gdfa: A Generic Data Flow Analyzer for GCC
(Version 1.1)

Uday Khedker

http://cse.iitb.ac.in/ " uday
Department of Computer Science and Engineeing
Indian Institute of Technology Bombay
Powai, Mumbai 400076 India.

February 25, 2009

Abstract

This document describesgenericdataflow analyzer forper function (i.e.,
intraprocedural)pit vectordataflow analysis in GCC 4.3.0. We call this infras-
tructuregdfa. The analyzers implemented usigdfa are calledofbvdfa. gdfa has
been used to implement several bit vector data flow analyses.

1 Motivation

The design and implementation gdifa is motivated by the following objectives:

e Demonstrating the practical significance of the followingpiortant generaliza-
tion: Instead of implementing specific analyses directlig useful to implement
a generic driver that is based on a carefully chosen set dfaatti®ns. The task
of implementing a particular analyzer then reduces to pesécifying the anal-
ysis by instantiating these abstractions to concrete galue

e Providing an easy to use and easy to extend data flow anahfsistructure.
The goal is to facilitate experimentation in terms of studyéexisting analyses,
defining new analyses, and exploringfdient analysis algorithms.

Section 2 describes the specification mechanisrgdsf and shows how the re-
sulting pass can be included in GCC 4.3.0. We illustrateritlie bit vector analyses
implemented usingdfa. Section 3 describes the implementatiorgafa. This section
also shows how local property computation can be driven legi§ipations. Finally
Section 4 suggests some possible enhancemegtiao

In this document, we assume familiarity with data flow analgsd GCC internals.
Section 5 point to further readings.

The source code afdfa is available as a patch of thec directory for GCC-4.3.0
from the URL:

Ny Inn
! A

- |
fn* ' fn
Outp Outp
H A
Forward Flows f, | F,,_m Backward Flows
INm INm
— A
fm; : fm
Outm Outm

Figure 1: Associating flow functions with nodes and edgesisgply.

http://www.cse.iitb.ac.in/uday/dfaBook

Patches for later versions will be made available on thispelgenever possible.
The code presented in this document is a slightly editediaersf the original
code. This was done to fit a page size constraints.

2 Specifying a Data Flow Analysis

In this section we look at how we can use the generic data flaalyais driver to
implement a data flow analysis pass in GCC. The implementesiipss to be registered
with the pass manager in GCC so that it can be executed by thpile.

2.1 Generic Flow Functions and Data Flow Equations

Generic flow functions are defined in terms of flow functiomgsirated in Figure 1.

T denotes a forward flow function wheredsienotes a backward flow function. The
subscripts used in flow function notation distinguish nodevffunctions from edge
flow functions. Defining separate node and edge flow functiensires explicating
In, and Outy, rather than leaving one of them implicit. For forward ungditional
data flows, the forward flow functions associated with edgesdentity functions and
the backward node and edge flow functions computénalogous remarks hold for
backward unidirectional data flows.

When separate flow functions are associated with nodes aya$etthe generic data
flow equations can be written as shown below.

Blstart M Tn(OUtn) n= Start
Inn = - — . (1)
M fmon(Outm) |1 fr(Outy) otherwise
mepred(n)
N
BIEnd I fn(lnn) n= End
Outy, = 2
" 1 <f_m_,n(lnm)) n f_,:(lnn) otherwise @
mesucc(n)

where Blgng and Blsge denotes boundary information for intraprocedural data flow
analysis. These equations compute MEP solution of an instance of a data flow
framework.

2.2 Registering a Pass With the Pass Manager in GCC

gdfa works on the gimple version of the intermediate represartatsed by GCC. We
have includecbfbvdfa passes such that they are invoked by default wdwenis used
for compiling a program. Whepcc is built, this causepfbvdfa passes to run on the
entire source ofycc which consists of over a million lines of C code. This helps in
ensuring that these do not cause any exception in the caiopikequence.

After constructing the gimple representatigigc views the rest of the compilation
as sequential execution of various passes. This is cartiebyotraversing a linked list
whose nodes contain pointers to the entry functions of thasees. A pass is registered
with the pass manager through the following steps:

e Instantiating a variable as an instance sfruct tree_opt_passinsome file.
e Declaring this variable as asxtern variable in header fileree-pass.h.

¢ Inserting this variable in the linked list of passes usingmicraNEXT_PASS in
functioninit_optimization_passesin file passes.c.

e Listing new file namesigcc/Makefile. inand configuring and building GCC.

