU software. Copies published by the Free Software
Foundation raise funds for GNU development.”

i

Short Contents

1 Introduction. 1

2 Influences on the GCC MD System 3

3 MD System and GCC Architecture 8

4 Definition of Fictitious Target System 11

5 Implementation of MD for Toy . 13

6 The New MD and the Build System. 14

7 The New MD and the gcc architecture 16

References . 17

List of Figures. 18

A The CPP macros Implementation 19

B The MD-RTL code Implementation 32

C The auxiliary C code Implementation. 38

D Copyright. 46

ii

Table of Contents

1 Introduction . 1

2 Influences on the GCC MD System 3
2.1 Influence of the Source Language . 3
2.2 Influence of the Target System . 5

2.2.1 Target Systems and Cross Compilation 6
2.3 Influence of GCC Architecture . 7

3 MD System and GCC Architecture 8
3.1 The Organisation of the GCC MD System . 8
3.2 Classification of MD Macros. 9
3.3 The RTL Based MD Specifications. 9

4 Definition of Fictitious Target System 11

5 Implementation of MD for Toy 13
5.1 C Preprocessor Macros . 13
5.2 Implementing CPP macros . 13
5.3 Implementing MD-RTL code . 13

5.3.1 A few trun time situations . 13
5.3.2 Corresponding MD RTL constructs . 13
5.3.3 Examples of MD-RTL code and CPP macros 13

5.4 Implementing auxiliary C code . 13

6 The New MD and the Build System 14
6.1 Making GCC Aware of the New MD . 14
6.2 The RTL Object . 14
6.3 Conversion of RTL Specifications to C Code 15

7 The New MD and the gcc architecture 16
7.1 Operation of the “Generated” C Code . 16

References . 17

List of Figures . 18

Appendix A The CPP macros Implementation
. 19

iii

Appendix B The MD-RTL code Implementation
. 32

Appendix C The auxiliary C code
Implementation . 38

Appendix D Copyright . 46
D.1 GNU Free Documentation License . 46

Chapter 1: Introduction 1

1 Introduction

In [The Conceptual Structure of GCC], page 17 three important time periods were identified
as a consequence of the retargetability requirement:

1. the development of the CGF, denoted by tdevelop ,

2. the building of the target specific compiler, denoted by tbuild , and

3. the use of the built compiler to compile an input program, denoted by trun .

The target specific machine description must be created at time instant tdevelop , incorpo-
rated into the compiler at time instant tbuild and used at time instant trun . To understand
the issues that go into creating a machine description at tdevelop , we need to know the
details of incorporating it into the compiler at tbuild and it’s use at trun . Corresponding to
these time durations we have architecture descriptions that help understanding the GCC
code base. At tdevelop we have the GCC Compiler Generation Architecture1 that describes
the view of GCC that a GCC developer works with. At trun we have the GCC Compilation
Architecture2 that describes the concepts behind the implementation (and the running at
trun) of the sequence of operations needed to compile a program to target assembly. This
is the view of GCC that a user of the compiler sees. The RTL system is the connecting link
that converts the MD-RTL based specifications of target properties at tdevelop to IR-RTL
based forms useful at trun . This conversion occurs at tbuild and is described by the GCC
Build System Architecture3.

The RTL system is used in GCC for both: (a) specifying target properties at tdevelop using
the MD-RTL language, and (b) representing the input being compiled at trun using the
IR-RTL language. In both the cases the RTL operators are used to construct expressions,
called RTXs, that capture the semantics of the target instruction. At specification time, the
RTXs are in an external Lisp like syntax and at representation time they are in an internal
form of chained objects. The internal representation is dumped out in external Lisp like
syntax. At specification time, the RTXs are a part of MD-RTXs. They use MD constructs
of the RTL system for various specification purposes. At representation time, the RTXs are
a part of IR-RTXs. They use IR constructs of the RTL system for various representation
purposes.

The concepts, mechanisms and operation of the RTL based machine description system
in GCC are illustrated with a running example in [The Conceptual Structure of GCC],
page 17.4 We start by examining the target issues that actually influence a retargetable
compiler like GCC in Chapter 2 [Influences on the GCC MD System], page 3. Chapter 3
[MD System and GCC Architecture], page 8 examines how these issues are incorporated into
the GCC architecture of [The Conceptual Structure of GCC], page 17. We then translate
these conceptual views of impact of retargetability into an implementation over a fictitious
target in Chapter 5 [Implementation of MD for Toy], page 13. This chapter is the central
core of this document. A short summary of the fictitious target properties precedes the
implementation description in Chapter 4 [Definition of Fictitious Target System], page 11.
At this point the specification of the Toy machine has been developed. In Chapter 6 [The

1 See section “The GCC Compiler Generation Architecture” in GCC 4.0.2 – The Conceptual Structure.
2 See section “The GCC Compiler Architecture” in GCC 4.0.2 – The Conceptual Structure.
3 See section “The GCC Build System Architecture” in GCC 4.0.2 – The Conceptual Structure.
4 See section “How the RTL Works” in GCC 4.0.2 – The Conceptual Structure.

Chapter 1: Introduction 2

New MD and the Build System], page 14, we use the build system to “transform” our
specifications into code that is to be used in a compiler run. Finally, in Chapter 7 [The
New MD and the gcc architecture], page 16, we use the compiler architecture to examine a
compilation run that produces code for the fictitious target that we have ported GCC to.

The user level details of the GCC build process are provided in [GCC – An Introduction],
page 17. The details of the how GCC converts the conceptual structure in [The Conceptual
Structure of GCC], page 17 into an implementation are in [The Implementation of GCC],
page 17. In this work, we use only the necessary implementation details. The file naming
conventions in [The Implementation of GCC], page 17 are used.

Chapter 2: Influences on the GCC MD System 3

2 Influences on the GCC MD System

Machine

Description

Source Language

• INT TYPE SIZE

• Activation Record

<target>.h

GCC Architecture

• Generation of nop

• tree covers for

instruction selection

• define predicate

<target>.h

Target System

• Instruction Set

Architecture

• Assembly and

executable

formats

hwint.h

{

<target>.md

<target>.h
{

<target>.h

other headers

Figure 2.1: Influences on GCC MD

Figure 2.1 summarizes the various influences on the MD system. Various factors of each
influence need to be captured by the MD system. We have divided the various influences
into the following broad categories:

1. Influence of the source language features.

2. Influence of the target system.

3. Influence of the GCC system itself.

2.1 Influence of the Source Language

Figure 2.2 describes that various aspects of the source language features that impact the
MD system. This is natural since the goal of the compiler is to eventually map the source
objects to target representation.

Chapter 2: Influences on the GCC MD System 4

int main ()

{

int a;

char b;

float c;

while (a != 0)

a = b + sqr(c);

return 0;

}

Memory

a
b

c

main

sqr

Data

Code

CPU

Data types, sizes

Control Structures

Operators

Function Call

Scope ?

How do we describe these?

Figure 2.2: Source language influences

The dotted line in the figure divides it into two halves. On the left is some source
program whose objects are to be mapped to the target on the right. The target memory
is divided into code regions and data regions. Data objects in the source are specified in
terms of their data types and names. The data types define the interpretation of the region
of memory that will eventually be associated with the named objects of that type. The
name of the data object will correspond to some memory location (not shown in the figure).
The scope rules of the HLL will define some life time and access constraints on the data
object and have to be implemented on the target system. The size of the region of memory
that corresponds to a given data type is easy to define in terms of the number of bits.
Such parametrization is implemented in terms of simple C preprocessor macros in GCC. In
general, these define the sizes in bits of the data types supported by the compiler.

In contrast, for code objects, two main kinds of HLL constructs need to be mapped on
to the target code memory: control flow specifications like “while” or “sqr” and operators
like “!=”, “+” etc. For code objects the parametrization is not in terms of simple values.
Rather the semantics have to be captured. This is possible using RTL operators, in general.
This kind of parametrization cannot use preprocessor macros.

Source language defined control flow constructs like while can be expressed as target
code if the target program counter can be sequenced and branched. All targets will always
have these abilities. In fact, GCC fails to build by default if branch semantics have not
been specified in the target MD. User defined control flow constructs like sqr in the figure
need a more elaborate scheme for expression as target code. This scheme depends on
the particulars of the HLL. All the HLLs that GCC supports use a stack of function call
activations as the scheme1 to manage the data and control states needed to prepare for
control transfer and return back.

