
specRTL: A Language for GCC Machine Descriptions

Uday P. Khedker, Ankita Mathur

GCC Resource Center⋆,
Dept. of Computer Science and Engg., IIT Bombay, India

{uday,ankitam}@cse.iitb.ac.in

Abstract. The mechanism of GCC machine descriptions has been quite success-
ful as demonstrated by a wide variety of targets for which GCCports exist. How-
ever, this mechanism is quite ad hoc and the machine descriptions are difficult
to read, construct, maintain, and enhance because of the verbosity, repetitive-
ness, and the amount of details. We propose a language calledspecRTL which
provides a compositional specification mechanism for defining patterns that de-
scribe RTL templates in machine descriptions. These patterns can be refined by
extending them and by associating concrete details with them in a need based
manner. Machine descriptions written usingspecRTL are smaller and simpler
and hence easy to read, construct, and maintain.specRTL integrates with con-
ventional machine descriptions seamlessly. SincespecRTL compiler generates
the conventional machine descriptions, GCC source need notchange. This en-
ables external, incremental and non-disruptive migrationof the existing machine
descriptions tospecRTL and construction of new machine descriptions thereby
paving way for a smooth transition to better code generationin GCC.

1 Introduction

The Gnu Compiler Collection uses a retargetable compilation model which is adapted
to a given target by reading a description of the target and instantiating the machine
dependent parts of the generated compiler. This mechanism has been quite successful
as demonstrated by a wide variety of targets for which a GCC port exists. However,
this mechanism is quite ad hoc and the machine descriptions are difficult to read, con-
struct, maintain, and enhance. They require specifying instruction patterns using Regis-
ter Transfer Language (RTL) templates using a mechanism which is verbose, repetitive,
non-composable, and requires a lot of details.

A typical RTL template looks as follows. Here the name of the instruction isaddsi3.

(define_insn "addsi3"

[(set (match_operand:SI 0 "register_operand" "=r")

(plus:SI (match_operand:SI 1 "register_operand" "r")

(match_operand:SI 2 "register_operand" "r")))]

"" /* C boolean expression, if required */

"add \t%0 %1 %2"

)

⋆ http://www.cse.iitb.ac.in/grc. Funded by the Dept. of Information Technology, Gov. of India,
as a part of the National Resource Center for Free and Open Source Software (NRCFOSS).

http://www.cse.iitb.ac.in/grc

Addition(Most templates reproduced below appear indefine_insn) Structure

[(set (match_operand:m 0 "register_operand" "c0")
(plus:m (match_operand:m 1 "register_operand" "c1")

(match_operand:m 2 "p" "c2")))]

=

+

Pattern name m p c0 c1 c2

add<mode>3 ANYF register operand =f f f
define expand
add<mode>3 GPR arith operand

*add<mode>3 GPR arith operand =d,d d,d d,Q

*add<mode>3 mips16 GPR arith operand =ks,d,d,d,d ks,ks,0,d,d Q,Q,Q,O,d

Multiplication (Most templates reproduced below appear indefine_insn)
[(set (match_operand:m 0 "register_operand" "c0")

(mult:m (match_operand:m 1 "register_operand" "c1")
(match_operand:m 2 "register_operand" "c2")))]

Structure

=

∗

Pattern name m c0 c1 c2

*mul<mode>3 SCALARF =f f f

*mul<mode>3 r4300 SCALARF =f f f

mulv2sf3 V2SF =f f f

define expand mul<mode>3 GPR

mul<mode>3 mul3 loongson GPR =d d d

mul<mode>3 mul3 GPR d,1 d,d d,d

Multiply and accumulate(All templates reproduced below appear indefine_insn)

[(set (match_operand:m 0 "register_operand" "c0")
(plus:m (mult:m (match_operand:m 1 "register_operand" "c1")

(match_operand:m 2 "register_operand" "c2")))]
(match_operand:m 3 "register_operand" "c3")))]

Structure

=

+

∗

Pattern name m c0 c1 c2 c3

mul acc si SI =l?*?,d? d,d d,d 0,d

mul acc si r3900 SI =l?*?,d*?,d? d,d,d d,d,d 0,1,d

*macc SI =l,d d,d d,d 0,1

*madd4<mode> ANYF =f f f f

*madd3<mode> ANYF =f f f 0

Fig. 1. RTL templates inmips.md parameterized by modes (m), predicates (p) and con-
straints (c0, c1, c2, c3) to highlight the verbosity, repetitiveness, and non-composability.