Here is the declaration aftruct tree_opt_pass. For convenience comments
have been removed and are used in the explanation that &llow

0 struct tree_opt_pass
1{

2 const char *name;

3 bool (*gate) (void);

4 unsigned int (*execute) (void);

5 struct tree_opt_pass *sub;

6 struct tree_opt_pass *next;

7 int static_pass_number;

8 unsigned int tv_id;

9 unsigned int properties_required;
10 unsigned int properties_provided;
11 unsigned int properties_destroyed;
12 unsigned int todo_flags_start;

13 unsigned int todo_flags_finish;
14 char letter;
15 3;

Thename of the pass (line 2) is used as a fragment of the dump file narechave
used the names likedfa_ave. Thegate function (line 3) is used to check whether

this pass and all its sub-passes should be executed or ney. &l executed only if
this function returngrue. If no such checking is required, this function pointer can
beNULL. Theexecute function (line 4) is entry function of the pass. If this fuiost
pointer iSNULL, there should be sub-passes otherwise this pass does guothire
return value tellggcc what more needs to be done. The variahl® (line 5) is a list
of sub-passes that should be executed depending up@athkeredicate. If there are
sub-passes that must be executed unconditionally, thgratiedisted imext (line 6).
The static pass number (line 7) is used as a fragment of thedilenname. If it is
specified as 0, the pass manager computes its value depeandihg position of the
pass. Itis this that generated numbers 15, 16, 17, 18, anat b@f data flow analyses.
Variable tv_id is the variable that can be used as a time variable. The retbteof
variables are self-explanatory. The last varialde ter is used to annotate RTL code
that is emitted.

We have registered available expressions analysis byigeatstructure variable
called pass_gimple_pfbv_ave_dfaas shown below.

struct tree_opt_pass pass_gimple_pfbv_ave_dfa =

{
"gdfa_ave", /* name */
NULL, /* gate */
gimple_pfbv_ave_dfa, /* execute */
NULL, /* sub */
NULL, /% next */
0, /% static_pass_number */
0, /% tv_id */
0, /% properties_required */
0, /% properties_provided */
0, /% properties_destroyed */
0, /* todo_flags_start */
0, /% todo_flags_finish */
0 /* letter */

1

This variable is declared as follows in fiteree-pass.h

extern struct tree_opt_pass pass_gimple_pfbv_ave_dfa;

The next step in registering this pass is to include it in thiedf passes. We show
below the relevant code fragment from functibimi t optimization passes in file
passes.c:

NEXT_PASS (pass_build_cfg);

/* Intraprocedural dfa passes begin */
NEXT_PASS (pass_init_gimple_pfbvdfa);
NEXT_PASS (pass_gimple_pfbv_ave_dfa);
NEXT_PASS (pass_gimple_pfbv_pav_dfa);
NEXT_PASS (pass_gimple_pfbv_ant_dfa);
NEXT_PASS (pass_gimple_pfbv_lv_dfa);
NEXT_PASS (pass_gimple_pfbv_rd_dfa);
NEXT_PASS (pass_gimple_pfbv_pre_dfa);

/* Intraprocedural dfa passes end */

Finally, we need to include the new file names in the GCC buyiktesn. This is
done by including the object file names and their dependsittiakefile.inin the
gcc-4.3.0/gcc directory.

2.3 Specifying Available Expressions Analysis

The specification mechanism supporteddalfa is simple and succinct. It follows the
GCC mechanism of specification by usingeruct as a hook and by requiring the
user to create a variable by instantiating the members oftlrect defined for the
purpose.

For available expressions analysis, we define a variabledadifa_ave which is
of the typestruct gimple_pfbv_dfa_spec gdfa_ave.

® struct gimple_pfbv_dfa_spec gdfa_ave =

1{

2 entity_expr, /* entity */
3 ONES, /* top_value */
4 ZEROS, /* entry_info */
5 ONES, /* exit_info */
6 FORWARD, /* traversal_order */
7 INTERSECTION, /* confluence */
8 entity_use, /% gen_effect */
9 down_exp, /% gen_exposition */
10 entity_mod, /* kill_effect */
11 any_where, /* kill_exposition */
12 global_only, /% preserved_dfi */
13 identity_forward_edge_flow, /* forward_edge_flow */
14 stop_flow_along_edge, /% backward_edge_flow */
15 forward_gen_kill_node_flow, /* forward_node_flow */
16 stop_flow_along_node /% backward_node_flow */
17 3;

Before we explain the above, we present the rest of the capleresl to complete

the specification.

18 pfbv_dfi ** AV_pfbv_dfi = NULL;

19

20 static unsigned int

21 gimple_pfbv_ave_dfa(void)

22 {

23

24 AV_pfbv_dfi = gdfa_driver(gdfa_ave);
25

26 return 0;

27 }

Nothing more is required for specifying available expreasianalysis apart from
registering it with the pass manager with functmimple_pfbv_ave_dfa as its entry
point as described in Section 2.2. This function callsgtifa driver passing the spec-
ification variablegdfa_ave as actual parameter. The data flow information computed
by the driver is stored in a pointer to an array callstd pfbv_dfi; each element of
this array represents the data flow information for a basiclhlnd is an instance of
the following type defined bygdfa.

typedef struct pfbv_dfi

{
dfvalue gen;
dfvalue kill;
dfvalue in;
dfvalue out;
} pfbv_dfi;

