specRTL: A Languagefor GCC Machine Descriptions

Uday P. Khedker, Ankita Mathur

GCC Resource Center
Dept. of Computer Science and Engg., [IT Bombay, India
{uday,ankitam@cse.iith.ac.in

Abstract. The mechanism of GCC machine descriptions has been quitessic
ful as demonstrated by a wide variety of targets for which Go@s exist. How-
ever, this mechanism is quite ad hoc and the machine désagpare difficult
to read, construct, maintain, and enhance because of thesity; repetitive-
ness, and the amount of details. We propose a language spdeBTL which
provides a compositional specification mechanism for dadimatterns that de-
scribe RTL templates in machine descriptions. These pesttesin be refined by
extending them and by associating concrete details wititimea need based
manner. Machine descriptions written usigigecRTL are smaller and simpler
and hence easy to read, construct, and mainspiktRTL integrates with con-
ventional machine descriptions seamlessly. SkpRTL compiler generates
the conventional machine descriptions, GCC source needhatge. This en-
ables external, incremental and non-disruptive migradiothe existing machine
descriptions tapecRTL and construction of new machine descriptions thereby
paving way for a smooth transition to better code generatigaCC.

1 Introduction

The Gnu Compiler Collection uses a retargetable compitatiodel which is adapted
to a given target by reading a description of the target asthirtiating the machine
dependent parts of the generated compiler. This mecharasnbéden quite successful
as demonstrated by a wide variety of targets for which a GCE gasts. However,
this mechanism is quite ad hoc and the machine descriptrendifficult to read, con-
struct, maintain, and enhance. They require specifyingungon patterns using Regis-
ter Transfer Language (RTL) templates using a mechanismwhisiverbose, repetitive,
non-composable, and requires a lot of details.
Atypical RTL template looks as follows. Here the name of tieriuction isaddsi3.

(define_insn "addsi3"

[(set (match_operand:SI O "register_operand" "=r")
(plus:SI (match_operand:SI 1 "register_operand" "r")
(match_operand:SI 2 "register_operand" "r")))]

"" /% C boolean expression, if required */
"add \t%0 %1 %2"
)

* http://www.cse.iitb.ac.in/gic. Funded by the Dept. ofdmhation Technology, Gov. of India,
as a part of the National Resource Center for Free and Opear&Software (NRCFOSS).


http://www.cse.iitb.ac.in/grc

Addition (Most templates reproduced below appeatdtfiine_insn) Structure

[(set (match_operand:m 0 "register_operand" "c0")
(plus:m (match_operand:m 1 "register_operand" "cl")
(match_operand:m 2 "p" "c2")))]

Pattern name m P c0 cl c2
add<mode>3 ANYF|register_operand =f f f
define_expand .

add<mode>3 GPR | arith_operand

*add<mode>3 GPR | arith_operand =d,d d,d d,Q

*add<mode>3_mips16| GPR | arith_operand |=ks,d,d,d,d|ks,ks,0,d,d|Q,Q,Q,0,d
Multiplication (Most templates reproduced below appeatdfiine_insn)
[(set (match_operand:m O "register_operand" "cO0")
(mult:m (match_operand:m 1 "register_operand" "cl")
(match_operand:m 2 "register_operand" "c2")))]

Structure Pattern name m cO|cl|c2
*mul<mode>3 SCALARF |=f | f | £
*mul<mode>3_r4300 SCALARF |=f | £ | £
mulv2sf3 V2SF =f| f | £
define_expand mul<mode>3 GPR
mul<mode>3_mul3_loongson GPR =d|d|d
mul<mode>3_mul3 GPR d,1/d,d|d,d

Multiply and accumulatéAll templates reproduced below appeadi#fine_insn)
[(set (match_operand:m O "register_operand" "cQ")
(plus:m (mult:m (match_operand:m 1 "register_operand" "cl")
(match_operand:m 2 "register_operand" "c2")))]
(match_operand:m 3 "register_operand" "c3")))]

Structure Pattern name m c0 cl c2 c3
*mul_acc_si SI =1*x7%7,d7? d,d | d,d | 0,d
e *mul_acc_si_r3900| SI [=1%7%?7,d*?,d7|d,d,d|d,d,d|0,1,d
*macc SI =1,d d,d | d,d | 0,1
° *madd4<mode> ANYF =f £ f f
*madd3<mode> ANYF =f f f 0

Fig. 1. RTL templates imips .md parameterized by modesi), predicatesyf) and con-
straints €0, c1, c2, ¢3) to highlight the verbosity, repetitiveness, and non-cosgbility.