The inner box contains the RTL template of the computation required for addition
and the last line in the outer box contains its assembly format. The RTL template
uses RTL operatorsset and plus; the former represents an assignment. Operator
match_operand matches an operand using a mode (SI for single integer), a predicate
(register_operand), and constraint strings ("=r", "r" and"r"). Given a GIMPLE
statementa = b + c, first an RTL statement is generated and then the assembly state-
ment is generated eventually.

Figure 1 lists some RTL templates that appear in the filemips.md which is a part
of the MIPS machine descriptions. We have parameterized thetemplates with mode,
predicates, and constraints to highlight the fact that several RTL templates share the

Source
Program

Front
End AST Optimizer machine

ind. IR
Code

Generator
Target

Program

Front
End AST Expander RTL Optimizer RTL Recognizer Target

Program

Aho Ullman Model

Davidson Fraser Model

Fig. 2. Classical Compilation Models

same structure and differences in them correspond to different values of target specific
attributes. GCC machine descriptions do not have any construct to create such structures
and instantiate them by specifying attribute values as needed. Besides, the RTL template
for multiply and accumulate instruction can be viewed as a composite structure that
combines the structures for add and multiply instructions.However, the specification
mechanism does not allow creation and composition of such structures.

We propose a language calledspecRTL which provides a compositional specifi-
cation mechanism for defining patterns that describe RTL templates by providing a
clean separation between the shapes of the templates and thetarget specific details.
This is achieved by supporting creation ofabstract patterns. They can be composed
and instantiated with concrete details to createconcrete patternsas required. For this
purpose,specRTL provides well-defined simple refinement operators calledextends,
instantiates, and overrides. Machine descriptions written usingspecRTL are
smaller and simpler and hence easy to read, construct, and maintain. Further,specRTL
integrates with conventional machine descriptions seamlessly. SincespecRTL compiler
generates the conventional machine descriptions, there isno need to change the GCC
source. This enables external, incremental and non-disruptive migration of the existing
machine descriptions tospecRTL and easier construction of new machine descriptions
thereby enabling a smooth transition to a better code generation strategy in GCC.

The rest of the paper is organized as follows: Section 2 reviews the retargetability
model of GCC. Section 3 presents empirical measurements of redundancy in machine
descriptions.specRTL is presented in Section 4. Section 5 discusses the advantages
of using specRTL for GCC. A brief description of the related work is presentedin
Section 6. Section 7 concludes the paper.

2 The Retargetability Model of GCC

GCC uses a modified version of the Davidson Fraser model of compilation [5]. Fig-
ure 2 contrasts this model with the traditional Aho Ullman model [2] which performs
instruction selection over optimized machine independentintermediate representation
(IR). In order to ensure the quality of generated code, instruction selection in Aho Ull-
man model is performed using cost based tree tiling [1,15] that tries to cover aSubject
Treein the IR with instructions that minimize the cost using a setof Transformer Trees.

The Davidson Fraser model advocates simple instruction selection and optimizes
the selected instructions. Anexpandergenerates a naive machine dependent code using

toplev
main

front
end

pass
manager

pass 1

pass 2

. . .
pass expand

. . .
passn−1

passn

code for
pass 2

code for
pass 1

code for
passn−1

Pattern
matcher

expander code

optab table

langhook
. . .

code for
chosen
language

generated code

insn data

GIMPLE
passes

RTL
passes

Fig. 3. GCC’s adaptation of the Davidson Fraser Model. Gray boxes represent target
dependent code. Double arrows represent control flow; single arrows represent pointers.

transformer trees (most often RTL trees) by employing simpler structure based tiling [4]
The final code is produced by arecognizerthat identifies the instructions (Inst) corre-
sponding to the register transfers representing the intermediate code. Retargetting a
compiler in Davidson Fraser model requires rewriting the expander and the recognizer
which employ simple algorithms. A generic optimizer for machine dependent code is
possible because of the following key idea:When computations are expressed in the
form of allowable register transfers, although the actual register transfer statements
are machine dependent, their form is machine independent.