The semantics expressed byruct gimple_pfbv_dfa_spec gdfa_ave is as
described below: Line 2 declares that the relevant enfitiethis analysis are expres-
sions entity_expr). Line 3 specifies that is “all ONES” implying the universal set
Expr. The specification “alZEROS” on line 4 initializes theBlg,: to O whereaNES
on line 5 rendersBlIg,q irrelevant because it is same @s Line 6 declares the direc-
tion of traversal to b&ORWARD. Note that this is independent of the direction of flow
and only influences the number of iterations. If we choosedihection of traversal
asBACKWARD, the resulting data flow information will remain same exddatt it may
take a much larger number of iterations. Line 7 declaresitteben. Line 12 directs
the driver to preserve only the global data flow informatiém &nd Out); the driver
can reclaim the space occupied by the local data flow infaomdGen andKill).

The most interesting elements of the specification are tleeifpations of local
properties and flow functions:

e Local property specificatian

Lines 8 to 11 define th&en and Kill kill sets for a block. Observe that this
mechanism closely follows the description in Sectidh

— Lines 8 and 9 say that when a downwards expogedr({_exp) use of an
entity (entity_use)is found in a basic block, itis included in thzen set
of the block. From line 2 we know that the entity under consatien is an
expressiondntity_expr).

— Lines 10 and 11 say that when a modification of an entityt{ ty_mod)
is found in a basic block, it is included in théll set of the block. This
modification need not be upwards exposed or downwards egpdssan
appeatany_where.

This is possible because tlgelfa driver is aware of the fact that the use of an
entity could be fiected by its modification and hence the notion of exposition o
an entity is explicated in the specification.

e Flow function specification

Lines 13 to 16 specify the flow functions for available exgiess analysis as
required by the generic data flow Equations (1) and (2).

— The forward edge flow functionf_;_)m in available expressions analysis is
identity (line 13).

— The forward node flow functionf_)n is the conventionatsen-Kill function
f(X) = Gen U (In—Kill). This is specified by line 15.

— There is no backward flow i.eft_n and <f_n_>m areT. This is specified by
lines 14 and 16.

All these functions are supported pgfa and it is enough to associate the func-
tion pointers with appropriate functions.

When the nature of data flow isfirent from the default flows, it is also pos-
sible to write custom functions—we show how it is done fort@dredundancy
elimination.

2.4 Specifying Other Bit Vector Data Flow Analyses

Given the specification of available expressions analytsis,easy to visualize spec-
ifications for other bit vector frameworks. We describe tkguired changes in the
following:
¢ Partially available expressions analysis.
Confluence should b@&NION, T andBlgpg should beZEROS.

¢ Anticipable expressions analysis.

In this case it is desirable, though not necessary, to chthesdirection of traver-
sal asBACKWARD. The exposition foilGen should be changed tp_exp. Blsart

should beONES and Blgng should beZEROS. Flow functions would change as
follows:

— forward edge flow functionf_;_)m should bestop_flow_along_edge,
— forward node flow functionf_n) should bestop_flow_along_node, and

— backward node flow functioﬁ should be the defaulGen-Kill function
backward_gen_kill_node_flow.
Live variables analysis.

This specification would be similar to that of anticipableessions analysis
except that the entity should lmtity_var, confluence should béNION, T
andBlgng should beZEROS.

Reaching definitions analysis.

This is a forward data flow analysis similar to available egsions analysis
except that the entity isntity_defn, confluence i9INION, and T and Blgng
areZEROS.

Partial redundancy elimination.

Here it would useful to change tlyate function to this pass to check that avail-
able expressions analysis and partially available exfmessanalysis has been
performed.

The data flow equations for partial redundancy eliminatiengiven below.

Inn = Pavin,n (AntGen, U (Out, — Killp)) N
ﬂ (Outp U AvOutp) (3)
pepred(n)
BI nis End block
Outy = Ins otherwise (4)
sesucc(n)

The specification of data flow analysis would be similar tat thfaanticipable
expressions analysis except that the node flow functioneretjuation forn,

would change. In particular, the forward edge flow functiﬁmm and the back-

ward node flow function<1‘_n cannot be chosen from the default functions sup-
ported bygdfa. We define the required functions as shown below.

dfvalue
forward_edge_flow_pre(basic_block src, basic_block dest)

{
dfvalue temp;

temp = union_dfvalues (OUT(AV_pfbv_dfi,src),
CURRENT_OUT(src));

return temp;

In this function, src and dest indicate the source and destination of an edge.
Since this flow function is used in computimg,, dest represents andsrc repre-
sents the given predecessor nqdeUnder the assumption that the data flow infor-
mation of available expressions analysis is stored in thi@bte AV_pfbv_dfi, the
termOUT (AV_pfbv_dfi, src) representgivOut, whereas th@ut,, is represented by
the termCURRENT_OUT (src). Thus this flow function compute®/Out, U Outy, for a
given predecessq.

