
Incognito: Efficient Full-Domain K-Anonymity

Kristen LeFevre David J. DeWitt Raghu Ramakrishnan
University of Wisconsin - Madison

1210 West Dayton St.
Madison, WI 53706

ABSTRACT
A number of organizations publish microdata for purposes
such as public health and demographic research. Although
attributes that clearly identify individuals, such as Name
and Social Security Number, are generally removed, these
databases can sometimes be joined with other public databases
on attributes such as Zipcode, Sex, and Birthdate to re-
identify individuals who were supposed to remain anony-
mous. “Joining” attacks are made easier by the availability
of other, complementary, databases over the Internet.

K-anonymization is a technique that prevents joining at-
tacks by generalizing and/or suppressing portions of the
released microdata so that no individual can be uniquely
distinguished from a group of size k. In this paper, we pro-
vide a practical framework for implementing one model of k-
anonymization, called full-domain generalization. We intro-
duce a set of algorithms for producing minimal full-domain
generalizations, and show that these algorithms perform up
to an order of magnitude faster than previous algorithms on
two real-life databases.

Besides full-domain generalization, numerous other mod-
els have also been proposed for k-anonymization. The sec-
ond contribution in this paper is a single taxonomy that
categorizes previous models and introduces some promising
new alternatives.

1. INTRODUCTION
Numerous organizations publish microdata1 for a vari-

ety of different purposes, including demographic and public
health research. In most cases, data that is deemed sen-
sitive is “de-identified” by removing attributes known to
uniquely identify individuals, such as Name or Social Se-
curity #. However, this mechanism fails to account for the
possibility of combining seemingly innocuous attributes with
external data to uniquely identify individuals. For example,

1The term “microdata” has been used in the Statistics liter-
ature to refer to data published in its raw, non-aggregated,
form [20].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD 2005June 14-16, 2005, Baltimore, Maryland, USA
Copyright 2005 ACM 1-59593-060-4/05/06$5.00.

Voter Registration Data
Name Birthdate Sex Zipcode
Andre 1/21/76 Male 53715
Beth 1/10/81 Female 55410
Carol 10/1/44 Female 90210
Dan 2/21/84 Male 02174
Ellen 4/19/72 Female 02237

Hospital Patient Data
Birthdate Sex Zipcode Disease
1/21/76 Male 53715 Flu
4/13/86 Female 53715 Hepatitis
2/28/76 Male 53703 Brochitis
1/21/76 Male 53703 Broken Arm
4/13/86 Female 53706 Sprained Ankle
2/28/76 Female 53706 Hang Nail

Figure 1: Tables vulnerable to a joining attack.

according to one study, approximately 87% of the popula-
tion of the United States can be uniquely identified on the
basis of their 5-digit zipcode, sex, and date of birth [18].

The uniqueness of such attribute combinations leads to
a class of attacks where data is “re-identified” by joining
multiple (often publicly-available) data sets. This type of
attack was illustrated in [18], where the author was able to
join a public voter registration list and the de-identified pa-
tient data of Massachusetts’s state employees to determine
the medical history of the state’s governor. Figure 1 shows
an example of such an attack, where a malicious individual
is able to determine Andre’s medical information by joining
the two databases on Birthdate, Sex, and Zipcode. We will
use the Patients table as a running example.

1.1 Basic Definitions
Quasi-Identifier Attribute Set A quasi-identifer set Q

is a minimal set of attributes in table T that can be joined
with external information to re-identify individual records
(with sufficiently high probability)[15].

We assume that quasi-identifier attribute sets are known
based on specific knowledge of the domain.

Frequency Set Consider relation T and some set Q of
n attributes. The frequency set of T with respect to Q is a
mapping from each unique combination of values 〈q0, ..., qn〉
of Q in T (the value groups) to the total number of tuples in
T with these values of Q (the counts).

K-Anonymity Property Relation T is said to satisfy
the k-anonymity property (or to be k-anonymous) with re-
spect to attribute set Q if every count in the frequency set of
T with respect to Q is greater than or equal to k.