Figure 3 illustrates GCC’s adaptation of Davidson Fraser model. Contemporary ver-
sions of GCC employ many optimizations at the machine independent level on GIM-
PLE representation which is a three address code and the expander generates RTL code
from GIMPLE and not abstract syntax trees. More importantly, since the form of regis-
ter transfers is machine independent, GCC isolates the machine specific information in
carefully defined data structures. Thus a compiler for a new target can be constructed us-
ing generator programs that read machine descriptions and instantiate these data struc-
tures; the expander need not be rewritten manually. The recognizer (called apattern
matcherin GCC) uses a finite automaton and is generated from machine descriptions.
Figure 4 compares GCC with two frameworks that use the Davidson Fraser model:
Zephyr which uses VPO [3] for code generation and QuickC-- [6] which is a proto-
type that generates code comparable with production quality compilers.

GCC Zephyr/VPO QuickC--

E
xp

an
de

r
Transformation Trees (TT) RTL templates RTL templates Expansion tiles

Nature ofTT Target dependent Target dependentTarget independent

Fixing shapes ofTT MD writing MD writing Framework design

R
ec

og
ni

ze
r

TT→Inst method
Pattern matching
using finite automaton

LR parsing
(Yacc based)

Pattern matching

TT→Inst mapping Fixed manually
Discovered
automatically

Discovered
automatically

Time of devising
TT→Inst mapping

MD writing Compilation Compiler
construction

Fig. 4. Comparing some code generators in Davidson Fraser model.TT→ Inst denotes
the translations performed by recognizer.

3 Measuring Redundancy in RTL Templates

The motivating example in Figure 1 illustrates the existence of two kinds of redundan-
cies in machine descriptions:

1. If we treat the modes, predicates, and constraints as attributes of the nodes, then a
large number of instructions have identical structures with differences restricted to
the attributes of the nodes.

2. Many structures have common sub-structures of the following two kinds:
(a) There may be an overlap in two structures. For example, the structure ofmacc

instruction has an overlap with the structures foradd andmul.
(b) A structure may appear as a substructure in some other structure.

Redundancies of the kind (1) and (2b) were measured as follows [16]. An.md file
parser sorts the RTL templates in an.md file by the height of their trees where the height
of a tree is the length of the longest path from the root to a leaf node. Then the trees with
heighti are compared with all trees of heighti to discover the instances of redundancy
(1) and all trees of heighti − j, 1≤ j ≤ i to discover the instances of redundancy (2b).
We call a tree as a primitive trees if it cannot be expressed asa composition of other
trees appearing in the.md file. The table below summarizes our measurements.

MD File Total number
of patterns

Number of
primitive trees

Number of times primitive trees
are used to create composite trees

i386.md 1303 349 4308
arm.md 534 232 1369
mips.md 337 147 921

It is clear that RTL templates have a high amount of redundancy. The MIPS and ARM
machine descriptions have less redundancy compared to i386. This is because they are
RISC architectures and i386 is a CISC architecture. Discovering redundancy (2a) au-
tomatically is a much harder problem and was not attempted. However, it is easy to
visualize the presence of such redundancy as seen in the caseof macc instruction.

Clearly there is a need of a better specification mechanism for machine descriptions
to make them simpler and more understandable.

4 specRTL: A Language for Specifying RTL Templates

We introducespecRTL by creating the patterns for describing some of the RTL tem-
plates in our motivating example. A complete grammar ofspecRTL and other resources
are available athttp://www.cse.iitb.ac.in/grc/index.php?page=specRTL.

4.1 An Overview of specRTL

Based on the observations in our motivating example (Figure1), we view the following
key ideas asspecRTL requirements.

1. It should be possible to create abstract structures of RTLtemplates that can be
refined later to create new RTL templates.

2. Following three kinds of refinements should be possible:
(a) Composing abstract structures to create new abstract structures.
(b) Instantiating abstract structures with concrete details.
(c) Changing concrete details without changing the structure.

specRTL meets the above requirements by providing a mechanism to createabstract
patternswhich can be refined intoconcrete patterns. Each pattern represents a partic-
ular computation and can be viewed as an operation with a fixednumber of operands
(except for patterns involving the RTL operatorparallel or a sequence of RTL tem-
plates). Recall the key idea from the Davidson Fraser model:Although register transfers
are machine dependent, their form is not. Abstract patternsrepresent the form and the
concrete patterns represent their machine dependent instances.