The definition of backward node flow is similar to that of theéaddt node flow
except that we need to include the valueRaivin,. This is easily achieved by the
function defined below:

dfvalue
backward_node_flow_pre(basic_block bb)
{

dfvalue templ, temp2;
templ = backward_gen_kill_node_flow(bb);

temp2 = intersect_dfvalues (IN(PAV_pfbv_dfi,bb),
templ);

if (templ)
free_dfvalue_space(templ);

return temp2;

Herebb is the current node. The default backward node flow function is used
to compute the data flow information in the variahlempl. Under the assumption
that the data flow information of partially available exmiess analysis is stored in the
variablePAV_pfbv_dfi, the termIN(PAV_pfbv_dfi,bb) represent®avin,. All that
further needs to be done is to intersect them.

This completes the specification of partial redundancyiektion.

3

Implementing gdfa

We describe the implementation in terms of the specificgtiimitives, interface with
GCC, the generic functions for global property computatanmd generic functions for
local property computation.

3.1 Specification Primitives

The main data structure used for specification is:

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

20

s
{

truct gimple_pfbv_dfa_spec

entity_name
initial_value
initial_value
initial_value
traversal_direction
meet_operation
entity_manipulation
entity_occurrence
entity_manipulation
entity_occurrence
dfi_to_be_preserved

entity;
top_value_spec;
entry_info;
exit_info;
traversal_order;
confluence;
gen_effect;
gen_exposition;
kill_effect;
kill_exposition;
preserved_dfi;

dfvalue (*forward_edge_flow) (basic_block src,

basic_block dest);

dfvalue (*backward_edge_flow) (basic_block src,

basic_block dest);

dfvalue (*forward_node_flow) (basic_block bb);
dfvalue (*backward_node_flow) (basic_block bb);

21 };

The types appearing on lines 2 to 12 are defined as enumesgtes with the
following possible values.

Enumerated Type

Possible Values |

entity_name

entity_expr,entity_var,entity_defn

initial_value

ONES, ZEROS

traversal_direction

FORWARD, BACKWARD, BIDTRECTIONAL

meet_operation

UNION, INTERSECTION

entity_manipulation

entity_use,entity_mod

entity_occurrence

up_exp, down_exp, any_where

dfi_to_be_preserved

all, global_only,no_value

The typedfvalue is just another name for the typditmap supported by GCC.

10

We have used a flerent name to allow for the possibility of extendigdfa to other
kinds of data flow values.

The entry point of each data flow analysis invokes the driviéin its specification.
The driver creates space for current data flow values in otidata flow analysis in a
variablecurrent_pfbv_dfi which is declared as shown below:

typedef struct pfbv_dfi

{
dfvalue gen;
dfvalue kill;
dfvalue in;
dfvalue out;
} pfbv_dfi;

pfbv_dfi ** current_pfbv_dfi ;

For a basic blockb, different members of the data flow information are accessed
using the following macros:

| Data flow variable| current_pfbv_dfi | Givendfi |

Gen CURRENT_GEN (bb) GEN(dfi,bb)
Kill CURRENT_KILL (bb) | KILL(dfi,bb)
In CURRENT_IN(bb) IN(dfi,bb)

Out CURRENT_OUT (bb) OUT(dfi,bb)

Now we can describe the default functions that can be assigmé¢he function
pointers on lines 14 to 19 istruct gimple_pfbv_dfa_spec. Alternatively, the
users can define their own functions which have the samefater The default func-
tions supported bygdfa are:

| Function Returned value |

identity_forward_edge_flow(src, dest) CURRENT_OUT (src)
identity_backward_edge_flow(src, dest) | CURRENT_IN(dest)

stop_flow_along_edge(src, dest) top_value
identity_forward_node_£flow(bb) CURRENT_IN(bb)
identity_backward_node_£flow(bb) CURRENT_OUT (bb)
stop_flow_along_node (bb) top_value
CURRENT_GEN (bb) U
forward_gen_kill node_£flow(bb) (CURRENT_IN(bb) -

CURRENT_KILL (bb))
CURRENT_GEN (bb) U
backward_gen_kill_node_flow(bb) (CURRENT_OUT (bb) -
CURRENT_KILL(bb))

wheretop_valueis of the typeinitial_value and is constructed based on the value
of top_value_spec (line 3instruct gimple_pfbv_dfa_spec).

11

This completes the description of the specification priregi

3.2 Interface with GCC

The top level interface ofidfa with GCC is through the pass manager as described in
Section 2.2. At the lower levegdfa uses the support provided by GCC for traversals
over CFGs, basic blocks etc.; discovering relevant featofestatements, expressions,
variables etc.; constructing and manipulating data flowes] and printing entities
appearing in statements.