Operators defined by the HLL, like “!=”, “+” etc., are mapped to target instructions if
they exist, or implemented using the target instructions that exist. In case some operators
may not be mapped to target instructions, GCC provides two alternate paths: a library –

1 Languages, e.g. Scheme, that need structures other than the stack are not supported by GCC.

Chapter 2: Influences on the GCC MD System 5

libgcc – that attempts to implement the semantics, or have constructs in the MD system
that allow expressing the semantics in terms of available ones. The former path is generic
and the latter is target specific and is the responsibility of the author of that MD. The
latter path finds favor when both the alternates are available.

A compiler has to determine if all the HLL constructs can indeed be mapped to the
instructions available on the target. Additionally, if it hopes to be retargetable then this
determination can occur at tbuild

2. However, the development of such a retargetable compiler
may prepare for this determination. GCC (i.e. the development system, at tdevelop) does
this by imposing certain conventions on the names of the instruction patterns that are
specified at tdevelop . Patterns that may be so tested are required to have non null names
that do not begin with the “⋆” character. Further, some of such names are standard and
assure the compiler of the existence of some required semantics.

Unfortunately, in GCC there is no explicit testing of the “completeness” of the target
specification so that every HLL construct can be guaranteed to be mapped to equivalent
target expression. It seems that the concept of Standard Pattern Names (SPNs) was evolved
with such a goal. Typically, an implementation of a target specification is field tested for
“completeness” and over the years the supported targets have matured.

2.2 Influence of the Target System

An “inverse” of the influences of the source on the GCC MD system is the influence of the
target system. In this section we use the phrase “target system” in a broad sense to include
the target system software and some target hardware properties other than the instruction
set of the target processor. Figure 2.3 summarizes these.

GCC at tdevelop

System Software

• Assembler

• Linker

• Profiler

• Debugger

• Library

Layout

ELF markers

Profiling

Debugging

Headers

Operating System

• Unix
• Windows
• . . .

COFF?

Path sep.

H/W Properties

• Register set
• Bus Widths
• . . .

#Regs

32 or 64?

Figure 2.3: Target system influences.

2 In general, it can even occur later but in GCC it occurs at tbuild .

Chapter 2: Influences on the GCC MD System 6

The processor forms one component of the total hardware that forms a computer. Even
the processor is characterized by other parameters, like the registers set, apart from it’s
instruction set. The values of all these characteristics are simple objects like numbers or
strings. Hence these are also expressed using C preprocessor macros. [The Implementation
of GCC], page 17 classifies these and [GCC Internals (by Richard Stallman)], page 17
describes these in detail. The registers set offers an interesting example of how a compiler
is influenced by the target system. A processor architecture may define additional attributes
of registers in it’s registers set. Some registers may be dedicated to a certain operation,
some may be read only, some may be write only, some may be special purpose while some
may be general purpose. The compiler may need to, or even choose to, additionally block
certain registers for it’s own use. A parametrized compiler, thus, needs to be able to specify
the attributes and the subsets of registers on a per target basis. For example, our toy
processor has a dedicated, read only register that always has a constant value 0. Since
in the typical hardware that surrounds our processor memory operations are slower than
register operations, GCC needs to be told to use the “zero” register in all computations that
have a numerical 0 as an argument. The register has to be isolated into a subset of it’s own
and instruction patterns need to be “instructed” to use it. In the example implementation,
we will see the specification of the “zero” register into a subset of it’s own, and then see the
use of this subset in the specification of some instruction patterns of the toy processor.

The OS that mainly drives the hardware also exerts an influence, albeit a less direct one.
The “parameters” required are from simple user level differences like the path separator
character to use in expressing pathnames3 to complex differences like the details of the
system call interface. The latter are known to the system compiler4 of the target system
and can be borrowed from it’s header files. This information is required for GCC to emit
the correct target assembly code, especially when it is used as a cross compiler (see [Cross
Compilation and GCC], page 17).

Finally, the compiler is but a part of a complete tool chain that converts a source program
into a process that runs under the OS. Often we ignore the conversion to process part as
that is handled by the running OS and speak of the executable program that is generated
by the tool chain5. Since the compiler is a part of the tool chain it must emit code that
can be consumed by the other tools in the tool chain. Thus, it has to know the syntactic
structure of the assembly language to emit so that the assembly program it generates can
be assembled by the next tool – the assembler. It may have to help the assembler to
mark “regions” (like the data and code) so that the linker may link together a number
of assembled object files into a single executable. Such marking also helps other program
development tools like the debugger and the profiler.

2.2.1 Target Systems and Cross Compilation

The influence of the target systems is particularly sharp when a retargetable compiler like
GCC is deployed as a cross compiler. Cross compilation is a complex topic and is separately
dealt with in [Cross Compilation and GCC], page 17. In this section we look at a general
cross compilation case to grasp the impact of the influence of the target system. In the

3 Unix c© like OSes use the forward slash “/” and the Windows c© family of OSes use the backward slash

“\” to separate names in a pathname.
4 Assumed to be a C compiler
5 In other words, the OS is usually excluded from the tool chain.

Chapter 2: Influences on the GCC MD System 7

general cross compilation case (called the Canadian cross) the compiler sources are built on
the “build system”. The system compiler on the build system is used to build the Canadian
cross compiler. The generated compiler binaries are hosted (i.e. installed and run) on the
“host system”. The build is therefore a cross build that generates binaries that run on the
host system. The hosted compiler binary the compiles programs to generate binaries that
run on the “run system”6. The (cross) compiler sources must be retargetable for the host as
well as the run system. Retargetability information of the host system is used on the build
system by the system compiler on the build system. Retargetability information of the run
system is used by the hosted compiler when it compiles it’s own sources, but targeted to
the run system. Since the host and run systems may be different from the build system,
the box labeled “Target System” in Figure 2.1 has to be replicated for each of the build,
host and run systems.

2.3 Influence of GCC Architecture

GCC is a software. Depending on the requirements it’s architecture changes. These changes
can influence the MD system too. There are two major sources of influence within the GCC
architecture that can impact it’s MD system.

The compilation algorithms that GCC uses may influence the MD system. For instance,
instruction selection in GCC is essentially a first-hit-table-look-up type rather than a com-
putation of the best tree cover. As a consequence the MD author is required to order the
instruction patterns such that the “best” options are hit first. Also, for some targets, the
algorithms may not yield good quality output. In such cases the shortcomings may have to
be overcome through the MD system. In earlier versions of GCC, the instruction scheduler
did not emit nop instructions for some targets. To yield better code, the MD authors had
to manually emit the nop instruction when the MD was used to emit the final assembly
code.

The GCC architecture may evolve to introduce better constructs for specifying target
properties. In the same vein, some constructs may be deprecated, and eventually removed,
in favor of the better ones. The MD specifications need to be re-written to accommodate
such changes. In Figure 2.1 we show an example of the define_predicate construct that
was recently introduced.

6 The cross compilation literature refers to the “run system” as the “target system”. We have however

used the phrase “target system” to mean something else. So to avoid confusion we will use the phrase

“run system” to refer to the system for which the final compiler generates binaries.

Chapter 3: MD System and GCC Architecture 8

3 MD System and GCC Architecture

Being a retargetable compiler that fixes the compilation target machine at build time,
the build time, tbuild , divides the GCC system into three different conceptual views[The
Conceptual Structure of GCC], page 17. At tdevelop we have the developer view where the
target of compilation has not been fixed and the GCC system has a set of specifications of
target properties for each target. At trun the target has been fixed. The conversion of the
specifications at tdevelop to usable code at trun is done at the build time tbuild as shown in
Figure 3.1.

HLL Specific
Code, per

HLL

Language and
Machine

Independent
Generic Code

Machine
dependent
Generator

Code

Set of
Machine

Descriptions

GCC

Parser Genericizer Gimplifier
Tree SSA

Opti-
mizer

RTL
Genera-

tor

Optimizer
Code

Genera-
tor

cc1/gcc

Choose HLL

Selected Copied

Choose Target MD

Generated

Source Program Assembly Program

Figure 3.1: The GCC Compiler Generation Framework (CGF).

Figure 3.1 also shows the time durations that describe the distinction between the CGF,
GCC, and the target specific compiler, gcc, that is generated at build time. Given the gcc
phase sequence and the possible issues that might arise during the compilation of an arbi-
trary input at trun , the developer view has to create specifications of the target properties
at tdevelop . In what follows we describe the process of specification of target properties
given the known gcc phase sequence and anticipating the issues that might arise during trun

. These motivate the various specification constructs of the MD RTLs. To expose the use of
these specifications at trun we examine the generation of the target specific parts of GCC
when our toy machine is given as the target at tbuild .