The structure of a pattern is represented by a tree in which each internal node is
labeled with an RTL operator. We allow the leaf nodes to remain unspecified; such leaf
nodes are called abstract nodes. A concrete leaf node could be a GIMPLE operand to
be matched, a fixed register, a constant value, replication of another leaf node, or a
number. What separates an internal node from a leaf node is that an internal node has
an RTL expression as its operand and can have only amodeas its attribute. An abstract
pattern must have at least one abstract node and its arity is defined by the number of
abstract nodes. A concrete pattern cannot have any abstractnode. By definition, each
RTL operator is an abstract pattern with known fixed arity.

The pattern which is refined is called abase pattern. The resulting pattern is called
a derived pattern. Refinement of patterns is supported by the following operations:
extends, instantiates, andoverrides. These operations directly correspond to
the requirements (2a), (2b), and (2c) above. The pattern used by extends to replace
a leaf node in the base pattern is called anextender pattern; this must be an abstract
pattern.1 The properties of these operations are described below.

Operation Base patternDerived patternNodes influencedCan change

extends Abstract Abstract Leaf nodes Structure
instantiates Abstract Concrete All nodes Attributes

overrides
Abstract Abstract Internal nodes Attributes
Concrete Concrete All nodes Attributes

1 It is tempting to view our refinement as inheritance in objectoriented languages. However,
specRTL does not have class-object or function-data dichotomy.

http://www.cse.iitb.ac.in/grc/index.php?page=specRTL

4.2 Creating Abstract Patterns in specRTL

First we define an abstract pattern calledset_plus by extending the abstract pattern
set using another abstract patternplus. In this caseset is the base pattern,set_plus
is the derived pattern, andplus is the extender pattern.

abstract set_plus extends set

{
root.2 = plus;

}

= root

root.1 + root.2

root.2.1 root.2.2

Effectively, this specification makes a copy ofset and replaces its second operand
(root.2) byplus. Hence the root node ofset_plus is the RTL operatorset. The arity
of set_plus is 3 because it has three unspecified (and hence abstract) leaf nodes. Now
we create an abstract pattern calledset_macc to represent multiply and accumulate
operations by plugging in the RTL operatormult as the third operand ofset_plus.
Note that the arity ofset_macc is 4.

abstract set_macc extends set_plus

{
root.2.2 = mult;

}

= root

root.1
+ root.2

root.2.1
∗ root.2.2

root.2.2.1 root.2.2.2

We use the specification ofcbranch<mode>4 in mips.md in order to show the rich
set of possibilities inspecRTL:

(define_expand "cbranch<mode>4"

[(set (pc)

(if_then_else (match_operator 0 "comparison_operator"

[(match_operand:GPR 1 "register_operand")

(match_operand:GPR 2 "nonmemory_operand")])

(label_ref (match_operand 3 ""))

(pc)))]

We create the structure of the instruction using the abstract patternset if then else.
The internal nodes of the pattern are RTL operatorsif then else, match operator,
andlabel ref.

abstract set_if_then_else extends set

{
root.2 = if_then_else;

root.2.1 = match_operator("comparison_operator"

[register_operand:GPR:"",

nonmemory_operand:GPR:""]);

root.2.2 = label_ref;

}

Since we have specified the concrete details of the operands of match_operator, this
pattern has two concrete leaf nodes:root.2.1.1androot.2.1.2. It has three abstract
leaf nodes:root.1 (the LHS ofset), root.2.2.1 (the operand oflabel_ref), and
finally root.2.3 (the third operand ofif_then_else). Needless to say, a different
choice of concrete and leaf nodes is also possible in this case.

4.3 Creating Concrete Patterns in specRTL

Concrete patterns are created by two operations:instantiates (which defines at-
tributes in terms of concrete details) andoverrides (which changes the attributes). An
RTL operator cannot be changed directly; it requires extending a base pattern suitably.