The inner box contains the RTL template of the computatiajuired for addition
and the last line in the outer box contains its assembly farflae RTL template
uses RTL operatorset and plus; the former represents an assignment. Operator
match_operand matches an operand using a mo8e for single integer), a predicate
(register_operand), and constraint strings'€r", "r" and"r"). Given a GIMPLE
statemen& = b + c, firstan RTL statement is generated and then the assemidy sta
ment is generated eventually.

Figure[d lists some RTL templates that appear in thenfiles . md which is a part
of the MIPS machine descriptions. We have parameterizetetnplates with mode,
predicates, and constraints to highlight the fact that s¢\RTL templates share the



Front P machine Code Target
End _’AST" ind. IR ™| Generatof ™ Program

f Aho Ullman Model

Source

Progpgm -~~~ ~~~~"~"~"~"~*""~"“""“""“""~“"“""“""“"""“"“""“"""“"“""“""“""“""™""™""™77°
* Davidson Fraser Model

200+ ST+ Expandef-» R [Optimizer}» R ~[Recogrizel> p1olS!,

Fig. 2. Classical Compilation Models

same structure and differences in them correspond to differalues of target specific
attributes. GCC machine descriptions do not have any agetdtr create such structures
and instantiate them by specifying attribute values asegdgesides, the RTL template
for multiply and accumulate instruction can be viewed as mmasite structure that

combines the structures for add and multiply instructidgt@wvever, the specification

mechanism does not allow creation and composition of sudktstres.

We propose a language callegecRTL which provides a compositional specifi-
cation mechanism for defining patterns that describe RTLptates by providing a
clean separation between the shapes of the templates anargie¢ specific details.
This is achieved by supporting creation aifstract patternsThey can be composed
and instantiated with concrete details to cremiacrete patternss required. For this
purposespecRTL provides well-defined simple refinement operators cadletknds,
instantiates, and overrides. Machine descriptions written usingpecRTL are
smaller and simpler and hence easy to read, construct, aindaimna FurtherspecRTL
integrates with conventional machine descriptions sesstyeSincespecRTL compiler
generates the conventional machine descriptions, there ieeed to change the GCC
source. This enables external, incremental and non-digeupigration of the existing
machine descriptions &pecRTL and easier construction of new machine descriptions
thereby enabling a smooth transition to a better code gdopstrategy in GCC.

The rest of the paper is organized as follows: Sedtion 2 wevitbe retargetability
model of GCC. Sectiop] 3 presents empirical measuremenedahdancy in machine
descriptionsspecRTL is presented in Sectidd 4. Sectioh 5 discusses the advantage
of usingspecRTL for GCC. A brief description of the related work is presenied
Sectior[ 6. Sectiof] 7 concludes the paper.

2 TheRetargetability Model of GCC

GCC uses a modified version of the Davidson Fraser model opiation [5]. Fig-
ure[2 contrasts this model with the traditional Aho Ullmandalo[2] which performs
instruction selection over optimized machine independ#rtmediate representation
(IR). In order to ensure the quality of generated code, ure$itbn selection in Aho UlI-
man model is performed using cost based tree tilifig [1,14 tifies to cover &ubject
Treein the IR with instructions that minimize the cost using acfefransformer Trees

The Davidson Fraser model advocates simple instructicacgeh and optimizes
the selected instructions. Aaxpandegenerates a naive machine dependent code using



toplev front pass
main end manage
/ U‘ pass 1
langhook — . code for
900 ‘- ° paSSl
YYVY GIMPLE y pass 2 [code for
code for | Passes b ™ pass 2
chosen *
language ¢
¢ .pass expand expander code generated code
’ optab_tablei E insn_data
¢ passn—1
— _| code for
" passn—1
RTL *
passes 1 passn
| Pattern
hd | matcher

Fig.3. GCC's adaptation of the Davidson Fraser Model. Gray boxpesesent target
dependent code. Double arrows represent control flow;eegbws represent pointers.