Z0 = {53715, 53710, 53706, 53703}

Z1 = {5371*, 5370*}

Z2 = {537**} 537**

5371* 5370*

53715 53710 53706 53703 B0 = {1/21/76, 2/28/76, 4/13/86}

B1 = {*}

1/21/76 2/28/76 4/13/86

*

(a) (b) (c) (d)

S0 = {Male, Female}

S1 = {Person}

Male Female

Person

(e) (f)

Figure 2: Domain and value generalization hierarchies for Zipcode (a, b), Birth Date (c, d), and Sex (e, f)

In SQL, the frequency set is obtained from T with respect
to a set of attributes Q by issuing a COUNT(*) query, with
Q as the attribute list in the GROUP BY clause. For exam-
ple, in order to check whether the Patients table in Figure 1
is 2-anonymous with respect to 〈Sex, Zipcode〉, we issue a
query SELECT COUNT(*) FROM Patients GROUP BY
Sex, Zipcode. Since the result includes groups with count
fewer than 2, Patients is not 2-anonymous with respect to
〈Sex, Zipcode〉.

K-Anonymization A view V of a relation T is said to
be a k-anonymization of T if the view modifies, distorts, or
suppresses the data of T according to some mechanism such
that V satisfies the k-anonymity property with respect to the
set of quasi-identifier attributes. T and V are assumed to be
multisets of tuples.

Throughout this paper, we consider the problem of gener-
ating a single k-anonymization of the microdata in a single
table T . Other problems, including inference, arise when
multiple different anonymizations of the same microdata
are made available[18], but we assume that only a single
anonymization is released.

1.2 Paper Organization and Contributions
In Section 2 we give an overview of the generalization and

suppression framework for k-anonymization, in particular
a model called full-domain generalization, and we describe
previous algorithms implementing minimal full-domain gen-
eralization.

Our first main contribution addresses implementation of
full-domain k-anonymization, and is presented in Sections 3
and 4. In Section 3 we introduce an implementation frame-
work for full-domain generalization using a multi-dimensional
data model, together with a suite of algorithms, which we
call Incognito. Incognito takes advantage of two key vari-
ations of dynamic programming [4] that have been used
previously in the query processing literature for other pur-
poses: bottom-up aggregation along dimensional hierarchies
[6] and a priori aggregate computation [2]. In Section 4 we
present the results of the largest-scale performance exper-
iments that we are aware of for minimal k-anonymization,
and we show that the Incognito algorithms outperform pre-
vious algorithms by up to an order of magnitude. The re-
sults demonstrate the feasibility of performing minimal k-
anonymization on large databases.

Though our algorithms and framework focus primarily
on the full-domain generalization model, there have been a
number of other k-anonymization models proposed, but the

differences among these techniques have not been clearly ar-
ticulated. Our second contribution, presented in Section 5,
is a unifying taxonomy of several alternative approaches to
k-anonymization. Previous proposals can be understood as
instances of this taxonomy, differing primarily in the granu-
larity at which anonymization is applied. Further, the tax-
onomy exposes some interesting new alternatives that offer
the promise of more flexible anonymization. Extending the
algorithmic framework presented in this paper to some of
these novel alternatives presents a broad class of problems
for future work.

We discuss related work in Section 6 and present our con-
clusions in Section 7.

2. GENERALIZATION AND SUPPRESSION
Samarati and Sweeney [14, 15, 17, 18] formulated mecha-

nisms for k-anonymization using the ideas of generalization
and suppression. In a relational database, there is a domain
(e.g., integer, date) associated with each attribute of a rela-
tion. Given this domain, it is possible to construct a more
“general” domain in a variety of ways. For example, the
Zipcode domain can be generalized by dropping the least
significant digit, and continuous attribute domains can be
generalized into ranges.

We denote this domain generalization relationship by <D,
and we use the notation Di ≤D Dj to denote that domain
Dj is either identical to or a domain generalization of Di.
For two domains Di and Dj , the relationship Di <D Dj in-
dicates that the values in domain Dj are the generalizations
of the values in domain Di. More precisely, a many-to-one
value generalization function γ : Di → Dj is associated with
each domain generalization Di <D Dj .