Traversal Over CFG and Basic Blocks

In a round robin iterative traversal, the basic blocks in &CGife usually visited in the
order of along control flow or against the order of control flowGCC, this is achieved
as follows:

basic_block bb;

FOR_EACH_BB_FWD(ENTRY_BLOCK_PTR)
{ /% process bb */

}

FOR_EACH_BB_BKD (EXIT_BLOCK_PTR)
{ /* process bb */

}

In the above codéyasic_blockis atype supported by GCENTRY_BLOCK_PTR
andEXIT_BLOCK_PTR point to ENTRY andEXIT blocks of the current function being
compiled. These macros have been defined by GCC. The tworoteps used above
are defined as follows:

#define FOR_EACH_BB_FWD(entry_bb)
for(bb=entry_bb->next_bb;
bb->next_bb!=NULL;
bb=bb->next_bb)

#define FOR_EACH_BB_BKD(exit_bb)
for (bb=exit_bb->prev_bb;
bb->prev_bb!=NULL;
bb=bb->prev_bb)

- ~

Given a basic blockb, its predecessor and successor blocks are traversed using

an edge_iterator variable, anedge variable, and the macrBOR_EACH_EDGE as
described below. All these are directly supported by GCC.

12

edge_iterator ei ;
edge e ;
basic_block succ_bb, pred_bb;

FOR_EACH_EDGE (e, ei,bb->preds)
{ pred_bb = e->src;
/% process the predecessor pred_bb */

}
FOR_EACH_EDGE (e, ei,bb->succs)
{ succ_bb = e->dest;
/¥ process successor succ_bb */
}

A statement is of the typeree. Further, all entities appearing in a statement
are also of the typeree. All statements in a basic block can be traversed using a
block_statement_iterator variable.

basic_block bb;
block_stmt_iterator bsi;
tree stmt;

FOR_EACH_STMT_FWD
{ stmt = bsi_stmt(bsi);
/¥ process stmt */

}

FOR_EACH_STMT_BKD

{ stmt = bsi_stmt(bsi);
/¥ process stmt */

}

The macros used in the above code are defined as follows:

#define FOR_EACH_STMT_FWD

for(bsi=bsi_start(bb);
'bsi_end_p(bsi);
bsi_next(&bsi))

o

#define FOR_EACH_STMT_BKD
for(bsi=bsi_last(bb);
bsi.tsi.ptr!=NULL;
bsi_prev(&bsi))

s

13

Discovering the Entities in a Statement

Statements can be of many types but only a few types are ralevdocal data flow
analysis. The Ivalue and rvalue of a given statensenit are of the typetree and are
extracted as shown below:

tree expr=NULL, lval=NULL;

switch(TREE_CODE(stmt))

{ case

case

case

COND_EXPR:
expr = TREE_OPERAND(stmt,0);
break;
MODIFY_EXPR:
lval = TREE_OPERAND(stmt,0);
expr = TREE_OPERAND(stmt,1);
GIMPLE_MODIFY_STMT:
lval = GIMPLE_STMT_OPERAND(stmt,®);
expr = GIMPLE_STMT_OPERAND(stmt,1);
break;

default:

break;

The operands of relevant expressions are extracted as dhelom:

tree op®=NULL, opl=NULL;

switch(TREE_CODE (expr))

{ case
case
case
case
case
case
case
case
case

MULT_EXPR:

PLUS_EXPR:

MINUS_EXPR:

LT_EXPR:

LE_EXPR:

GT_EXPR:

GE_EXPR:

NE_EXPR:

EQ_EXPR:

opl = TREE_OPERAND(stmt,1);
op® = TREE_OPERAND(stmt,0);
break;

default:

break;

Observe that this covers the set of expressions that isrdlyrrgupported bygdfa.

14

Clearly, extending this set is easy.

Local variables are discovered by traversirfin->unexpanded_var_listusing
TREE_VALUE andTREE_CHAIN macros supported by GCC. Hetéun represents the

current function being compiled.

tree var,list;

list = cfun->unexpanded_var_list;
while (list)
{ var = TREE_VALUE (list);

/¥ process variables *
list = TREE_CHAIN(list);

Discovering definitions is easy: A statement WIIREE_CODE asMODIFY_EXR or

GIMPLE_MODIFY_STMT is detected as a definition.

Constructing and Manipulating Data Flow Values

We define the typdfvalue as follows:

typedef sbitmap dfvalue;

sbitmap is a type supported by GCC to represent sets. We use the fotjow
sbitmap functions to construct and manipulate bitmaps. Note theddtfunctions are
not directly used irgdfa. Instead gdfa code callsdfvalue functions that are defined

in terms of these functions.