3.1 The Organisation of the GCC MD System

Section Chapter 2 [Influences on the GCC MD System], page 3 described the various influ-
ences on the MD system. The implementation of a MD in GCC captures these influences in
two forms: an RTL based specification of the target instruction semantics, and a C prepro-
cessor based specification of all other properties. Some target properties, particularly the
ones giving some specific details about the target system software (the OS, for instance)
may be separated into respective header files for programming convenience. If the target

Chapter 3: MD System and GCC Architecture 9

requires some additional functionality, then a file of C functions is also implemented. The
MD system is thus organized into two parts: the mandatory and the optional as follows:

• Mandatory: Must be implemented.

• $GCCHOME/gcc/config/<target>/<target>.h: The C preprocessor based speci-
fication of target properties.

• $GCCHOME/gcc/config/<target>/<target>.md: The RTL based specification of
target instruction set semantics.

• Optional: May be implemented, either for reasons of need of a particular target or
programming convenience.

• $GCCHOME/gcc/config/<target>/<target>.c: Additional target specific func-
tionality, if required.

• $GCCHOME/gcc/config/<files>.[ch]: Properties independent of the target
CPU (e.g. system software influences), but common to many targets.

• $GCCHOME/gcc/config/<target>/<files>.[ch]: Target specific properties
or functionalities; usually a convenience issue.

3.2 Classification of MD Macros

The C preprocessor macros for machine description have been partially classified in the
GCC sources as well as in [GCC Internals (by Richard Stallman)], page 17. We introduce
a higher level of abstraction to correspond to the influences in Chapter 2 [Influences on the
GCC MD System], page 3. The number of macros being large, the actual listing is in [The
Phase wise File Groups of GCC], page 17. The macros relevant for our implementation are
in Appendix A [The CPP macros Implementation], page 19.

3.3 The RTL Based MD Specifications

RTL operators (see [The Implementation of GCC], page 17) are used to capture the seman-
tics of target instruction set. They can capture the semantics of the operation. However
target instructions also vary in their operands. The number of operands, their nature –
register, memory or constants, any restrictions like size etc. are issues that need to be
addressed to obtain the complete semantics. These characteristics of the operands form
the matching specifications. Finally, the implementation of the specifications may be made
convenient by introducing some “specification convenience” RTL objects. It is trivial to see
that the RTL system made up of the RTL operators and the RTL memories – pseudoreg-
isters and memory – are powerful enough to capture the semantics of any target. In fact,
since the jump operation is required to ensure such capability, the GCC code requires the
jump operation1 to exist in the specification. For all other patterns, the GCC system calls
the RTL expander only if the corresponding pattern exists in the specification.

The RTL based MD specification is composed of two parts:

• RTL operators used to capture the target operation semantics.

• MD RTLs are used to describe various aspects of the target instruction being specified.
These are roughly of the following three kinds:

1 And the indirect jump operation is also compulsory.

Chapter 3: MD System and GCC Architecture 10

• Pattern definition MD RTLs that are used to introduce a new pattern into the
specification.

• Pattern operand specification MD RTLs that are used to capture the operand

characteristics of the target instruction.

• Specification convenience MD RTL objects that ease the programming burden.

The illustrative example in [The Implementation of GCC], page 17 brought out most of
the issues is specifying the semantics of one instruction and [The Phase wise File Groups
of GCC], page 17 describes the purpose of all MD RTLs. In the rest of this section we
motivate the essential constructs of the MD RTLs.

The RTL patterns describing target instructions are required at two main points in the
GCC system:

1. Gimple → RTL conversion, and

2. RTL → RTL conversion.

The first maps Gimple node semantics to equivalent target instructions. The target
either may have a single instruction that can map to the given node, or may require a
series of instructions. The second occurs during the various RTL phases. Typically for
optimization reasons it is possible that:

• An RTL pattern can be replaced by another RTL pattern, or

• A set of RTLs may be replaced by another RTL pattern, or

• A RTL pattern may be replaced by a set of RTL patterns.

The RTL patterns that capture target instruction semantics and are used during the
Gimple → RTL conversion phase are introduced by the define_insn and define_expand

MD RTLs. The RTL patterns that may be used during RTL → RTL phases are introduced
by the define_split, define_combine, and define_peephole[2] MD RTLs. Most other
MD RTLs prefixed by define_ are programming conveniences that ease the specification
task.

The next level of matching is at the details of the operand level issues.

Before describing the implementation of full target instruction semantics, we give an
overview of the semantics of various instructions of our fictitious processor in Chapter 4
[Definition of Fictitious Target System], page 11. Chapter 5 [Implementation of MD for
Toy], page 13 then describes the full implementation.

Chapter 4: Definition of Fictitious Target System 11

4 Definition of Fictitious Target System

We use a fictional system that runs the same system software that runs on the development
system. The processor of the fictional system is the fictitious Toy CPU surrounded by
a typical 32 bit hardware environment. For concreteness, it is useful to imagine that the
development system is a GNU/Linux system. In particular, the kernel is a Linux c©1 kernel
and the tool chain is the GNU c©2 tool chain giving us the known parameters like an ELF
object format, AT&T style assembler syntax etc. (See Section 2.2 [Influence of the Target
System], page 5.)

The Toy CPU is a simple fictitious processor. It has a 32 bit data and address bus. It
has 16 registers, each 32 bit and numbered from 0 to 15. The register number 0 is a read
only register that always contains the number 0. Register number 1 is the stack pointer
register. The program counter is distinct from the registers and is not directly manipulated.
It autoincrements unless the jump instruction has been executed. The primary memory is
random access and byte addressable with a four byte word. Data movement from the core
memory to the registers occurs through the “load” instruction. Moving data from the
registers to the core memory is through the “store” instruction. The instruction set is
simple and RISC like:

• Arithmetic:

• add <reg1> <reg2>

Source registers: reg1 and reg2, destination register: reg1

• mult <sreg1> <sreg2> <dreg3> <dreg4>

Source registers: sreg1 and sreg2, destination registers: dreg3 and dreg4.

• Logical:

• and <dreg> <sreg1> <sreg2>

• or <dreg> <sreg1> <sreg2>

• not <dreg> <sreg1> <sreg2>

Source registers: sreg1 and sreg2, destination register: dreg

• Bit wise logical:

• band <dreg> <sreg1> <sreg2>

• bor <dreg> <sreg1> <sreg2>

• bnot <dreg> <sreg1> <sreg2>

Source registers: sreg1 and sreg2, destination register: dreg

• Control flow:

• jump <reg>

Register “reg” contains the destination of the jump

• Data movement:

• load <mem> <reg>

• wload <mem> <reg>

1 Copyright: Linus Torvalds.
2 Copyright: FSF, the Free Software Foundation.

Chapter 4: Definition of Fictitious Target System 12

• store <reg> <mem>

• wstore <reg> <mem>

Memory addresses are 32 bit. Bytes are loaded into or read from the least significant
byte of the destination register for load and store instructions. Words are loaded
into or read from the least significant byte of the destination register for wload and
wstore instructions. For wload and wstore instructions the memory addresses are
word aligned. The behaviour is undefined if the addresses are not word aligned.

The instruction set may be augmented, or the given instructions may be refined to
illustrate various issues of writing the GCC MD. Additionally, there is a status register that
sets the following flags to report the “success” status of the instructions mentioned beside.

• Comparison flag (CF): “set” (i.e. “1”) for logical and bitwise logical operations.

• Zero flag (ZF): “set” (i.e. “1”) for arithmetic operations.

• Overflow flag (OF): “set” (i.e. “1”) for arithmetic operations that result in overflow.

Chapter 5: Implementation of MD for Toy 13

5 Implementation of MD for Toy

As described in section Chapter 2 [Influences on the GCC MD System], page 3 the MD is
influenced by three major factors. Although three different factors can be identified influ-
encing the MD system, the implementation uses two main files to organise the information
and a support file as follows:

• $GCCHOME/gcc/config/toy/toy.h: The C preprocessor macros that define the values
of parameters that can be specified using simple data types like numbers or strings.

• $GCCHOME/gcc/config/toy/toy.md: The RTL based specification of target instruction
set semantics.

• $GCCHOME/gcc/config/toy/toy.c: The additional target specific functionality.

All the macros are listed in the GCC Internals documentation (see [GCC Internals (by
Richard Stallman)], page 17) and have also been classified in [The Implementation of GCC],
page 17. The MD RTL and RTL operators that are used in the RTL based specification
are listed and described together in the GCC Internals documentation (see [GCC Internals
(by Richard Stallman)], page 17) and classified in [The Conceptual Structure of GCC],
page 17. Our description of the GCC implementation details, [The Implementation of
GCC], page 17, also details the transformations that are carried out on the MD system
at build time, tbuild . We avoid reproducing the information already available in the GCC
Internals documentation.