A domain generalization hierarchy is defined to be a set
of domains that is totally ordered by the relationship <D.
We can think of the hierarchy as a chain of nodes, and if
there is an edge from Di to Dj , we call Dj the direct gen-
eralization of Di. Note that the generalization relationship
is transitive, and thus, if Di <D Dj and Dj <D Dk, then
Di <D Dk. In this case, we call domain Dk an implied gen-
eralization of Di. Paths in a domain hierarchy chain corre-
spond to implied generalizations, and edges correspond to
direct generalizations. Figure 2 (a,c,e) shows possible do-
main generalization hierarchies for the Zipcode, Birthdate
and Sex attributes.

We use the notation γ+ as shorthand for the composi-
tion of one or more value generalization functions, produc-
ing the direct and implied value generalizations. The value-

<S0, Z0>

<S0, Z1><S1, Z0>

<S1, Z1> <S0, Z2>

<S1, Z2>

[0,0]

[0,1][1,0]

[1,1] [0,2]

[1,2]

(a) (b)

Figure 3: Generalization lattice for the Zipcode and
Sex attributes (a), and the corresponding lattice of
distance vectors (b)

generalization functions associated with a domain general-
ization hierarchy induce a corresponding value-level tree, in
which edges are defined by γ and paths are defined by γ+.
To illustrate, Figure 2 (b,d,f) associates a value generaliza-
tion with each value in the Zipcode, Birthdate, and Sex
domains. For example, (b) indicates that 5371∗ = γ(53715)
and 537 ∗ ∗ ∈ γ+(53715).

For a quasi-identifier consisting of multiple attributes, each
with its own domain, the domain generalization hierarchies
of the individual attributes can be combined to form a multi-
attribute generalization lattice. An example lattice for Sex
and Zipcode is shown in Figure 3 (a).

Formally, consider a vector of n domains with correspond-
ing domain hierarchies H1 . . . Hn. A vector of n domains
〈DA1 , ..., DAn〉 is said to be a direct multi-attribute domain
generalization (also denoted <D) of another vector of n do-
mains 〈DB1 , ..., DBn〉 if the following conditions hold:

1. There exists a single value j in 1 . . . n such that domain
hierarchy Hj contains the edge DAj −→ DBj (i.e.,
DBj is a direct domain generalization of DAj).

2. For all other i in 1 . . . n, i.e., for i 6= j, DAi = DBi .

A multi-attribute generalization lattice over n single-attribute
domain generalization hierarchies is a complete lattice of n-
vectors of domains in which

1. Each edge is a direct multi-attribute domain general-
ization relationship.

2. The bottom element is the n-vector 〈DA1 , ...,DAn〉,
where, for all i, DAi is the source of the hierarchy chain
Hi (i.e., the most specific domain associated with do-
main hierarchy Hi).

3. The top element is the n-vector 〈DA1 , ..., DAn〉, where,
for all i, DAi is the sink of the hierarchy chain Hi

(ie., the most general domain associated with domain
hierarchy Hi).

In the example lattice shown in Figure 3, the domain
vector 〈S0, Z2〉 is a direct multi-attribute generalization of
〈S0, Z1〉 and an implied multi-attribute generalization of
〈S0, Z0〉.

From the generalization lattice, a lattice of distance vec-
tors can be derived. The distance vector between two do-
main vectors 〈DA1 , .., DAn〉 and 〈DB1 , .., DBn〉 is a vector
DV = [d1, ..., dn], where each value di denotes the length
of the path between the domain DAi and the domain DBi

in domain generalization hierarchy Hi. A lattice of distance
vectors can be defined from the zero-generalization domain
vector. This lattice for Sex and Zipcode is given in Fig-
ure 3(b). The height of a multi-attribute generalization is
the sum of the values in the corresponding distance vector.
For example, the height of 〈S1, Z1〉 is 2.

2.1 Full-Domain Generalization
There are a number of models for producing an anonymiza-

tion V from table T . One class of models, called global-
recoding [20], map the values in the domains of quasi-identifier
attributes to other values.