Name of the Function

Action

sbitmap_equal(v_a,v_b)

isv_a equal tov_b?

sbitmap_a_and_b(t, v_a, v_b)

t=v_anv_,b

sbitmap_union_of_diff(t, v_a, v_b, v_c)

t=v_aU(v_b-v_c)

sbitmap_a_or_b(t, v_a, v_b)

t=v_aUv_b

sbitmap_ones(v)

set every bitinvto 1

sbitmap_zero(v)

set every bitinvto 0

sbitmap_alloc(n)

allocate a bitmap ai bits

sbitmap_free(v)

free the space occupied by

Facilities for Printing Entities

We use the functiomlump_sbitmap to print bitmaps. For printing a statement, the

functionprint_generic_stmtis used whereas functigrint_generic_expr prints

an expressiorxpr.

15

3.3 The Preparatory Pass

Before thegdfa driver is invoked, some preparatory work has to be perforimgdn
earlier pass. The top level function of this pass is:

static unsigned int

init_gimple_pfbvdfa_execute (void)

{
local_var_count=0;
local_expr_count=0;
number_of_nodes = n_basic_blocks+2;

assign_indices_to_var(Q);
assign_indices_to_exprs();
assign_indices_to_defns();

dfs_ordered_basic_blocks = NULL;
dfs_numbering_of_bb();

return 0;

Functionassign_indices_to_var assigns a unique index to each local variable
by traversingcfun->unexpanded_var_list as explained in Section 3.2. These in-
dices represent the bit position of a local variable. Thiguiees adding arinteger
field to thetree data structure. The variables which are not interestingaasigned
index-1.

Functionassign_indices_to_exprs assigns a unique index to each expression
whose operands are restricted to constants and variatdéhdive been assigned a
valid index. These indices represent the bit position ofwaht expressions. Other
expressions are assigned index

Unlike local variables, there is no ready list of expressioience the function
assign_indices_to_exprs traverses the CFG visiting each statement and examin-
ing the expressions appearing in relevant statementse éxpression used in a state-
ment qualifies as a local expression, it is first checked wdredh index has already
been assigned to it. This could happen because an expressithappear multiple
times in a program.

Functionassign_indices_to_defns assigns a unique index to each statement
that is a definition.

Finally, functiondfs_numbering_of_bb performs depth first numbering of the
blocks in a CFG.

3.4 Local Data Flow Analysis

In production compilers, implementing global data flow gmats is much easier com-
pared to implementing local data flow analyzers. This is beedocal data flow anal-

16

ysis has to deal with the lower level intricate details of ititermediate representation
and intermediate representation are the most complex ttatdwges in practical com-

pilers. Global data flow analyzers are insulated from theset level details; they just

need to know CFGs in terms of basic blocks. Thus most data fialysis engines

require the local property computation to be implementethieyuser of the engine.

This situation can change considerably if we view local dida analysis as a
special case of global data flow analysis. The objective céllalata flow analysis
is to computeGen,, and Kill, of a blockn. This computation can be performed by
traversing statements in blockin a manner similar to traversing blocks in a CFG.
The only diference is that statements in a block cannot have multipegorssors of
SUCCESSOrS.

The waylns (Or Outeng) is computed by incorporating thefect of blocks in a
CFG, Genp andKill, can also be computed by incorporating ttgeets of individual
statements in block. The dfect of statemens$ can be defined in terms @ens and
Kills. However, we need to overcome the following conceptufiladilty: When we
computeGeny, for block n, Gens of a statemens must be added to the cumulative
effect of the statements processed so far. However, when weuterl,, Kills of
statemens should beaddedto the cumulative ect instead of being removed. This
deviates from the normal meaning il which represents the entities to be removed.

We overcome this conceptualfdiculty by renamingGens andKills as Adds and
Removes respectively. Now local data flow analysis does not depenérmwing
whether the data flow property being compute@&s, or Kill,. Given a local property
specification such as below:

typedef struct lop_specs

{
entity_name entity;
entity_manipulation stmt_effect;
entity_occurrence exposition;

} lp_specs;

Local data flow analysis searches for th@eet of a given statement specified
throughstmt_effect and stores it iradd_entities. If the specifiedstmt_effect
is entity_use, the entities that qualify foentity_mod are stored in the variable
remove_entities. Depending upon thexposition, the final decision of removal
is taken.

Thus computation oGen,, andKill, depends upon setting up a variable of the type
1p_specs and the solving the following recurrence

accumulated_entities = (accumulated_entities — remove_entities)
Uadd_entities

Functioneffect_of_a_statement performs the above computation for a given
statement. It is called by the top level functibocal_dfa_of_bb. The relevant code

17

fragment for downwards exposed entities is:

FOR_EACH_STMT_FWD
{ stmt = bsi_stmt(bsi);
accumulated_entities = effect_of_a_statement(lps_given,
stmt, accumulated_entities);

For upwards exposed entities, the accumulation is agdiastdntrol flow and the
above traversal is performed using the maeo8_EACH_STMT_BKD.