The final step is to introduce the new MD into the GCC system. The steps are de-
scribed (with reference to GCC 4.0.2) in Section 6.1 [Making GCC Aware of the New MD],
page 14. The complete implementation of the MD for toy machine is given in the appendices
Appendix A [The CPP macros Implementation], page 19, Appendix B [The MD-RTL code
Implementation], page 32 and Appendix C [The auxiliary C code Implementation], page 38.

5.1 C Preprocessor Macros

5.2 Implementing CPP macros

5.3 Implementing MD-RTL code

5.3.1 A few trun time situations

5.3.2 Corresponding MD RTL constructs

5.3.3 Examples of MD-RTL code and CPP macros

5.4 Implementing auxiliary C code

Chapter 6: The New MD and the Build System 14

6 The New MD and the Build System

6.1 Making GCC Aware of the New MD

6.2 The RTL Object

The main data structure that is used for internal representation of RTL objects, called RTL
expressions, or RTX for short, is a union whose main component is the RTX structure.
These data structures are found in $GCCHOME/gcc/rtl.h.

/* Common union for an element of an rtx. */

union rtunion_def

{

int rt_int;

unsigned int rt_uint;

const char *rt_str;

rtx rt_rtx;

rtvec rt_rtvec;

enum machine_mode rt_type;

addr_diff_vec_flags rt_addr_diff_vec_flags;

struct cselib_val_struct *rt_cselib;

struct bitmap_head_def *rt_bit;

tree rt_tree;

struct basic_block_def *rt_bb;

mem_attrs *rt_mem;

reg_attrs *rt_reg;

};

typedef union rtunion_def rtunion;

/* RTL expression ("rtx"). */

struct rtx_def GTY((chain_next ("RTX_NEXT (&%h)"),

chain_prev ("RTX_PREV (&%h)")))

{

ENUM_BITFIELD(rtx_code) code: 16;

ENUM_BITFIELD(machine_mode) mode : 8;

unsigned int jump : 1;

unsigned int call : 1;

unsigned int unchanging : 1;

unsigned int volatil : 1;

unsigned int in_struct : 1;

unsigned int used : 1;

unsigned frame_related : 1;

unsigned return_val : 1;

Chapter 6: The New MD and the Build System 15

union u {

rtunion fld[1];

HOST_WIDE_INT hwint[1];

} GTY ((special ("rtx_def"), desc ("GET_CODE (&%0)"))) u;

};

6.3 Conversion of RTL Specifications to C Code

Chapter 7: The New MD and the gcc architecture 16

7 The New MD and the gcc architecture

7.1 Operation of the “Generated” C Code

References 17

References

(Note: In the URLs below: $GCCINTDOCSHOME is
http://www.cfdvs.iitb.ac.in/~amv/gcc-int-docs)

1. Richard. M. Stallman.
GCC Internals.

(http://gcc.gnu.org/onlinedocs/gccint)
2007.

2. Abhijat Vichare.
GCC – An Introduction.

($GCCINTDOCSHOME/html/gcc-basic-info.html)
2007.

3. Abhijat Vichare.
Cross Compilation and GCC.

($GCCINTDOCSHOME/html/gcc-cross-compilation.html)
2007.

4. Abhijat Vichare.
Writing GCC Machine Descriptions.

($GCCINTDOCSHOME/html/gcc-writing-md.html)
2007.

5. Abhijat Vichare.
The Conceptual Structure of GCC.

($GCCINTDOCSHOME/html/gcc-conceptual-structure.html)
2007.

6. Abhijat Vichare.
The Implementation of GCC.

($GCCINTDOCSHOME/html/gcc-implementation-details.html)
2007.

7. Abhijat Vichare.
The Phasewise File Groups of GCC.

($GCCINTDOCSHOME/html/gcc-source-blocks.html)
2007.

8. Uday Khedker and Sameera Deshpande.
Systematic Development of GCC Machine Descriptions.

(http://www.cse.iitb.ac.in/~uday/soft-copies/incrementalMD.pdf)
2007.

List of Figures 18

List of Figures

Figure 2.1: Influences on GCC MD . 3
Figure 2.2: Source language influences . 4
Figure 2.3: Target system influences. 5
Figure 3.1: The GCC Compiler Generation Framework (CGF). 8

Appendix A: The CPP macros Implementation 19

Appendix A The CPP macros Implementation

/*--*/

/* STORAGE LAYOUT OF TARGET MACHINE */

/*--*/

/* If this is ‘1’ then most significant bit is lowest

numbered in instructions that operate on numbered

bit-fields. */

#define BITS_BIG_ENDIAN 0

/* If this is ‘1’ then most significant byte in a word has

the lowest number. */

#define BYTES_BIG_ENDIAN 0

/* Define this if most significant word of a multiword is

lowest numbered. For toy we can decide arbitrarily since

there are no machine instructions for them. */

#define WORDS_BIG_ENDIAN 1

/* Number of bits per addressable unit of memory */

#define BITS_PER_UNIT 8

/* Number of bits per word */

#define BITS_PER_WORD 32

/* Number of units(byte) per word */

#define UNITS_PER_WORD 4

/* Width of a pointer in bits. */

#define POINTER_SIZE 32

/* Define number of bits in most basic integer type. (If

undefined, default is BITS_PER_WORD). */

#define INT_TYPE_SIZE 32

/* Boundary (in bits) on which stack pointer should be

aligned. */

#define STACK_BOUNDARY 32

/* Define this if ‘move’ instructions will actually fail to

work when given unaligned data. */

#define STRICT_ALIGNMENT 1

/* Biggest alignment that any data type can require on this

machine , in bits. */

#define BIGGEST_ALIGNMENT 32

Appendix A: The CPP macros Implementation 20

/* Normal alignment required for function parameters on the

stack, in bits. All stack parameters receive at least

this much alignment regardless of data type.*/

#define PARM_BOUNDARY 32

/* The maximum number of bytes that a single instruction can

move quickly between memory and registers or between two

memory locations.*/

#define MOVE_MAX 4

/* Recognize any constant value that is a valid address. */

#define CONSTANT_ADDRESS_P(X) \

(GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \

|| GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \

|| GET_CODE (X) == HIGH)

/* Value of following macro is 1 if truncating an integer of

‘INPREC’ bits to ‘OUTPREC’ bits is done just by

pretending that it is already truncated. */

#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1

/* Following macro is nonzero if access to memory by bytes

is slow and undesirable. */

#define SLOW_BYTE_ACCESS 0

/* Maximum number of registers that can appear in a valid

memory address. */

#define MAX_REGS_PER_ADDRESS 1

/*---*/

/* INFORMATION REGARDING REGISTERS ON THE TARGET MACHINE*/

/*---*/

/* Number of Hard-Register available on target m/c. These

Hard-Registers are assigned number from 0 to

(FIRST_PSEUDO_REGISTER-1). */

#define FIRST_PSEUDO_REGISTER 12

/* Some Hard-Registers are used for specific purpose

throughout the compilation process like ‘Program

counter’, ‘Stack pointer’ etc. The following macro

assign ‘1’ to those registers. */

#define FIXED_REGISTERS {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1}

/* Following macro assign ‘1’ to those registers whose value

Appendix A: The CPP macros Implementation 21

can be changed during a function call. These registers

include Fixed registers as well as other registers like

the register in which returned value is stored. If a

register has given ‘0’ value then the content of that

register will be saved automatically on function entry

and restored on the exit.*/

#define CALL_USED_REGISTERS {1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1}

/* Returns number of consecutive Hard-Registers starting at

reg REGNO to hold a value of mode MODE. Following C

expression assume that each Register’s length is

1-word. */

#define HARD_REGNO_NREGS(REGNO, MODE) \

((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)

/* Register used for the program counter. */

#define PC_REGNUM 11

/* Register used for pushing function arguments. */

#define STACK_POINTER_REGNUM 10

/* Base register used for access to local variables of the

function. */

#define FRAME_POINTER_REGNUM 9

/* Base register used for access to arguments of the

function. */

#define ARG_POINTER_REGNUM 8

/* Register in which address to store a structure value is

passed to a function. */

#define STRUCT_VALUE_REGNUM 7

/* Following macro is 1 if hard register ‘REGNO’ can hold a

value of machine-mode ‘MODE’. */

#define HARD_REGNO_MODE_OK(REGNO, MODE) 1

/* Value of the following macro should be nonzero if

functions must have frame pointers. */

#define FRAME_POINTER_REQUIRED 1

/* A C expression that is nonzero if Register with reg. name

‘X’ is valid for use as an index register. */

#define REG_OK_FOR_INDEX_P(X) 0

/* A C expression that is nonzero if Register with reg. name

‘X’ is valid for use as an base register. */

Appendix A: The CPP macros Implementation 22

#define REG_OK_FOR_BASE_P(X) 0

/* A C expression that is nonzero if Register with

reg. no. ‘REGNO’ is valid for use as an index

register. */

#define REGNO_OK_FOR_INDEX_P(REGNO) 0

/* A C expression that is nonzero if Register with

reg. no. ‘REGNO’ is valid for use as an base register. */

#define REGNO_OK_FOR_BASE_P(REGNO) 0

/* Following macro define the maximum number of consecutive

registers of class ‘CLASS’ needed to hold a value of mode

‘MODE’. The value of the macro ‘CLASS_MAX_NREGS’ should

be the maximum value of macro ‘HARD_REGNO_NREGS (regno,

mode)’ for all ‘regno’ values in the class ‘CLASS’. */

#define CLASS_MAX_NREGS(CLASS, MODE) \

((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)