Specification of concrete patterns has the following syntax:

concrete spec header { in specs } {: other stuff :} { out specs }

in specs andout specs describe theinput andoutputRTL templates. Theother stuff
could be boolean conditions, assembly output formats, C code etc. required in the con-
ventional machine descriptions. Delimiters{: and :} are used to simplify parsing.
Whenother stuff or out specs are not required, we also omit the delimiters. For sim-
plicity we ignoreout specs andother stuff in this paper.

We now instantiate the base patternset_plus to specify the concrete patterns for
define insn "add<mode>3" anddefine expand "add<mode>3".

concrete add<mode>3.insn instantiates set_plus

{ set_plus(register_operand:ANYF:"=f", register_operand:ANYF:"f",

register_operand:ANYF:"f");

root.2.mode = ANYF;

}
concrete add<mode>3.expand instantiates set_plus

{ set_plus(register_operand:GPR:"", register_operand:GPR:"",

arith_operand:GPR:"");

root.2.mode = GPR;

}

The suffixesinsn andexpand attached to the nameadd<mode>3 specify whether the
RTL template is to be generated fordefine_insn or define_expand. Additional suf-
fixes such aspeephole2, attr etc. can be used for each kind of “define_” sup-
ported in the conventional machine descriptions. The mode iterator<mode> is car-
ried over unchanged from the conventional machine descriptions. Attributes of the
operands of the base patternset_plus are specified by supplying three arguments with
the syntaxpredicate:mode:constraints. There are no constraints in our template for
define expand "add<mode>3" and hence empty strings"" are specified.

Concrete details of leaf nodes are specified using the following syntax. The names
that appear forregister specifier andconstant specifier andregister name are reserved
words inspecRTL.

Type of leaf Specification Syntax

GIMPLE operand predicate : mode : constraints

Scratch operand mode : constraints

Fixed register register specifier (mode : register name) or register name

Constant Value constant specifier : value : mode (mode is optional)
Copy of another leafduplicate leaf number

Number number

The mode of an internal node can be assigned by describing thepath of the node
from the root. The mode of a leaf node can also be assigned in a similar manner. How-
ever, assigning it as an argument of the base pattern name is concise and simpler.

The RTL templates of the remaining two patterns for additiondiffer from that in
add<mode>3.expandonly in terms of constraints. Hence it is more convenient to over-
ride it and merely change the constraints as shown below.

concrete *add<mode>3.insn overrides add<mode>3.expand

{ allconstraints = ("=d,d", "d,d", "d,Q"); }

We create the first multiplication pattern in order to show two additional useful features.

concrete *mul<mode>3.insn instantiates set_mult

{ set_mult(register_operand:SCALARF:"=f",

register_operand:SCALARF:"f", register_operand:SCALARF:"f");

root.2.mode = SCALARF;

}

The RTL template of*mul<mode>3_r4300 is identical to that of*mul<mode>3whereas
mulv2sf3 differs from*mul<mode>3 only in that the modeSCALARF is replaced by
V2SF for each node. These can be specified as shown below.

concrete *mul<mode>3_r4300.insn overrides *mul<mode>3.insn

{}
concrete mulv2sf3 overrides *mul<mode>3.insn

{ SCALARF -> V2SF; }

Now we instantiate the abstract patternset_if_then_else to create the concrete
patterncbranch<mode>4.expand. By our design, this requires supplying the concrete
details of the LHS ofset, the GIMPLE operand oflabel_ref, and the third operand
of if_then_else (which is the destination it the condition is false).

concrete cbranch<mode>4.expand instantiates set_if_then_else

{ set_if_then_else(pc, null:NULL:"", pc); }

Herepc is a fixed register. GIMPLE operand to be matched forlabel_ref has no
mode, predicate, or constraints.

If there is no need to override a concrete pattern name, then uniqueness of names
among the set of one particular kind ofdefine_ is not essential. For creating unnamed
patterns the name can be dropped and the header could begin with “concrete .insn”.

{: pre stuff :}
abstract aspec header

{ a specs }
{: middle stuff :}
concrete spec header

{ in specs }
{: other stuff :}
{ out specs }
{: post stuff :}

pre stuff

middle stuff

(

header for appropriate define

[in rtl template]

other stuff

[out rtl template]

)

post stuff

Fig. 5. Translation performed by aspecRTL compiler. pre stuff, middle stuff,
other stuff, andpost stuff refer to the other text that appears in the conventional ma-
chine descriptions. All of them (andout specs) are optional along with their delimiters.