The main limitation of this approach is that it requires ipdedent traversal of a
basic block for computingsen andKill. However, by using a slightly more compli-
cated data structure that passes bB#m andKill to functionlocal_dfa_of_bb, will
solve this problem. The other limitation is that due to theeyality, there are many
checks that are done in the underlying functions. Therewaoepssible solutions to
this problem of éiciency:

e This is used as a rapid prototyping tool for a given data floalgsis. Once the
details are fixed, one could spend time writing a mdfeient data flow analyzer.

e Instead of interpreting the specifications, a program caregge a customized
C code that is compiled with GCC source.

3.5 Global Data Flow Analysis

As observed earlier, implementation of global data flow yred is much simpler once
local data flow analysis and interface with the underlyinmpder infrastructure is in
place. The fact thajdfa use generic data flow Equations (1) and (2) makes it possible t
execute a wide variety of specifications without having towithe name of a particular
analysis being performed. In other wordgifa driver is not a collection of data flow
analysis implementations but is capable of executing aagipation within the limits
of the possible values of specification primitives.

At the top level, thegdfa driver needs to perform the following tasks:

Create special values like, Blsiart, andBlgpg.

Create space for data flow values

Perform local data flow analysis

Select flow functions

Perform global data flow analysis

Functiongdfa_driver performs the above tasks:

18

pfbv_dfi **
gdfa_driver(struct gimple_pfbv_dfa_spec dfa_spec)
{
if (find_entity_size(dfa_spec) == 0)
return NULL;
initialize_special_values(dfa_spec);
create_dfi_space();
traversal_order = dfa_spec.traversal_order;
confluence = dfa_spec.confluence;

local_dfa(dfa_spec);

backward_edge_flow = dfa_spec.backward_edge_flow;
forward_node_flow = dfa_spec. forward_node_flow;
backward_node_flow = dfa_spec.backward_node_flow;

0

1

2

3

4

5

6

7

8

9

10

11

12 forward_edge_flow = dfa_spec. forward_edge_flow;
13

14

15

16

17 perform_pfbvdfa();

18

19 preserve_dfi(dfa_spec.preserved_dfi);
20 return current_pfbv_dfi;
21 }

Lines 12 to 15 select the flow functions from the specificatioBelow we show
the code fragment of functioperform_pfbvdfa when the direction of traversal is
FORWARD.

{ iteration_number++;
change = false;
FOR_EACH_BB_IN_SPECIFIED_TRAVERSAL_ORDER
{ bb = VARRAY_BB(dfs_ordered_basic_blocks,visit_bb);
if(bb)
{ if (traversal_order == FORWARD)

{ change_at_in = compute_in_info(bb);
change_at_out = compute_out_info(bb);
change = change| |change_at_out| |change_at_in;

}

else /* compute in the opposite order */

}
}
} while(change);

The main code fragment of functi@empute_in_infois as shown below. It calls
functionbackward_node_£flow which is extracted from the specification.

19

if (!bb->preds)
temp = combine(entry_info, backward_node_flow(bb));
else
temp = combine(combined_forward_edge_flow(bb),
backward_node_flow(bb));
old = CURRENT_IN(bb);
change = is_new_info(temp,old);

if (change)
{

CURRENT_IN(bb) = temp;
if (old)
free_dfvalue_space(old);
}

return change;

Functioncombined_forward_edge_£flow computes the following term

|_| f_[))—m(outp)
pepred(n)

Its main code fragment is as shown below. It calls functforward_edge_flow
which is extracted from the specification.

edge_vec = bb->preds;
temp = make_initialized_dfvalue(top_value_spec);

if (forward_edge_flow == &stop_flow_along_edge)
return temp;

FOR_EACH_EDGE (e, ei,edge_vec)
{ pred_bb = e->src;
new = combine(temp, forward_edge_flow(pred_bb,bb));
if (temp)
free_dfvalue_space(temp) ;
temp = new;
}

return temp;

The code sequence corresponding to functiampute_out_infois an exact dual
of the above code sequence. This completes the descrigtgmneric global data flow
analysis ingdfa.

20

4 Extending the Generic Data Flow Analyzergdfa

Many extensions and enhancementgdfh are possible. We suggest some of them by
dividing them into the following categories.

e Extensions that do not require changing the architecturgdsa.

— Include space and time measurement of analyses.
— Consider scalar formal parameters for analysis.
— Support a work list based driver.

— Extendgdfa to support other entities such as statements (e.qg., folfldata
analysis based program slicing), and basic blocks (e.gddta flow anal-
ysis based dominator computation). Both these problemdbianeector
problems.

— Improve the implementation @jdfa to make it more space and timéie
cient. This may require compromising on the simplicity of implemen-
tation but generality should not be compromised.

e Extensions that may require minor changes to the architeaitigdfa.

— Implement incremental data flow analysis and measurdfist@e/eness by
invoking in just before gimple is expanded into RTL.
This would require a variant of a work list based driver.

— Explore the possibility of extendingpfato the data flow frameworks where
data flow information can be represented using bit vectotshmiframe-
works are not bit vector frameworks because they are noarabfe e.g.,
faint variables analysis, possibly undefined variablealyasis, strongly live
variables analysis.