#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \

{ \

emit_move_insn \

(gen_rtx_MEM \

(SImode, plus_constant (TRAMP, 2)), CXT); \

emit_move_insn \

(gen_rtx_MEM \

(SImode, plus_constant (TRAMP, 9)), FNADDR); \

}

#define FIRST_PARM_OFFSET(FNDECL) 0

#define FUNCTION_VALUE_REGNO_P(N) ((N) == 0)

#define CPP_PREDEFINES ""

#define LIBCALL_VALUE(MODE) gen_rtx_REG (MODE, 0)

/* Output assembler code to FILE to increment profiler label

* # LABELNO for profiling a function entry. */

#define FUNCTION_PROFILER(FILE, LABELNO) \

fprintf (FILE, \

"\tmovw &.LP%d,%%r0\n\tjsb _mcount\n", \

(LABELNO))

/* This is how to output an assembler line that says to

* advance the location counter by SIZE bytes. */

/* The ‘space’ pseudo in the text segment outputs nop insns

Appendix A: The CPP macros Implementation 23

* rather than 0s, so we must output 0s explicitly in the

* text segment. */

#define ASM_OUTPUT_SKIP(FILE,SIZE) {}

#define FUNCTION_ARG_REGNO_P(N) 0

#define PREFERRED_RELOAD_CLASS(X,CLASS) (CLASS)

#define INITIAL_FRAME_POINTER_OFFSET(DEPTH) (DEPTH) = 0;

/* Following macro is an C expression which defines the

machine-dependent operand constraint letters for register

classes. If ‘C’ is such a letter, the value should be the

register class corresponding to it. Otherwise, the value

should be NO_REGS. */

#define REG_CLASS_FROM_LETTER(C) \

((C) == ’r’ ? GENERAL_REGS : NO_REGS)

/* Following defines the machine-dependent operand

constraint letters (‘I’, ‘J’, ‘K’, ... ‘P’) that specify

particular ranges of integer values. If ‘C’ is one of

those letters, the expression should check that ‘VALUE’,

an integer, is in the appropriate range and return 1 if

so, 0 otherwise. If ‘C’ is not one of those letters, the

value should be 0 regardless of value.

In the .md file of toy m/c, we are not using any special

constraint letter. So this macro returns ‘0’ for all

letters. */

#define CONST_OK_FOR_LETTER_P(VALUE, C) 0

/* Following define the machine-dependent operand constraint

letters that specify particular ranges of const_double

values (‘G’ or ‘H’). Rest are the same as above. */

#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) 0

/* Following enumeration define the classes of registers for

register constraints in the .md file. Classes ‘ALL_REGS’

include all hard regs. ‘NO_REGS’ class contain no

registers.

‘GENERAL_REGS’ is the class of registers that is allowed

by ‘g’ or ‘r’ in a register constraint.

A larger-numbered class must never be contained

completely in a smaller-numbered class.

Appendix A: The CPP macros Implementation 24

‘LIM_REG_CLASSES’, is not a register class but rather

tells how many classes there are. */

enum reg_class{

NO_REGS,

GENERAL_REGS,

ALL_REGS,

LIM_REG_CLASSES

};

/* Following macro tells the number of Register classes. */

#define N_REG_CLASSES (int)LIM_REG_CLASSES

/* Following is an initializer containing the names of the

register classes as C string constants. These names are

used in writing some of the debugging dumps. */

#define REG_CLASS_NAMES {"NO_REGS", "GENERAL_REGS", "ALL_REGS"}

/* Following macro define which registers fit in which classes.

Register r is in the class if mask & (1 << r) is 1. */

#define REG_CLASS_CONTENTS { \

{0}, /* NO_REGS */ \

{0xff}, /* GENERAL_REGS */ \

{0xfff}, /* ALL_REGS */ \

}

/* A macro which define the name of class to which a valid index

register must belong. */

#define INDEX_REG_CLASS NO_REGS

/* Return the class number of the smallest class containing

reg number ‘REGNO’. */

#define REGNO_REG_CLASS(REGNO) \

(((REGNO) < 7) ? GENERAL_REGS : ALL_REGS)

/* The Register class for base registers. */

#define BASE_REG_CLASS GENERAL_REGS

/* Following is an C initializer containing the assembler’s

names for the machine registers, each one as a C string

constant. This is what translates register numbers in

the compiler into assembler language. */

#define REGISTER_NAMES \

{"ret", "r1", "r2", "r3", "r4", "r5", \

"r6", "r7", "r8", "fp", "sp", "pc"}

/*---*/

Appendix A: The CPP macros Implementation 25

/* INFORMATION REGARDING FUNCTION CALL. */

/*---*/

/* Define how to find the value returned by a

function. ‘VALTYPE’ is the data type of the

value. ‘TYPE_MODE’ is used to find out the mode of a data

type. If the precise function being called is known,

‘FUNC’ is a tree node (FUNCTION_DECL; otherwise, FUNC

will be a null pointer.

On the toy, the return value is in r0. */

#define FUNCTION_VALUE(VALTYPE, FUNC) \

gen_rtx_REG (TYPE_MODE (VALTYPE), 0)

/* Following macro define how to find the value returned by

a library function assuming the value has mode MODE. On

the toy m/c, the return value will be in register-0

regardless. */

#define LIBCALL_VALUE(MODE) gen_rtx_REG (MODE, 0)

/* This is a Data type for declaring a variable that is used

as the first argument of ‘FUNCTION_ARG’ and other related

values and used to hold the number of bytes of argument

so far.

There is no need to record in ‘CUMULATIVE_ARGS’ anything

about the arguments that have been passed on the

stack. The compiler has other variables to keep track of

that. For target machines on which all arguments are

passed on the stack, there is no need to store anything

in ‘CUMULATIVE_ARGS’; however, the data structure must

exist and should not be empty, so use int. */

#define CUMULATIVE_ARGS int

/* Alignment required for a function entry point, in bits. */

#define FUNCTION_BOUNDARY 32

/* This macro is used to indicate the number of bytes that a

function pops on returning or ‘0’ if function pops no

arguments and the caller must therefore pop them all

after the function returns.

‘FUNDECL’ is the declaration node of the function (as a

tree). ‘FUNTYPE’ is the data type of the function (as a

tree). ‘SIZE’ is the number of bytes of arguments passed

on the stack. Here we are assuming that every function

will always pop their arguments. */

Appendix A: The CPP macros Implementation 26

#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) (SIZE)

/* Following is a macro for initializing the variable ‘CUM’

for scanning the argument list. The value of ‘FNTYPE’ is

the tree node for the data type of the function which

will receive the args, or ‘0’ if the args are to a

compiler support library function. The value of

‘INDIRECT’ is nonzero when processing an indirect call,

for example a call through a function pointer. The value

of ‘INDIRECT’ is ‘0’ for a call to an explicitly named

function, a library function call.

When processing a call to a compiler support library

function, ‘LIBNAME’ identifies which one. ‘LIBNAME’ is

‘0’ when an ordinary C function call is being processed.