This paper is primarily concerned with a specific global-
recoding model, called full-domain generalization, though
we will describe a number of alternative schemes in Sec-
tion 5. Full-domain generalization was proposed by Sama-
rati and Sweeney [14, 15] and maps the entire domain of each
quasi-identifier attribute in T to a more general domain in
its domain generalization hierarchy. This scheme guarantees
that all values of a particular attribute in V belong to the
same domain.

Full-Domain Generalization Let T be a relation with
quasi-identifier attributes Q1, ..., Qn. A full-domain gener-
alization is defined by a set of functions, φ1, ..., φn, each of
the form φi : DQi → DAi , where DQi ≤D DAi . φi maps
each value q ∈ DQi to some a ∈ DAi such that a = q or
a ∈ γ+(q). A full-domain generalization V of T is obtained
by replacing the value q of attribute Qi in each tuple of T
with the value φi(q).

In addition, the idea of a tuple-suppression threshold has
been suggested [14, 15], and can be used as a simple exten-
sion of full-domain generalization. The idea is that there
are some number of records in T that can be considered
outliers. For this reason, up to a certain number of records
(the maximum suppression threshold) may be completely ex-
cluded from V . Under this combined scheme, V is obtained
through full-domain generalization, with selected outlier tu-
ples removed entirely.

For any anonymization mechanism, it is desirable to define
some notion of minimality. Intuitively, a k-anonymization
should not generalize, suppress, or distort the data more
than is necessary to achieve k-anonymity. Indeed, there are a
number of ways to define minimality. One notion of minimal
full-domain generalization was defined in [14, 15] using the
distance vector of the domain generalization. Informally,
this definition says that a full-domain generalization V is
minimal if V is k-anonymous, and the height of the resulting
generalization is less than or equal to that of any other k-
anonymous full-domain generalization.

However, in many cases, it is likely that users would want
the flexibility to introduce their own, possibly application-
specific, notions of minimality, as was described in [11, 14].
For example, it might be more important in some applica-
tions that the Sex attribute be released intact, even if this
means additional generalization of Zipcode. The previous
definition does not allow this flexibility.

2.2 Previous Full-Domain Generalization Al-
gorithms

Several search algorithms have been proposed with ac-
companying guarantees about the minimality of the result-
ing anonymization. In [14], Samarati describes an algorithm
for finding a single minimal k-anonymous full-domain gen-
eralization, based on the specific definition of minimality
outlined in the previous section. The algorithm uses the
observation that if no generalization of height h satisfies k-
anonymity, then no generalization of height h′ < h will sat-
isfy k-anonymity. For this reason, the algorithm performs a
binary search on the height value. If the maximum height
in the generalization lattice is h, it begins by checking each

DiseaseSexZipBirthdate

B1B0

Z2Z1Z0 S1S0

Birth Date Dimension

Zipcode Dimension Sex Dimension

Patients Table

Figure 4: Star-schema including generalization di-
mensions for quasi-identifier attributes.

generalization at height bh
2
c. If a generalization exists at

this height that satisfies k-anonymity, the search proceeds
to look at the generalizations of height bh

4
c. Otherwise,

it searches the generalizations of height b 3h
4
c, and so forth.

This algorithm is proven to find a single minimal full-domain
k-anonymization according to this definition.

For arbitrary definitions of minimality, this binary search
algorithm is not always guaranteed to find the minimal gen-
eralization. Instead, a naive bottom-up breadth-first search
of the generalization lattice could be used. This algorithm
uses the multi-attribute generalization lattice for the do-
mains of the quasi-identifier attributes. Starting with the
least general domain at the root of the lattice, the algo-
rithm performs a breadth-first search, checking whether each
generalization encountered satisfies k-anonymity. This algo-
rithm can be used to find a single (weighted) minimal gener-
alization, or it can be used to find the set of all k-anonymous
domain generalizations.

In addition, we considered refining the bottom-up breath-
first search using bottom-up aggregation (“rollup”) along
the domain generalization hierarchies. In this case, the
search pattern is also breath-first, and the algorithm com-
putes the frequency set of the data table with respect to each
domain generalization encountered. However, for all gener-
alizations other than the root, this frequency set is computed
based on the frequency set of (one of) the generalization(s)
of which the node is a direct generalization.