5 Advantages of Using specRTL in GCC

Since abstract patterns capture the structure or form of computation by hiding the details
that vary, a large number of abstract patterns are common to most machine descriptions.
Thus it is possible to create a basis set of abstract patternsthat can be shared by most
machine descriptions. This is expected to reduce the size ofmachine descriptions sig-
nificantly and would simplify the task of writing machine descriptions.

Further,specRTL integrates seamlessly with conventional machine descriptions.
Figure 5 illustrates the translation performed by aspecRTL compiler. Theabstract
specifications are read and relevant information is stored but the output corresponds to
the concrete specifications. Everything else is treated as a comment but instead of
ignoring, it is copied to the output. This has two pleasant consequences: In order to
start usingspecRTL, neither the GCC source needs to be changed, nor the machine
descriptions need to be re-written completely; they can be updated incrementally and
each increment can be validated by building GCC.

Thus, not only arespecRTL based machine descriptions smaller and simpler, mi-
gration to them is an external, incremental, and non-disruptive change in GCC.

6 Related Work

Languages to describe instruction set architectures (ISA)[9,11,12,13,14] have been
found useful in hardware software co-design. However, generating a production qual-
ity code generator for a processor like x86 requires much more information than just
the ISA. GCC machine descriptions are large because they areused to generate the
expander, recognizer, as also machine dependent optimizers for optimizations such as
instruction scheduling, peephole optimizations etc. Quick C-- [6] uses a combination of
SLED [13] andλ -RTL [12] and processes them to generate only the recognizers—other
phases are fixed in the framework. Hence its machine descriptions are much smaller.

specRTL is a follow up of an attempt to design a mechanism of factoringout com-
mon information in.md files [10]. This was achieved by supporting a new construct
calleddefine_rtltemplate which creates a named RTL template that is parameter-
ized for variable parts. A named RTL template is then instantiated using the construct

define_pattern by supplying parameters. Similarly, the variations in C code are ab-
stracted out usingdefine_code that names the code fragments and allows them to be
parameterized. These names can then be used with appropriate parameters where re-
quired. A parser reads the machine descriptions containingthese new constructs (along
with the conventional constructs) and generates conventional .md files. Machine de-
scriptions for i386 and rs6000 were rewritten using these constructs. They were vali-
dated by doing a native build for i386 GCC and runningmake check. The numbers
below show the redundancy encountered and reductions in patterns.

define rtltemplate define code define patterns define insn define expand

Defs Uses Defs Uses Defs Uses Old New Old New
i386.md 295 1638 42 150 170 - 622 350 236 159
rs6000.md 94 578 2 4 36 - 577 491 167 134

Usingdefine_rtltemplate requires identifying and naming all parameters of a
template which is tedious and error-prone.specRTL obviates this need by allowing
abstract nodes which are left implicit and can be concretized when needed by naming
their paths from the root. Further, the mechanism ofdefine_rtltemplate is highly
contextual and restrictive in that it has to be written with aparticular.md file in mind. It
seems difficult to write generaldefine_rtltemplate that are common across a large
number of machine descriptions.specRTL makes this possible.

Gimple Back End [17] is an ambitious project that plans to eliminate RTL from
GCC completely and build a recognizer that accepts GIMPLE. The plan as of now is
to use CGEN [8] as the specification mechanism for machine descriptions. We believe
that this change is disruptive and non-incremental.

7 Conclusions and Future Work

specRTL facilitates smaller, simpler, and more understandable machine descriptions.
Abstract patterns provide target independence and hence a common basis set of patterns
that can be refined as needed for a target would be of a great help. SincespecRTL
integrates seamlessly with conventional machine descriptions, migration tospecRTL
is an external, incremental, and non-disruptive process with few regressions, if any, in
each step. Further, constructing new machine descriptionsbecomes much easier.

We would like to create a basis set of abstract patterns that is common to a large
number of targets. A a medium term goal, we would like to explore the possibility of
using smaller declarative machine descriptions (eg.λ -RTL or SLED [12,13]) to con-
cretize the basis set for a given target. We believe that thisis achievable because of the
following reason: Although RTL is target independent, RTL templates are target depen-
dent in GCC because they combine shapes with target details.If we separate them and
construct target independent shapes, it may be possible to fill in target details by reading
crisp and succint descriptions of ISA. We would also like to explore combining actions
in the spirit of modular attribute grammars [7].