Thus, each time this macro is called, either ‘LIBNAME’ or

‘FNTYPE’ is nonzero, but never both of them at once. */

#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \

((CUM) = 0)

/* Following is an C statement that is used to update the

summarizer variable ‘CUM’. The values ‘MODE’, ‘TYPE’ and

‘NAMED’ describe the properties of the argument. This

macro need not do anything if the argument in question

was passed on the stack. */

#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \

((CUM) = CUM + (((MODE) != BLKmode) \

? (GET_MODE_SIZE (MODE) + 3) & ~3 \

: (int_size_in_bytes (TYPE) + 3) & ~3))

/* This macro controls whether a function argument is passed

in a register or not. If yes then return the register

number. Here we are assuming that all the arguments are

passed on the stack. */

#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) 0

/*---*/

/* INFORMATION REGARDING STACK LAYOUT, MACHINE MODE ETC. */

/*---*/

/* stack growing downwards */

#define STACK_GROWS_DOWNWARDS

/* frame growing downwards */

#define FRAME_GROWS_DOWNWARDS

Appendix A: The CPP macros Implementation 27

/* Offset from the frame pointer to the first local variable

slot to be allocated. */

#define STARTING_FRAME_OFFSET 0

/* Define this as 1 if ‘char’ should by default be signed

else 0. */

#define DEFAULT_SIGNED_CHAR 0

/* Specify the machine mode for pointers. */

#define Pmode SImode

/* Specify the machine mode that this machine uses for the

index in the tablejump instruction. */

#define CASE_VECTOR_MODE SImode

/* Following is an alias for the machine mode used for

memory references to functions being called, in ‘call’

RTL expressions. */

#define FUNCTION_MODE QImode

/* Following is an C expression that is nonzero if ‘X’ is a

legitimate constant for an immediate operand on the

target machine. We can assume that ‘X’ satisfies

‘CONSTANT_P’, so we need not check this. In fact, ‘1’ is

a suitable definition for this macro on machines where

anything ‘CONSTANT_P’ is valid. */

#define LEGITIMATE_CONSTANT_P(X) 1

/* Try machine-dependent ways of modifying an illegitimate

address ‘X’ to be legitimate. If we find one, return the

new, valid address. This macro is used in only one

place: ‘memory_address’ in explow.c.

‘X’ will always be the result of a call to

‘break_out_memory_refs’, and ‘OLDX’ will be the operand

that was given to that function to produce ‘X’.

It is always safe for this macro to do nothing. */

#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) {}

#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, LABEL) {}

/* Following is an C expression that is nonzero if a value

of mode ‘MODE1’ is accessible in mode ‘MODE2’ without

copying.

Appendix A: The CPP macros Implementation 28

If ‘HARD_REGNO_MODE_OK (R, MODE1)’ and

‘HARD_REGNO_MODE_OK (R, MODE2)’ are always the same for

any R, then ‘MODES_TIEABLE_P (MODE1, MODE2)’ should be

nonzero. If they differ for any R, you should define this

macro to return zero unless some other mechanism ensures

the accessibility of the value in a narrower mode.

You should define this macro to return nonzero in as many

cases as possible since doing so will allow GCC to

perform better register allocation. */

#define MODES_TIEABLE_P(MODE1, MODE2) 0

/* Following macro is an C statement or compound statement

with a conditional goto ‘LABEL’; executed if memory

address ‘ADDR’ (an RTX) can have different meanings

depending on the machine mode of the memory reference it

is used for or if the address is valid for some modes but

not others.

Autoincrement and autodecrement addresses typically have

mode-dependent effects. */

#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) {}

/*--*/

/* INFORMATION REGARDING ASSEMBLY OUTPUT CODE */

/*--*/

/* First line of every assembly file should be ‘.file "input

file name" ’. Following macro output the input file name

on that line. For ex. .file "test3.c". */

#define ASM_FILE_START(FILE) output_file_directive \

((FILE), main_input_filename)

/* A C string constant for text to be output before each asm

statement or group of consecutive ones in assembly

file. */

#define ASM_APP_ON "#APP\n"

/* A C string constant for text to be output after each asm

statement or group of consecutive ones in assembly

file. */

#define ASM_APP_OFF "#NO_APP\n"

/* Following is an C expression whose value is a string

containing the assembler operation that should precede

instructions and read-only data. */

#define TEXT_SECTION_ASM_OP "\t.text"

Appendix A: The CPP macros Implementation 29

/* Following is an C expression whose value is a string

containing the assembler operation to identify the

following data as writable initialized data. */

#define DATA_SECTION_ASM_OP "\t.data"

/* Following is an C statement that is used to output to the

‘FILE’, the assembler definition of a label named

‘NAME’. */

#define ASM_OUTPUT_LABEL(FILE,NAME) \

do{ \

assemble_name (FILE, NAME); \

fputs (":\n", FILE); \

}while (0)

/* Following is an C statement that is used to output to the

‘FILE’ some commands that will make the label ‘NAME’

global. That is, available for reference from other

files. */

#define GLOBAL_ASM_OP "\t.globl\t"

/* It is used to output an assembler code to ‘FILE’ which

will push hard register number ‘REGNO’ onto the stack. */

#define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \

fprintf (FILE, "\tpushw %s\n", reg_names[REGNO])

/* It is used to output an assembler code to ‘FILE’ which

will pop hard register number ‘REGNO’ off of the

stack. */

#define ASM_OUTPUT_REG_POP(FILE,REGNO) \

fprintf (FILE, "\tpopw %s\n", reg_names[REGNO])

/* Following macro output to the ‘FILE’ an assembler command

to advance the location counter to a multiple of 2 to the

‘POWER’ bytes. ‘POWER’ will be a C expression of type

int. */

#define ASM_OUTPUT_ALIGN(FILE,POWER) \

if ((POWER) != 0) \

fprintf (FILE, "\t.align %d\n", 1 << (POWER))

/* Following is an C statement which is used to output to

‘FILE’, a label whose name is made from the string

‘PREFIX’ and the number ‘NUM’. */

#define ASM_OUTPUT_INTERNAL_LABEL(FILE, PREFIX, NUM) \

fprintf (FILE, ".TOY%s%d:\n", PREFIX, NUM)

Appendix A: The CPP macros Implementation 30

/* Following is an C statement which is used to store into

the string ‘LABEL’, a label whose name is made from the

string ‘PREFIX’ and the number ‘NUM’.

This string, when output subsequently by ‘assemble_name’,

should produce the output that

‘ASM_OUTPUT_INTERNAL_LABEL’ would produce with the same

prefix and num. */

#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \

sprintf (LABEL, ".TOY%s%d", PREFIX, NUM)

/* This macro says that how to output an assembler line to

define a local common symbol. */

#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) {}

/* This macro says that how to output an assembler line to

define a global common symbol. */

#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) {}

/* Following is an C compound statement to output to ‘FILE’

the assembler syntax for an instruction operand ‘X’. ‘X’

should be an RTL expression. ‘CODE’ is a value that can

be used to specify one of several ways of printing the

operand.*/

#define PRINT_OPERAND(FILE, X, CODE) \

print_operand((FILE), (X), (CODE))

/* Print Register Name */

#define PRINT_REG(X, CODE, FILE) print_reg((X), (CODE), (FILE))

/* */

#define PRINT_OPERAND_ADDRESS(FILE, ADDR)

/*--*/

/* Run-time Target Specification */

/*--*/

/* This macro defines names of command options to set and

clear bits in ‘target_flags’.

Each subgrouping contains a string constant, that defines

the option name, a number, which contains the bits to set

in target_flags, and a second string which is the

description displayed by ‘--help’. If the number is

negative then the bits specified by the number are

cleared instead of being set.

The actual option name is made by appending ‘-m’ to the

Appendix A: The CPP macros Implementation 31

specified name. Non-empty description strings should be

marked with N_(...) for ‘xgettext’.

One of the subgroupings should have a null string. The

number in this grouping is the default value for

target_flags. */

#define TARGET_SWITCHES { {"", 0, 0}}

/*--*/

/* Trampolines */

/*--*/

/* A C expression that define the size of the trampoline in

number of bytes. */

#define TRAMPOLINE_SIZE 0

/* Here we define machine-dependent flags and fields in

* cc_status (see ‘conditions.h’). */

#define NOTICE_UPDATE_CC(EXP, INSN) \

{ \

{ CC_STATUS_INIT; } \

}

Appendix B: The MD-RTL code Implementation 32

Appendix B The MD-RTL code Implementation

;;;

;; GCC Machine description for Toy architecture ;;

;;;

;; ---

;; PATTERN FOR ARITHMETIC OPERATIONS ;;

;; ---

;; Pattern for an Add operation:

;; No. of operand = 3

;; No. of In-operand = 2

;; No. of Out-operand = 1

;; Type of operand = SI or 4-byte integer.

;; x <- y + z

(define_insn "addsi3"

[(set (match_operand:SI 0 "nonimmediate_operand" "=mr")

(plus:SI (match_operand:SI 1 "general_operand" "mri")

(match_operand:SI 2 "general_operand" "mri")))

]

""

;;;;; "%0 <- %1 + %2;\t\t// ADD(si3)\n"

"add\t %1\t %2\t %0\t;; ADD(si3)\n"

)

(define_insn "mulsi3"

[(set (match_operand:SI 0 "nonimmediate_operand" "=mr")

(mult:SI (match_operand:SI 1 "general_operand" "mri")

(match_operand:SI 2 "general_operand" "mri")))

]

""

;;;;; "%0 <- %1 * %2;\t\t// MUL(si3)\n"

"mul\t %1\t %2\t %0\t;; MUL(si3)\n"

)

(define_insn "divsi3"

[(set (match_operand:SI 0 "nonimmediate_operand" "=mr")

(div:SI (match_operand:SI 1 "general_operand" "mri")

(match_operand:SI 2 "general_operand" "mri")))

]

""

;;;;; "%0 <- %1 / %2;\t\t// DIV(si3)\n"

"div %1\t %2\t %0\t;; DIV(si3)\n"

)

Appendix B: The MD-RTL code Implementation 33

;; ---

;; PATTERN FOR MOVE OPERATIONS ;;

;; ---

;; Pattern for an Move operation:

;; No. of operand = 2

;; No. of In-operand = 1

;; No. of Out-operand = 1

;; Type of operand = SI or 4-byte integer.