This would require changing the local data flow analysis. @assible
option is using matrix based local property computatione ©ther option
is to treat a statement as an independent basic block.

e Extensions that may require major changes to the architeaitigdfa.

— Extendgdfa to non-separable frameworks in which data flow information
cannot be represented by bit vectors e.g., constant préipagsigns analy-
sis, points-to analysis, alias analysis, heap referenalgsis etc. Although
the main driver would remain same, this would require makimglamen-
tal changes to the architecture.

— Extendgdfato support some variant of context and flow sensitive interpr
cedural data flow analysis.

21

5 Further Readings

Most texts on compilers discuss data flow analysis in varigngths [1, 2, 3, 7, 8, 11].
Some of them discuss details [1, 2, 8]. A useful introductdrapter is by Khedker [5].
An advanced treatment of data flow analysis can be found ibdlo&s by Hecht [4],
Muchnick and Jones [9], F. Nielson, H. R. Nielson and Hankdi[and by Khedker,
Sanyal, and Karkare [6].

We list below some useful resources for learning about GCC:

6

GCC Internals

http://gcc.gnu.org/onlinedocs/gccint.html

This is the dficial internals document which exhaustively describes rdesils
and is a part of the documentation distributed with the céengiode.

GCC Internals documents developed at IIT Bombay
http://www.cse.iitb.ac.in/grc/

This is the website o6CC Resource Centext IIT Bombay. It hosts the GCC
documents developed at IIT Bombay.

The GCC Wiki

http://gcc.gnu.org/wiki/

The dficial GCC Wiki pages where the various aspects of GCC, innlyidome
description of the internals, are being developed by the Gé@:lopers and
others.

The GCC Internals workshop held at IIT Bombay
http://www.cse.iitb.ac.in/ uday/gcc-workshop/

This workshop that focused mainly on the machine descrigtisas held at IIT
Bombay in June 2007. The slides and some associated soisvaveilable on
theDownloads page of the workshop.

The GCC on Wikipedia
http://en.wikipedia.org/wiki/GNU_Compiler_Collection

The GCC Internals on Wikipedia
http://en.wikibooks.org/wiki/GNU_C_Compiler_Internals

Copyright

gdfa and this manual is a copyrighted material of the GCC ResoQgsger, Depart-
ment of Computer Science and Engineering, Indian Instidfiteechnology Bombay.
This material may be distributed only subject to the ternt@nditions set forth in

the GNU GPL v 2.0Chttp://www.gnu.org/licenses/gpl.html) or later,
for the source code gjdfa, and

22

e the GNU FDL v1.2(http://www.gnu.org/licenses/fd1l.html) or later,
for the documentation.

In particular, the original content of these documents, nvhised in your work,
must be clearly marked as “Copyrigigiz008 GCC Resource Center, Department of
Computer Science and Engineering, Indian Institute of metdgy Bombay”. The
documents and the source code has been provided for thensbéxelusive purpose of
disseminating information. You are free to download theot,fieither GCC Resource
Center, nor Indian Institute of Technology Bombay, nor aagspn related to them are
in any way responsible for anything you do with it. In otherrd®, the documents are
provided as is. In case you are interested in redistributiorepublishing of the gdfa
source code or it's manual, whole or in part, either modifiediemodified, and you
have questions, please contact the author.

References

[1] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullmai€ompilers: Principles, Tech-
niques, and Tools (2nd Edition\ddison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2006.

[2] A. W. Appel and M. Ginsburg.Modern Compiler Implementation in.CCam-
bridge University Press, 1998.

[3] D. Grune, H. E. Bal, C. J. H. Jacobs, and K. G. Langenddéodern Compiler
Design John Wiley & Sons, 2000.

[4] M. S. Hecht.Flow Analysis of Computer ProgramElsevier North-Holland Inc.,
1977.

[5] U. P. Khedker. Data flow analysis. In Y. N. Srikant and P3thankar, editorsThe
Compiler Design Handbook: OptimizatiodsMachine Code GeneratioltRC
Press, USA, 2002.

[6] U. P. Khedker, A. Sanyal, and B. Karkardata Flow Analysis: Theory and
Practice CRC Press (Taylor and Francis Group), 2009. (Under puidich

[7] R. Morgan.Building an Optimizing CompilerButterworth-Hienemann, 1998.

[8] S.S. Muchnick Advanced Compiler Design and Implementatibforgan Kauf-
mann Publishing Co., 1997.

[9] S. S. Muchnick and N. D. Jone®rogram Flow Analysis : Theory and Applica-
tions Prentice-Hall Inc., 1981.

[10] F. Nielson, H. R. Nielson, and C. HankinPrinciples of Program Analysis
Springer-Verlag, 1998.

[11] R. Wilhelm and D. MaurerCompiler Design Addison-Wesley, 1995.

23