transformer trees (most often RTL trees) by employing seamgtructure based tiling|[4]
The final code is produced byracognizerthat identifies the instruction$nst) corre-
sponding to the register transfers representing the irgdiae code. Retargetting a
compiler in Davidson Fraser model requires rewriting theagder and the recognizer
which employ simple algorithms. A generic optimizer for mae dependent code is
possible because of the following key idéhen computations are expressed in the
form of allowable register transfers, although the actuedjister transfer statements
are machine dependent, their form is machine independent

Figure3 illustrates GCC's adaptation of Davidson FrasedehcdContemporary ver-
sions of GCC employ many optimizations at the machine inddeet level on GIM-
PLE representation which is a three address code and thedsipgenerates RTL code
from GIMPLE and not abstract syntax trees. More importasthce the form of regis-
ter transfers is machine independent, GCC isolates theimashecific information in
carefully defined data structures. Thus a compiler for a meget can be constructed us-
ing generator programs that read machine descriptionsatahitiate these data struc-
tures; the expander need not be rewritten manually. Thegrézer (called goattern
matcherin GCC) uses a finite automaton and is generated from maclkesaigtions.
Figure[4 compares GCC with two frameworks that use the Davidgaser model:
Zephyr which uses VPQ [3] for code generation and Quiek [6] which is a proto-
type that generates code comparable with production guainpilers.



| GCC | Zephyr/VPO | Quickc-- |

E Transformation Trees(T)|RTL templates RTL templates |Expansion tiles
C
8 |Nature of TT Target dependent  |Target dependeilitarget independent
] Fixing shapes ofl T MD writing MD writing Framework design
= Pattern matching LR parsing .
&| TT—Inst method using finite automatof{Yacc based) Pattern matching
c T B
&| TT— Inst mapping Fixed manually Discovered Discovered
S automatically |automatically
@ [Ti isi - . i
Time of dewsmg MD writing Compilation Compller.
TT— Inst mapping construction

Fig. 4. Comparing some code generators in Davidson Fraser modet: /nst denotes
the translations performed by recognizer.

3 Measuring Redundancy in RTL Templates

The motivating example in Figulé 1 illustrates the exiseeoictwo kinds of redundan-
cies in machine descriptions:

1. If we treat the modes, predicates, and constraints alsudés of the nodes, then a
large number of instructions have identical structures differences restricted to
the attributes of the nodes.

2. Many structures have common sub-structures of the faligdwo kinds:

(a) There may be an overlap in two structures. For exampestifucture ofacc
instruction has an overlap with the structures£ad andmul.
(b) A structure may appear as a substructure in some othetste.

Redundancies of the kinfl(1) aid12b) were measured as ®|[06}. An .md file
parser sorts the RTL templates in ard file by the height of their trees where the height
of atree is the length of the longest path from the root to frlede. Then the trees with
heighti are compared with all trees of heightb discover the instances of redundancy
(@ and all trees of height- j, 1 < j <i to discover the instances of redundaricy (2b).
We call a tree as a primitive trees if it cannot be expressea @smposition of other
trees appearing in thand file. The table below summarizes our measurements.

MD Eile | Total numbefNumber of | Number of times primitive trees
of patterns | primitive treeg are used to create composite trees

i386.md 1303 349 4308
arm.md 534 232 1369
mips.md 337 147 921

Itis clear that RTL templates have a high amount of redungartee MIPS and ARM
machine descriptions have less redundancy compared toTB&6is because they are
RISC architectures and i386 is a CISC architecture. Distogeedundancy[(2a) au-
tomatically is a much harder problem and was not attemptesveder, it is easy to
visualize the presence of such redundancy as seen in thefaasec instruction.

Clearly there is a need of a better specification mechanisméchine descriptions
to make them simpler and more understandable.



4 specRTL: A Language for Specifying RTL Templates

We introducespecRTL by creating the patterns for describing some of the RTL tem-
plates in our motivating example. A complete grammaipetRTL and other resources
are available @ttp: //www.cse.iitb.ac.in/grc/index.php?page=specRTL.

4.1 An Overview of specRTL

Based on the observations in our motivating example (Fi@iurere view the following
key ideas aspecRTL requirements.