;; x = y

(define_expand "movsi"

[(set (match_operand:SI 0 "general_operand" "")

(match_operand:SI 1 "general_operand" ""))

]

""

"")

(define_insn "*movsi_1"

[(set (match_operand:SI 0 "move_dest_operand" "")

(match_operand:SI 1 "move_src_operand" ""))]

""

"*

toy_move_insn (operands[0], operands[1]);

")

(define_insn "*movsi_1"

[(set (match_operand:SI 0 "" "")

(subreg:SI (match_operand:SI 1 "" "") 0))]

""

;;;;; "%0 = %1\t\t// MOV"

"mov\t %1\t %0\t\t;; MOV"

)

;; ---

;; PATTERN FOR CALL OPERATIONS ;;

;; ---

;; Pattern for an Call operation:

;; No. of operand = 2

;; No. of In-operand = 2

;; No. of Out-operand = 0

;; Type of operand:

;; 0 => Represents memory address of function.

;; 1 => Len of arguments to this function in byte.

;; call fun len

Appendix B: The MD-RTL code Implementation 34

(define_insn "call"

[(call (match_operand:QI 0 "" "")

(match_operand:SI 1 "" ""))]

""

;;;;; "call %M0, %1\t\t// CALL mem_addr arg_len"

"call\t %M0\t %1\t\t;; CALL mem_addr arg_len"

)

;; ---

;; Pattern for an Call operation which return a value:

;; No. of operand = 3

;; No. of In-operand = 2

;; No. of Out-operand = 1

;; Type of operand:

;; 0 => Register in which value is returned by function.

;; 1 => Represents memory address of function.

;; 2 => Len of arguments to this function in byte.

;; call fun len

;; (define_insn "call_value"

;; [(set (match_operand 0 "" "=r")

;; (call (match_operand:QI 1 "" "")

;; (match_operand:SI 2 "" "")))]

;; ""

;; "callVal\t %0\t %M1\t %2\t;; CALL reg mem_addr arg_len"

;;)

;; ---

;; PATTERN FOR JUMP OPERATIONS ;;

;; ---

;; Pattern for the Indirect Jump operation.

;; No. of operand = 1

;; No. of In-operand = 1

;; No. of Out-operand = 0

;; Type of operand = SI or 4-byte integer.

;; jump x

(define_insn "indirect_jump"

[(set (pc) (match_operand:SI 0 "" ""))]

""

;;;;; "jmp %0\t\t// INDIRECT JUMP"

"jmp\t %0\t\t\t;; INDIRECT JUMP"

)

;; ---

Appendix B: The MD-RTL code Implementation 35

;; Pattern for the Direct Jump operation.

;; No. of operand = 1

;; No. of In-operand = 1

;; No. of Out-operand = 0

;; Type of operand = Label.

;; jump x

(define_insn "jump"

[(set (pc) (label_ref (match_operand 0 "" "")))]

""

;;;;; "jmp %0\t\t// DIRECT JUMP"

"jmp\t %0\t\t\t;; DIRECT JUMP"

)

;; ---

;; PATTERN FOR MISCELLANEOUS OPERATIONS ;;

;; ---

;; Pattern for the No operation.

;; No. of operand = 0

;; No. of In-operand = 0

;; No. of Out-operand = 0

;; NOP

(define_insn "nop"

[(const_int 0)]

""

;;;;; "NOP\t\t// NOP"

"NOP\t\t\t\t;; NOP"

)

;; ---

;; PATTERN FOR COMPARISION OPERATIONS ;;

;; ---

;; Pattern for the comparision operation.

;; No. of operand = 3

;; No. of In-operand = 2

;; No. of Out-operand = 1

;; Type of operand:

;; cc0 => Condition code register which store the result

;; of comparision.

;; 0 => SI operand (Should not be immediate).

;; 1 => SI operand.

;; cmp x y

Appendix B: The MD-RTL code Implementation 36

;(define_expand "cmpsi"

;; [(set (cc0)

;; (compare (match_operand:SI 0 "general_operand" "")

;; (match_operand:SI 1 "general_operand" "")))]

; ""

; "")

(define_insn "*cmpsi_1"

[(set (cc0)

(compare (match_operand:SI 0 "cmp_dest_op" "")

(match_operand:SI 1 "cmp_src_op" "i")))]

""

"*

toy_cmp_insn (operands[0], operands[1]);

")

;; ---

;; PATTERN FOR CONDITIONAL BRANCH OPERATIONS ;;

;; ---

;; Pattern for the conditional branch operations.

;; No. of operand = 1

;; No. of In-operand = 1

;; No. of Out-operand = 0

;; Type of operand:

;; 0 => Label.

;; jump_eq label

(define_insn "beq"

[(set (pc)

(if_then_else (eq (cc0)(const_int 0))

(label_ref (match_operand 0 "nitin7" ""))

(pc)))]

""

;;;;; "jmp %0\t\t// Branch if equal"

"jmp\t %0\t\t\t;; Branch if equal"

)

;;(define_insn "beq"

;; [(set (pc)

;; (if_then_else (le (cc0) (const_int 0))

;; (label_ref (match_operand 0 "" ""))

;; (pc)))]

;; ""

;; "nitin ha ha")

Appendix B: The MD-RTL code Implementation 37

;;(define_insn "tstsi"

;; [(set (cc0)

;; (match_operand:SI 0 "nonimmediate_operand" "mr"))]

;; ""

;; "TSTW %0")

;; ;; ---

;; (define_insn "sgt"

;; [(set (match_operand:QI 0 "nitin5" "")

;; (gt:QI (cc0) (const_int 0)))]

;; "nitin6()"

;; "\nSQT=%0\n")

;;

;; (define_insn "sle"

;; [(set (strict_low_part

;; (subreg:QI (match_operand:SI 0 "nitin3" "") 0))

;; (le:QI (cc0) (const_int 0)))]

;; "nitin9()"

;; "\nSLE=%0\n")

;;

Appendix C: The auxiliary C code Implementation 38

Appendix C The auxiliary C code Implementation

#include "config.h"

#include "system.h"

#include "insn-config.h"

#include "rtl.h"

#include "function.h"

#include "real.h"

#include "recog.h"

#include "output.h"

#include "regs.h"

#include "tree.h"

#include "expr.h"

#include "hard-reg-set.h"

#include "tm_p.h"

#include "target.h"

#include "target-def.h"

/* Register Names */

static const char *register_names[] = REGISTER_NAMES;

struct gcc_target targetm = TARGET_INITIALIZER;

void print_operand(FILE*, rtx, int);

void print_reg(rtx, int, FILE*);

/**/

void print_operand(FILE* file, rtx x, int code){

switch(code){

case ’M’:

if(GET_CODE(XEXP(x,0)) == REG){

fprintf(file, "*(");

PRINT_REG(XEXP(x, 0), 0, file);

fprintf(file, ")");

} else {

if(GET_CODE(XEXP(x, 0)) == PLUS){

fprintf(file, "*(");

print_operand(file, XEXP(x, 0), 0);

fprintf(file, "+");

print_operand(file, XEXP(x, 1), 0);

fprintf(file, ")");

} else

fprintf(file, "%d", GET_CODE(XEXP(x, 0)));

}

break;

default:

Appendix C: The auxiliary C code Implementation 39

if(GET_CODE(x) == REG)

PRINT_REG(x, code, file);

else if (GET_CODE(x) == CONST_INT)

fprintf(file, HOST_WIDE_INT_PRINT_DEC, INTVAL(x));

else if (GET_CODE(x) == SYMBOL_REF)

fprintf(file, "&%s", XSTR(x, 0));

else

fprintf(file, "%d", GET_CODE(XEXP(x, 0)));

}

}

/**/

/* ‘x’ is a REGISTER rtx. This function takes the alphanumeric

name of the REGISTER from the array ‘register_names’ and print

that on ‘file’. */

void print_reg(rtx x, int code, FILE* file){

fputs(register_names[REGNO(x)], file);

