
Executing nested queries

Goetz Graefe
Microsoft SQL Server



February 26, 2003 Executing nested queries 2

Executing nested queries
• Motivation – scalability
• Speeding I/O – asynchronous I/O
• Avoiding I/O – caching, merged indexes
• Data flow – batches, parallelism
• Control flow – spool iterator, iterator methods
• Summary & conclusions



February 26, 2003 Executing nested queries 3

Motivation: scalability
• Disk capacities grow, database sizes grow
• Bandwidths grow more slowly
• Set-based algorithms get slower!

– E.g., sort, merge join, hash join

• Need algorithms that scale with results size
– Human attention does not grow
– Processing capacity grows slowly

• Future requires row-to-row index navigation
– Nested iteration!



February 26, 2003 Executing nested queries 4

Nested execution plans
• Naïve nested loops, block nested loops

– Useful only for guaranteed small files

• Fetch full row using record identifier
– Also search using key of clustered index

• Naïvely execute nested query
– Multiple levels of nesting
– Multiple branches at any level
– Memory-intensive operations: sort, hash, bitmap

• Index navigation plan created by optimizer



February 26, 2003 Executing nested queries 5

Example right-deep nested plan

Nested iteration binds T0.a, T0.c

Nested iteration binds T1.bTable scan T0

Filter T2.b = T1.b
& T2.c < T0.c

Filter T1.a = T0.a

Table scan T1 Table scan T2



February 26, 2003 Executing nested queries 6

Asynchronous I/O
• Read-ahead in sequential scans
• Read-ahead in nested queries?

– One thread per disk? – Effect on CPU caches
– Fetch twice: separate hint from absolute request

• Asynchronous read for first buffer fault or for index leaf

– Fetch using a list or a steady-state FIFO queue



February 26, 2003 Executing nested queries 7

Avoiding I/O: caching
• Cache one inner result – sort outer input

– Opportunistic sort: run generation only
– “Poor man’s merge join” due to access pattern

• Look-up structure: hash, B-tree, any other
– Search by parameter value

• Two separate indexes
– Prior outer values + frequency, LRU info, etc.
– Prior inner results, if not empty



February 26, 2003 Executing nested queries 8

Cache locations – any or all

Nested iteration binds T0.a, T0.c

Join, intersection, etc.Table scan T0

Filter T2.b = T0.bFilter T1.a = T0.a

Table scan T1 Table scan T2

ED

B C

A

• Caches at D and E dominated by caches at B and C
• Cache at A might complement caches at B and C

• Single-row, 
fixed-size, or 
infinite caches



February 26, 2003 Executing nested queries 9

Avoiding I/O: merged indexes
• Aka “master-detail clustering”
• Very rigid version:

– Full rows only – clustered indexes
– Hashing – no range queries

• Very flexible version:
– Any index in any B-tree
– Sort order & search key use domain tags
– Special tag for table/view & index identifiers

• Merged index for outer & inner values



February 26, 2003 Executing nested queries 10

Most flexible merged indexes

More actual values…

Actual valueOrder date, e.g., ‘2/2/02’

References to entries in 
index catalog

Orders table, customer-
order index

Fixed domain identifier“Table & index identifier”

Actual valueOrder #, e.g., 1234

Domain identifier“Order #”

Actual valueCustomer #, e.g., 4711

Domain identifier“Customer #”

Field typeField value



February 26, 2003 Executing nested queries 11

Data flow: batches
• Exploit “economy of scale” in inner executions

– Shared computations, shared searches

• Retain outer rows to match with inner results
– Or have inner query regurgitate outer rows

• Accumulate outer rows in inner plan
– Hash join with single input (+ parameters)
– Sort & hash distinct with no input (+ parameters)
– Spool with no input (“leaf”)



February 26, 2003 Executing nested queries 12

Mixed batched & non-batches
• Disassemble batches using another nested 

iteration
Nested iteration binds batches

Nested iteration binds rowsTable scan T0

Filter T1.a < T0’.a“Leaf” spool for
batches of T0.a

Table scan T1



February 26, 2003 Executing nested queries 13

Data flow: parallelism
• Must cross boundaries in batches

– Thread, process, machine boundaries
– Batches of parameters, batches of results

• Disassemble on the producer side
– If & where required



February 26, 2003 Executing nested queries 14

Control flow: spool iterator
• Standard modes of operation:

– Single input, single output
– Demand-driven interfaces
– Filling store eagerly & lazily

• Creating batches in an outer input
– Batch or “sliding window” mode

• FIFO or priority queue (i.e., opportunistic sort)

• Managing batches in the inner plan
– Leaf mode (retain parameter bindings)



February 26, 2003 Executing nested queries 15

Control flow: iterator methods
• Open, next-row, close
• Rewind
• Bind & unbind parameters

– Boolean result to invalidate cached results

• Pause & resume
– To manage resources, e.g., memory



February 26, 2003 Executing nested queries 16

Control flow: parallelism
• Invoke inner using batches of parameters
• Share inner threads among all outer threads

– Bind & unbind for one consumer at a time
– Pause & result: aggregate over all consumers



February 26, 2003 Executing nested queries 17

Research issues: policies
• Memory management

– Sort in outer input & inner input & output
– Multiple levels & branches of nesting

• Batch sizes
– In single-thread query execution
– In parallel query execution

• Thread scheduling
– Assignment of producer threads to consumers

• Cost calculations prior to setting policies?



February 26, 2003 Executing nested queries 18

• Nested sorts compete 
with each other

• Outer sort pauses 
during inner sort

• Result sort may for a 
pipeline with the inner

• Inner size might vary for 
different outer bindings

Memory management

Nested iteration

Merge join

Table T0 Sort

Sort

Table T1 Table T2

Sort

Sort



February 26, 2003 Executing nested queries 19

Summary and conclusions
• Execution of nested plans is not trivial!

– Attempt to summarize existing technology: 
caching, batching, iterators, parallelism

– Provide implementation blueprint for researchers

• Resource policies & mechanisms
– Memory & threads
– Multiple levels & branches of nesting
– Sort, hash, & bitmap operations
– Hard & practical research!