1. It should be possible to create abstract structures of ®niplates that can be
refined later to create new RTL templates.
2. Following three kinds of refinements should be possible:
(a) Composing abstract structures to create new abstractigtes.
(b) Instantiating abstract structures with concrete tketai
(c) Changing concrete details without changing the strnectu

specRTL meets the above requirements by providing a mechanism &eabstract
patternswhich can be refined intooncrete patternsEach pattern represents a partic-
ular computation and can be viewed as an operation with a fixsetber of operands
(except for patterns involving the RTL operajgarallel or a sequence of RTL tem-
plates). Recall the key idea from the Davidson Fraser médtlough register transfers
are machine dependent, their form is not. Abstract pattenmesent the form and the
concrete patterns represent their machine dependentdesta

The structure of a pattern is represented by a tree in which g#ernal node is
labeled with an RTL operator. We allow the leaf nodes to reraispecified; such leaf
nodes are called abstract nodes. A concrete leaf node celddGMPLE operand to
be matched, a fixed register, a constant value, replicatianother leaf node, or a
number. What separates an internal node from a leaf nodatisthinternal node has
an RTL expression as its operand and can have omig@eas its attribute. An abstract
pattern must have at least one abstract node and its arigfiized by the number of
abstract nodes. A concrete pattern cannot have any abstidet By definition, each
RTL operator is an abstract pattern with known fixed arity.

The pattern which is refined is callecbase patternThe resulting pattern is called
a derived pattern Refinement of patterns is supported by the following openat
extends, instantiates, andoverrides. These operations directly correspond to
the requirementg (Pa),_(Rb), aridl(2c) above. The patter igextends to replace
a leaf node in the base pattern is calledextender pattemthis must be an abstract
patterrﬂ The properties of these operations are described below.

| Operation |Base patterjperived patterfNodes influencel@an change

extends | Abstract Abstract Leaf nodes | Structure
instantiates| Abstract Concrete All nodes Attributes
overrides Abstract Abstract Internal nodes Attr?butes

Concrete Concrete All nodes Attributes

11t is tempting to view our refinement as inheritance in objetented languages. However,
specRTL does not have class-object or function-data dichotomy.


http://www.cse.iitb.ac.in/grc/index.php?page=specRTL

4.2 Creating Abstract Patternsin specRTL

First we define an abstract pattern calkeet_plus by extending the abstract pattern
set using another abstract pattgrhus. In this caseset is the base patterset_plus
is the derived pattern, and us is the extender pattern.

?bstract set_plus extends set root
root.2 = plus; root.1 root.2
} root.2.1 root.2.2

Effectively, this specification makes a copy ©6t and replaces its second operand
(root.2)byplus. Hence the rootnode ekt _plusisthe RTL operatoget. The arity

of set_plus is 3 because it has three unspecified (and hence abstrdetptizs. Now
we create an abstract pattern calegt _macc to represent multiply and accumulate
operations by plugging in the RTL operatatlt as the third operand afet_plus.
Note that the arity ofet_macc is 4.

abstract set_macc extends set_plus

{

root.2.2 = mult;

}

root.2.2.1 root.2.2.2

We use the specification ebranch<mode>4 in mips.md in order to show the rich
set of possibilities ikpecRTL:

(define_expand "cbranch<mode>4"
[(set (pc)
(if_then_else (match_operator O "comparison_operator"
[(match_operand:GPR 1 "register_operand")
(match_operand:GPR 2 "nonmemory_operand")])
(label_ref (match_operand 3 ""))
(pc)))]

We create the structure of the instruction using the ahigpetternset _if _then_else.
The internal nodes of the pattern are RTL operatdrgshen_else, match operator,
andlabel ref.

abstract set_if_then_else extends set
{
root.2 = if_then_else;
root.2.1 = match_operator("comparison_operator"
[register_operand:GPR:"",
nonmemory_operand:GPR:""]);
root.2.2 = label_ref;

}




Since we have specified the concrete details of the operdn@soh_operator, this
pattern has two concrete leaf nodesot.2.1.1androot.2.1.2. It has three abstract
leaf nodesroot. 1 (the LHS ofset), root.2.2.1 (the operand ofabel_ref), and
finally root.2.3 (the third operand oif_then_else). Needless to say, a different
choice of concrete and leaf nodes is also possible in thes cas

4.3 Creating Concrete Patternsin specRTL

Concrete patterns are created by two operatianstantiates (which defines at-

tributes in terms of concrete details) amekrrides (which changes the attributes). An

RTL operator cannot be changed directly; it requires extend base pattern suitably.
Specification of concrete patterns has the following syntax

concrete spec_header { in_specs } {: othersstuff :} { out_specs }

in_specs and out_specs describe thenput andoutputRTL templates. Thether_stuff
could be boolean conditions, assembly output formats, @ etel required in the con-
ventional machine descriptions. Delimitefs and :} are used to simplify parsing.
Whenother_stuff or out_specs are not required, we also omit the delimiters. For sim-
plicity we ignoreout_specs andother_stuff in this paper.