}

/**/

/* This function takes care of destination operand of a ‘move’

operation. */

int move_dest_operand(rtx op, enum machine_mode mode){

rtx x0;

rtx x1, x2;

int retVal = FALSE;

/* If the mode of operand is not as required and not equal to

‘VOIDmode’ then return FALSE. */

if(GET_MODE(op) != mode && mode != VOIDmode)

retVal = FALSE;

/* If operand is an memory operand. */

if(GET_CODE(op) == MEM) {

x0 = XEXP(op,0);

switch(GET_CODE(x0)) {

/* If the operand is an ‘PLUS’ operand and its first child

is an ‘REG’ and second one is an ‘INT’, then return

TRUE. */

case PLUS:

x1 = XEXP(x0,0);

Appendix C: The auxiliary C code Implementation 40

x2 = XEXP(x0,1);

if((GET_CODE(x2) == CONST_INT) && (GET_CODE(x1) == REG))

retVal = TRUE;

break;

/* If the destination is either ‘REG’ or ‘SYMBOL’ and

contain the address of some memory location, then

return TRUE. */

/* case SYMBOL_REF:*/

case REG:

retVal = TRUE;

break;

default:

retVal = FALSE;

}

}

/* If the destination is either ‘REG’ or ‘SYMBOL_REF’ then

return TRUE. */

else if (GET_CODE(op) == REG || GET_CODE(op) == SYMBOL_REF)

retVal = TRUE;

return retVal;

}

/**/

/* This function takes care of source operand of a ‘move’

operation. */

int move_src_operand(rtx op,enum machine_mode mode){

rtx x0;

rtx x1,x2;

int retVal= FALSE;

/* If the mode of operand is not as required and not equal to

‘VOIDmode’ then return FALSE. */

if(GET_MODE(op) != mode && mode != VOIDmode)

retVal = FALSE;

/* If operand is an memory operand. */

if(GET_CODE(op) == MEM){

x0 = XEXP(op,0);

switch(GET_CODE(x0)){

/* If the operand is an ‘PLUS’ operand and its first child

is an ‘REG’ and second one is an ‘INT’, then return

Appendix C: The auxiliary C code Implementation 41

TRUE. */

case PLUS:

x1 = XEXP(x0,0);

x2 = XEXP(x0,1);

if((GET_CODE(x2) == CONST_INT) && (GET_CODE(x1) == REG))

retVal = TRUE;

break;

/* If the destination is ‘REG’ and contain the the address

of some memory lacation, then return TRUE. */

case REG:

retVal = TRUE;

break;

default:

retVal = FALSE;

}

}

/* If the destination is ‘REG’ or ‘SYMBOL_REF’ or ‘CONST_INT’,

then return TRUE. */

else{

if(GET_CODE(op) == CC0 ||

GET_CODE(op) == REG ||

GET_CODE(op) == SYMBOL_REF ||

GET_CODE(op) == CONST_INT){

retVal = TRUE;

}

}

return retVal;

}

/**/

/* Function to generate the assembly code for the ‘move’

instruction.*/

const char* toy_move_insn(rtx dest, rtx src){

/* If destination is an ‘REG’ operand. */

if (GET_CODE(dest) == REG) {

if (GET_CODE(src) == MEM)

return "mov\t %M1\t %0\t\t;; MOVE Dest = REG, Src = MEM";

else

return "mov\t %1\t %0\t\t;; MOVE Dest = REG, Src = REG";

}

if (GET_CODE(dest) == MEM) {

if (GET_CODE(src) == MEM)

return "mov\t %M1\t %M0\t\t;; MOVE Dest = MEM, Src = MEM";

Appendix C: The auxiliary C code Implementation 42

else

return "mov\t %1\t %M0\t\t;; MOVE Dest = MEM, Src = REG";

}

}

/**/

const char* toy_cmp_insn(rtx left, rtx right){

if(GET_CODE(left) == MEM) {

if (GET_CODE(right) == MEM)

return

"cmp\t %M1\t %M0 \t\t;; CMP Dest = MEM, Src = MEM";

else

return

"cmp\t %1\t %M0 \t\t;; CMP Dest = MEM, Src = REG";

}

if (GET_CODE(left) == REG) {

if(GET_CODE(right) == MEM)

return "cmp\t %M1\t %0 \t\t;; CMP Dest = REG, Src = MEM";

else

return "cmp\t %1\t %0 \t\t;; CMP Dest = REG, Src = REG";

}

}

int nitin(rtx left, rtx right){

printf("HIII\n");

return 1;

}

int nitin1(rtx left, rtx right){

printf("H-1\n");

return 1;

}

int nitin2(rtx left, rtx right){

printf("H-2\n");

return 1;

}

int nitin3(rtx left, rtx right){

printf("sle\n");

return 1;

}

int nitin5(rtx left, rtx right){

printf("sgt\n");

return 1;

Appendix C: The auxiliary C code Implementation 43

}

int nitin8(rtx left, rtx right){

printf("H-8\n");

return 1;

}

int nitin6(){

printf("H-6\n");

return 1;

}

void nitin12(){

printf("H-12\n");

}

void nitin11(){

printf("H-11\n");

}

void nitin10(){

printf("H-10\n");

}

int nitin13(){

printf("H-13\n");

return 1;

}

int nitin9(){

printf("H-9\n");

return 1;

}

int nitin7(rtx left, rtx right){

printf("If_then_else\n");

return 1;

}

int nitin4(rtx op, enum machine_mode mode){

enum rtx_code code;

printf("Nitin Jain\n");

code = GET_CODE(op);

if(code == GT)

return 1;

else

return 0;

Appendix C: The auxiliary C code Implementation 44

}

/**/

int cmp_dest_op(rtx op, enum machine_mode mode){

rtx x0;

rtx x1, x2;

int retVal = FALSE;

/* If the mode of operand is not as required and not equal to

‘VOIDmode’ then return FALSE. */

if(GET_MODE(op) != mode && mode != VOIDmode)

retVal = FALSE;

/* If operand is an memory operand. */

if(GET_CODE(op) == MEM){

x0 = XEXP(op,0);

switch(GET_CODE(x0)){

/* If the operand is an ‘PLUS’ operand and its first

child is an ‘REG’ and second one is an ‘INT’, then

return TRUE. */

case PLUS:

printf("PLUS:DEST\n");

x1 = XEXP(x0,0);

x2 = XEXP(x0,1);

if((GET_CODE(x2) == CONST_INT) && (GET_CODE(x1) == REG))

retVal = TRUE;

break;

/* If the destination is either ‘REG’ or ‘SYMBOL’ and

contain the address of some memory location, then

return TRUE. */

/* case SYMBOL_REF:*/

case REG:

retVal = TRUE;

break;

default:

retVal = FALSE;

}

}

/* If the destination is either ‘REG’ or ‘SYMBOL_REF’ then

return TRUE. */

else{

if(GET_CODE(op) == REG)

/* || GET_CODE(op) == SYMBOL_REF)*/

Appendix C: The auxiliary C code Implementation 45

retVal = TRUE;

}

return retVal;

}

/**/

/* This function takes care of source operand of a ‘move’

operation. */

int cmp_src_op(rtx op,enum machine_mode mode){

rtx x0;

rtx x1,x2;

int retVal= FALSE;

/* If the mode of operand is not as required and not equal

to ‘VOIDmode’ then return FALSE. */

if(GET_MODE(op) != mode && mode != VOIDmode)

retVal = FALSE;

if(GET_CODE(op) == CONST_INT){

retVal = TRUE;

}

return retVal;

}

Appendix D: Copyright 46

Appendix D Copyright

This is edition 1.0 of “Writing GCC Machine Descriptions”, last updated on January 7,
2008., and is based on GCC version 4.0.2.

Copyright c© 2004-2008 Abhijat Vichare, I.I.T. Bombay.

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation; with no Invariant Sections,
with the Front-Cover Texts being “Writing GCC Machine Descriptions,” and
with the Back-Cover Texts as in (a) below. A copy of the license is included in
the section entitled “GNU Free Documentation License.”

(a) The FSF’s Back-Cover Text is: “You have freedom to copy and modify
this GNU Manual, like GNU software. Copies published by the Free Software
Foundation raise funds for GNU development.”

D.1 GNU Free Documentation License
Version 1.2, November 2002

Copyright c© 2000,2001,2002 Free Software Foundation, Inc.
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and

Appendix D: Copyright 47

is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ascii without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF

and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

Appendix D: Copyright 48

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time

Appendix D: Copyright 49

you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

Appendix D: Copyright 50

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

Appendix D: Copyright 51

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under this

Appendix D: Copyright 52

License will not have their licenses terminated so long as such parties remain in full
compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

Appendix D: Copyright 53

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.2

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . .Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

