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Executing nested queries
• Motivation – scalability
• Speeding I/O – asynchronous I/O
• Avoiding I/O – caching, merged indexes
• Data flow – batches, parallelism
• Control flow – spool iterator, iterator methods
• Summary & conclusions
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Motivation: scalability
• Disk capacities grow, database sizes grow
• Bandwidths grow more slowly
• Set-based algorithms get slower!

– E.g., sort, merge join, hash join

• Need algorithms that scale with results size
– Human attention does not grow
– Processing capacity grows slowly

• Future requires row-to-row index navigation
– Nested iteration!
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Nested execution plans
• Naïve nested loops, block nested loops

– Useful only for guaranteed small files

• Fetch full row using record identifier
– Also search using key of clustered index

• Naïvely execute nested query
– Multiple levels of nesting
– Multiple branches at any level
– Memory-intensive operations: sort, hash, bitmap

• Index navigation plan created by optimizer
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Example right-deep nested plan

Nested iteration binds T0.a, T0.c

Nested iteration binds T1.bTable scan T0

Filter T2.b = T1.b
& T2.c < T0.c

Filter T1.a = T0.a

Table scan T1 Table scan T2
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Asynchronous I/O
• Read-ahead in sequential scans
• Read-ahead in nested queries?

– One thread per disk? – Effect on CPU caches
– Fetch twice: separate hint from absolute request

• Asynchronous read for first buffer fault or for index leaf

– Fetch using a list or a steady-state FIFO queue
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Avoiding I/O: caching
• Cache one inner result – sort outer input

– Opportunistic sort: run generation only
– “Poor man’s merge join” due to access pattern

• Look-up structure: hash, B-tree, any other
– Search by parameter value

• Two separate indexes
– Prior outer values + frequency, LRU info, etc.
– Prior inner results, if not empty
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Cache locations – any or all

Nested iteration binds T0.a, T0.c

Join, intersection, etc.Table scan T0

Filter T2.b = T0.bFilter T1.a = T0.a

Table scan T1 Table scan T2

ED

B C

A

• Caches at D and E dominated by caches at B and C
• Cache at A might complement caches at B and C

• Single-row, 
fixed-size, or 
infinite caches
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Avoiding I/O: merged indexes
• Aka “master-detail clustering”
• Very rigid version:

– Full rows only – clustered indexes
– Hashing – no range queries

• Very flexible version:
– Any index in any B-tree
– Sort order & search key use domain tags
– Special tag for table/view & index identifiers

• Merged index for outer & inner values
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Most flexible merged indexes

More actual values…

Actual valueOrder date, e.g., ‘2/2/02’

References to entries in 
index catalog

Orders table, customer-
order index

Fixed domain identifier“Table & index identifier”

Actual valueOrder #, e.g., 1234

Domain identifier“Order #”

Actual valueCustomer #, e.g., 4711

Domain identifier“Customer #”

Field typeField value



February 26, 2003 Executing nested queries 11

Data flow: batches
• Exploit “economy of scale” in inner executions

– Shared computations, shared searches

• Retain outer rows to match with inner results
– Or have inner query regurgitate outer rows

• Accumulate outer rows in inner plan
– Hash join with single input (+ parameters)
– Sort & hash distinct with no input (+ parameters)
– Spool with no input (“leaf”)
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Mixed batched & non-batches
• Disassemble batches using another nested 

iteration
Nested iteration binds batches

Nested iteration binds rowsTable scan T0

Filter T1.a < T0’.a“Leaf” spool for
batches of T0.a

Table scan T1
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Data flow: parallelism
• Must cross boundaries in batches

– Thread, process, machine boundaries
– Batches of parameters, batches of results

• Disassemble on the producer side
– If & where required
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Control flow: spool iterator
• Standard modes of operation:

– Single input, single output
– Demand-driven interfaces
– Filling store eagerly & lazily

• Creating batches in an outer input
– Batch or “sliding window” mode

• FIFO or priority queue (i.e., opportunistic sort)

• Managing batches in the inner plan
– Leaf mode (retain parameter bindings)
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Control flow: iterator methods
• Open, next-row, close
• Rewind
• Bind & unbind parameters

– Boolean result to invalidate cached results

• Pause & resume
– To manage resources, e.g., memory
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Control flow: parallelism
• Invoke inner using batches of parameters
• Share inner threads among all outer threads

– Bind & unbind for one consumer at a time
– Pause & result: aggregate over all consumers
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Research issues: policies
• Memory management

– Sort in outer input & inner input & output
– Multiple levels & branches of nesting

• Batch sizes
– In single-thread query execution
– In parallel query execution

• Thread scheduling
– Assignment of producer threads to consumers

• Cost calculations prior to setting policies?
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• Nested sorts compete 
with each other

• Outer sort pauses 
during inner sort

• Result sort may for a 
pipeline with the inner

• Inner size might vary for 
different outer bindings

Memory management

Nested iteration

Merge join

Table T0 Sort

Sort

Table T1 Table T2

Sort

Sort
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Summary and conclusions
• Execution of nested plans is not trivial!

– Attempt to summarize existing technology: 
caching, batching, iterators, parallelism

– Provide implementation blueprint for researchers

• Resource policies & mechanisms
– Memory & threads
– Multiple levels & branches of nesting
– Sort, hash, & bitmap operations
– Hard & practical research!