We now instantiate the base pattest_plus to specify the concrete patterns for
define_insn "add<mode>3" anddefine expand "add<mode>3".

concrete add<mode>3.insn instantiates set_plus
{ set_plus(register_operand:ANYF:"=f", register_operand:ANYF:"f",
register_operand:ANYF:"f");
root.2.mode = ANYF;

}
concrete add<mode>3.expand instantiates set_plus
{ set_plus(register_operand:GPR:"", register_operand:GPR:"",
arith_operand:GPR:"");
root.2.mode = GPR;
}

The suffixesinsn andexpand attached to the nameld<mode>3 specify whether the
RTL template is to be generated fi¥fine_insnordefine_expand. Additional suf-
fixes such agpeephole2, attr etc. can be used for each kind adefine_" sup-
ported in the conventional machine descriptions. The moelator <mode> is car-
ried over unchanged from the conventional machine desonigt Attributes of the
operands of the base pattewit _plus are specified by supplying three arguments with
the syntaxpredicate : mode: constraints. There are no constraints in our template for
define_expand "add<mode>3" and hence empty strings' are specified.

Concrete details of leaf nodes are specified using the follgwyntax. The names
that appear foregister_specifier andconstant_specifier andregister_name are reserved
words inspecRTL.



[Type of leaf |Specification Syntax

GIMPLE operand |predicate : mode : constraints

Scratch operand |mode : constraints

Fixed register register_specifier ( mode : register_.name ) Of register_name
Constant Value constant_specifier : value : mode (mode is optional)
Copy of another leaduplicate leaf-number

Number |number

The mode of an internal node can be assigned by describingatimeof the node
from the root. The mode of a leaf node can also be assignedimilaismanner. How-
ever, assigning it as an argument of the base pattern narmadse and simpler.

The RTL templates of the remaining two patterns for additidffer from that in
add<mode>3.expand only in terms of constraints. Hence it is more convenientero
ride it and merely change the constraints as shown below.

concrete *add<mode>3.insn overrides add<mode>3.expand
{ allconstraints = ("=d,d", "d4,4", "d,Q"); }

We create the first multiplication pattern in order to show additional useful features.

concrete *mul<mode>3.insn instantiates set_mult
{ set_mult(register_operand:SCALARF:"=f",

register_operand:SCALARF:"f", register_operand:SCALARF:"f");
root.2.mode = SCALARF;

}

The RTL template ofmul<mode>3_r4300is identical to that okmul<mode>3 whereas
mulv2sf3 differs from *mul<mode>3 only in that the modeCALARF is replaced by
V2SF for each node. These can be specified as shown below.

concrete *mul<mode>3_r4300.insn overrides *mul<mode>3.insn

{

concrete mulv2sf3 overrides *mul<mode>3.insn
{ SCALARF -> V2SF; }

Now we instantiate the abstract pattest_if_then_else to create the concrete
patterncbranch<mode>4 . expand. By our design, this requires supplying the concrete
details of the LHS oket, the GIMPLE operand ofabel_ref, and the third operand
of if _then_else (which is the destination it the condition is false).

concrete cbranch<mode>4.expand instantiates set_if_then_else
{ set_if_then_else(pc, null:NULL:"", pc); }

Herepc is a fixed register. GIMPLE operand to be matchedfabel_ref has no
mode, predicate, or constraints.

If there is no need to override a concrete pattern name, thigjueness of names
among the set of one particular kindd@¥fine_ is not essential. For creating unnamed
patterns the name can be dropped and the header could b#lgittesicrete .insn”.



{: pre_stuff :} pre_stuff

abstract aspec_header middle_stuff

{ a_specs } (

{: middle_stuff :} header for appropriate define_
concrete spec_header @ [ in_rtl_template ]

{ in_specs } other_stuff

{: other_stuff :} [ out_rtl_template ]

{ out_specs } )

{: post_stuff :} post_stuff

Fig.5. Translation performed by a&pecRTL compiler. pre_stuff, middle_stuff,
other_stuff, andpost_stuff refer to the other text that appears in the conventional ma-
chine descriptions. All of them (andit_specs) are optional along with their delimiters.