Eventually, we want to improve code generation in GCC. This requires changing
machine descriptions and the retargetability mechanism. Changing both of them simul-
taneously is a big architectural change that is radical and is likely to be disruptive. It may

be preferable to first migrate all existing machine descriptions to a clean and concise
form without changing code generation, and then change the code generation strategy.

Acknowledgments

Abhijat Vichare, Sameera Deshpande, Sagar Kamble, Ketaki Tiwatne, and Ashish Mishra
have contributed to related GCC explorations. We would alsolike to thank the refrees
for valuable suggestions. Ankita is funded by the DIT grant.

References

1. A. V. Aho and S. C. Johnson. Optimal code generation for expression trees. InSTOC ’75:
Proceedings of seventh annual ACM symposium on Theory of computing, pages 207–217,
1975.

2. A. V. Aho and J. D. Ullman.Principles of Compiler Design. Addison-Wesley, 1977.
3. A. Appel, J. Davidson, and N. Ramsey. The zephyr compiler infrastructure. Technical report,

1998. http://www.cs.virginia.edu/zephyr/overview98.ps (Last accessed on 28 Jan 2011).
4. A. W. Appel and M. Ginsburg.Modern Compiler Implementation in C. Cambridge Univer-

sity Press, 1998.
5. J. W. Davidson and C. W. Fraser. Code selection through object code optimization.ACM

Trans. Program. Lang. Syst., 6:505–526, October 1984.
6. J. Dias and N. Ramsey. Automatically generating instruction selectors using declarative ma-

chine descriptions. InProceedings of the 37th annual ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, pages 403–416, 2010.

7. G. D. P. Dueck and G. V. Cormack. Modular attribute grammars. Comput. J., 33:164–172,
April 1990.

8. D. Evans, F. Ch. Eigler, B. Elliston, and D. Brolley. CGEN,the Cpu tools GENerator, 2009.
http://sourceware.org/cgen/ (Last accessed on Jan 28, 2011).

9. A. Fauth, J. Van Praet, and M. Freericks. Describing instruction set processors using nml.
In EDTC ’95: Proceedings of the 1995 European conference on Design and Test, page 503,
Washington, DC, USA, 1995. IEEE Computer Society.

10. S. Kamble. Improved machine descrition specification ingcc. Master’s thesis, Department
of Computer Science and Engineering, IIT Bombay, 2010.

11. R. Leupers and P. Marwedel. Retargetable code generation based on structural processor
description.Design Automation for Embedded Systems, 3:75–108, 1998.

12. N. Ramsey and J. W. Davidson. Machine descriptions to build tools for embedded systems.
In In ACM SIGPLAN Workshop on Languages, Compilers, and Tools for Embedded Systems
(LCTES98), volume 1474 of LNCS, pages 172–188. Springer Verlag, 1998.

13. N. Ramsey and M. F. Fernández. Specifying representations of machine instructions.ACM
Trans. Program. Lang. Syst., 19:492–524, May 1997.

14. O. Schliebusch, A. Hoffmann, A. Nohl, G. Braun, and H. Meyr. Architecture implementation
using the machine description language lisa. InProceedings of the 2002 Asia and South
Pacific Design Automation Conference, ASP-DAC ’02, pages 239–, Washington, DC, USA,
2002. IEEE Computer Society.

15. P. Shankar. Instruction selection using tree parsing. In The Compiler Design Handbook,
pages 565–602. 2002.

16. K. Tiwatne and A. Mishra. Measuring redundancy in machine descriptions. Internal Docu-
ment, GCC Resource Center, Dept. of Computer Science and Engg., IIT Bombay, 2010.

17. K. Zadeck. GBE: A gimple back end for GCC, 2009. http://gcc.gnu.org/wiki/gimplebackend
(Last accessed on Jan 28, 2011).

http://www.cs.virginia.edu/zephyr/overview98.ps
http://sourceware.org/cgen/
http://gcc.gnu.org/wiki/gimplebackend