5 Advantages of Using specRTL in GCC

Since abstract patterns capture the structure or form opatgaion by hiding the details
that vary, a large number of abstract patterns are commownsb machine descriptions.
Thus it is possible to create a basis set of abstract pattieahsan be shared by most
machine descriptions. This is expected to reduce the simeachine descriptions sig-
nificantly and would simplify the task of writing machine dégtions.

Further,specRTL integrates seamlessly with conventional machine desgznipt
Figure[3 illustrates the translation performed bspacRTL compiler. Theabstract
specifications are read and relevant information is stotgdhe output corresponds to
the concrete specifications. Everything else is treated as a commentiistead of
ignoring, it is copied to the output. This has two pleasamtseguences: In order to
start usingspecRTL, neither the GCC source needs to be changed, nor the machine
descriptions need to be re-written completely; they cangmated incrementally and
each increment can be validated by building GCC.

Thus, not only arapecRTL based machine descriptions smaller and simpler, mi-
gration to them is an external, incremental, and non-disreghange in GCC.

6 Redated Work

Languages to describe instruction set architectures ([S/AY.12,18,14] have been
found useful in hardware software co-design. However, geimg a production qual-
ity code generator for a processor like x86 requires muchenmdormation than just
the ISA. GCC machine descriptions are large because theysaa to generate the
expander, recognizer, as also machine dependent optavf@eoptimizations such as
instruction scheduling, peephole optimizations etc. ®aie- [6] uses a combination of
SLED [13]andA-RTL [12] and processes them to generate only the recogrizether
phases are fixed in the framework. Hence its machine deiseripare much smaller.
specRTL is a follow up of an attempt to design a mechanism of factoomgcom-
mon information in.md files [10]. This was achieved by supporting a new construct
calleddefine_rtltemplate which creates a named RTL template that is parameter-
ized for variable parts. A named RTL template is then inged using the construct



define_pattern by supplying parameters. Similarly, the variations in Ceade ab-
stracted out usingefine_code that names the code fragments and allows them to be
parameterized. These names can then be used with appeopaic@meters where re-
quired. A parser reads the machine descriptions contathige new constructs (along
with the conventional constructs) and generates convegitiond files. Machine de-
scriptions for i386 and rs6000 were rewritten using thesestacts. They were vali-
dated by doing a native build for i386 GCC and runnitike check. The humbers
below show the redundancy encountered and reductionstierpsit

define_rtltemplate|define_code|define_patterns|define_insn|define_expand

Defs Uses | Defs|Uses Defs | Uses | Old |New| OIld | New
i386.md 295 1638 | 42 | 150| 170 - 622| 350| 236 | 159
rs6000.md| 94 578 2 4 36 - 577|491| 167 | 134

Usingdefine_rtltemplate requires identifying and naming all parameters of a
template which is tedious and error-pronpecRTL obviates this need by allowing
abstract nodes which are left implicit and can be concrétizken needed by naming
their paths from the root. Further, the mechanismrefine_rtltemplate is highly
contextual and restrictive in that it has to be written wifleaticular. md file in mind. It
seems difficult to write generdkfine_rtltemplate that are common across a large
number of machine descriptiorspecRTL makes this possible.

Gimple Back End|[[1]7] is an ambitious project that plans tonglate RTL from
GCC completely and build a recognizer that accepts GIMPLte plan as of now is
to use CGEN[[B] as the specification mechanism for machineriti®ns. We believe
that this change is disruptive and non-incremental.

7 Conclusionsand Future Work

specRTL facilitates smaller, simpler, and more understandablehmacdescriptions.
Abstract patterns provide target independence and heraramon basis set of patterns
that can be refined as needed for a target would be of a grgat BieicespecRTL
integrates seamlessly with conventional machine deswnigt migration tospecRTL

is an external, incremental, and non-disruptive procets f@iv regressions, if any, in
each step. Further, constructing new machine descriptieosmes much easier.

We would like to create a basis set of abstract patterns shedrnmon to a large
number of targets. A a medium term goal, we would like to esglte possibility of
using smaller declarative machine descriptions fedRTL or SLED [12,13]) to con-
cretize the basis set for a given target. We believe thaigtashievable because of the
following reason: Although RTL is target independent, REmplates are target depen-
dentin GCC because they combine shapes with target défails.separate them and
construct targetindependent shapes, it may be possibleitdéirget details by reading
crisp and succint descriptions of ISA. We would also likextplere combining actions
in the spirit of modular attribute grammars [7].

Eventually, we want to improve code generation in GCC. Thguires changing
machine descriptions and the retargetability mechanisranging both of them simul-
taneously is a big architectural change that is radical aitikily to be disruptive. It may



be preferable to first migrate all existing machine desimi to a clean and concise
form without changing code generation, and then changedtie generation strategy.

Acknowledgments

Abhijat Vichare, Sameera Deshpande, Sagar Kamble, Kekakifie, and Ashish Mishra
have contributed to related GCC explorations. We would kksoto thank the refrees
for valuable suggestions. Ankita is funded by the DIT grant.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

A. V. Aho and S. C. Johnson. Optimal code generation foresgion trees. I$TOC '75:
Proceedings of seventh annual ACM symposium on Theory giutorg pages 207-217,
1975.

. A. V. Aho and J. D. UlimanPrinciples of Compiler DesignAddison-Wesley, 1977.
. A. Appel, J. Davidson, and N. Ramsey. The zephyr compifeastructure. Technical report,

1998.  http://lwww.cs.virginia.edu/zephyr/overviewa8(hast accessed on 28 Jan 2011).

. A. W. Appel and M. GinsburgModern Compiler Implementation in.@ambridge Univer-

sity Press, 1998.

. J. W. Davidson and C. W. Fraser. Code selection througkcbbpde optimizationACM

Trans. Program. Lang. Sys6:505-526, October 1984.

. J. Dias and N. Ramsey. Automatically generating insimactelectors using declarative ma-

chine descriptions. IRroceedings of the 37th annual ACM SIGPLAN-SIGACT symposiu
on Principles of programming languaggzages 403416, 2010.

. G. D. P. Dueck and G. V. Cormack. Modular attribute gransn@omput. J.33:164-172,

April 1990.

. D. Evans, F. Ch. Eigler, B. Elliston, and D. Brolley. CGEhg Cpu tools GENerator, 2009.

http://sourceware.org/cgen/ (Last accessed on Jan 28).201

. A. Fauth, J. Van Praet, and M. Freericks. Describing irtsimn set processors using nml.

In EDTC '95: Proceedings of the 1995 European conference ornigdesd Testpage 503,
Washington, DC, USA, 1995. IEEE Computer Society.

S. Kamble. Improved machine descrition specificatiogdc. Master’s thesis, Department
of Computer Science and Engineering, IIT Bombay, 2010.

R. Leupers and P. Marwedel. Retargetable code genefagi®ed on structural processor
description.Design Automation for Embedded Syste®85—-108, 1998.

N. Ramsey and J. W. Davidson. Machine descriptions td bols for embedded systems.
In In ACM SIGPLAN Workshop on Languages, Compilers, and TooErhbedded Systems
(LCTES98), volume 1474 of LNQ&ges 172-188. Springer Verlag, 1998.

N. Ramsey and M. F. Fernandez. Specifying representatf machine instructionACM
Trans. Program. Lang. Systl9:492-524, May 1997.

O. Schliebusch, A. Hoffmann, A. Nohl, G. Braun, and H. KM&ychitecture implementation
using the machine description language lisa.Phceedings of the 2002 Asia and South
Pacific Design Automation Conferen@SP-DAC '02, pages 239—, Washington, DC, USA,
2002. IEEE Computer Society.

P. Shankar. Instruction selection using tree parsimgThie Compiler Desigh Handbopk
pages 565-602. 2002.

K. Tiwatne and A. Mishra. Measuring redundancy in maehdascriptions. Internal Docu-
ment, GCC Resource Center, Dept. of Computer Science angl HiigBombay, 2010.

K. Zadeck. GBE: A gimple back end for GCC, 2009. httpz/gou.org/wiki/gimplebackend
(Last accessed on Jan 28, 2011).


http://www.cs.virginia.edu/zephyr/overview98.ps
http://sourceware.org/cgen/
http://gcc.gnu.org/wiki/gimplebackend