3. INCOGNITO
We noticed a number of convincing parallels between Sama-

rati and Sweeney’s generalization framework [14, 15] and
ideas used in managing multi-dimensional data [6, 8] and
mining association rules [2, 16]. By bringing these tech-
niques to bear on the full-domain generalization problem,
we developed a core algorithm (as well as several variations)
that perform substantially better than previous algorithms.

There are a number of notable similarities between the
generalization framework and multi-dimensional data mod-
els. For the problem of k-anonymization, the COUNT mea-
sure is of primary interest, and it is easy to think of each
domain generalization hierarchy as a dimension. For this
reason, it seemed reasonable to think of the table T , and the
domain generalization hierarchies associated with the quasi-
identifier attributes of T , as a relational star-schema. For
example, the star schema for the quasi-identifier 〈Birthdate,
Sex, Zipcode〉 is given in Figure 4.

A full-domain k-anonymization is produced by joining T
with its dimension tables, and projecting the appropriate
domain attributes. For simplicity, if A1 is a domain gener-
alization of some attribute A in the quasi-identifier, we refer
to attribute A1, which is produced by joining T with the

dimension table of A, and projecting A1.
Two properties of these generalization dimensions play a

key role in our algorithms. The first is the generalization
property of dimension hierarchies.

Generalization Property Let T be a relation, and let
P and Q be sets of attributes in T such that DP <D DQ.
If T is k-anonymous with respect to P , then T is also k-
anonymous with respect to Q.

Proof By the definition of multi-attribute domain gener-
alization, there is some attribute pair Pi ∈ P and Qi ∈ Q
such that DPi <D DQi and a many-to-one function γ from
from DPi to DQi . Thus the counts in the frequency set of
T with respect to Q must be greater than or equal to the
corresponding counts in the frequency set of T with respect
to P . 2

For example, because the Patients table in Figure 1 is
2-anonymous with respect to 〈S0〉, then it must also be 2-
anonymous with respect to 〈S1〉, a generalization of S0.

The key second property is reminiscent of operations along
dimension hierarchies in OLAP processing.

Rollup Property Let T be a relation, and let P and Q
be sets of attributes such that DP ≤D DQ. If we have f1, the
frequency set of T with respect to P , then we can generate
each count in f2, the frequency set of T with respect to Q,
by summing the set of counts in f1 associated by γ with each
value set of f2.

Proof The proof follows from the definitions of frequency
set and value generalization. 2

For example, consider F1, the relational representation of
the frequency set of the Patients table from Figure 1 with
respect to 〈Birthdate, Sex, Zipcode〉. Recall that in SQL
the frequency set is computed by a COUNT(*) query with
Birthdate, Sex, Zipcode as the GROUP BY clause. The fre-
quency set (F2) of Patients with respect to 〈Birthdate, Sex,
Z1〉 can be produced by joining F1 with the Zipcode dimen-
sion table, and issuing a SUM(count) query with Birthdate,
Sex, Z1 as the GROUP BY clause.

We also noticed a strong connection between k-anonymity
and the a priori observation, a dynamic programming ap-
proach that formed the basis for a number of algorithms for
mining frequent itemsets [2, 16]. The a priori observation is
easily applied to full-domain k-anonymization by way of the
subset property.

Subset Property Let T be a relation, and let Q be a set
of attributes in T . If T is k-anonymous with respect to Q,
then T is k-anonymous with respect to any set of attributes
P such that P ⊆ Q.

Proof Consider the frequency set of T with respect to Q,
which partitions T based on the values of Q. If we remove
any attribute Qi from Q, then each of these partitions will
remain the same, or will merge with another partition. Thus
each count in the frequency set will either remain the same
or increase. 2

For example, Patients (Figure 1) is 2-anonymous with re-
spect to 〈S1, Zipcode〉. Based on the subset property, we
know that Patients must also be 2-anonymous with respect
to both 〈Zipcode〉 and 〈S1〉. Similarly, we noted that Pa-
tients is not 2-anonymous with respect to 〈Sex, Zipcode〉.
Based on this observation and the subset property, we know
that Patients must not be 2-anonymous with respect to
〈Birthdate, Sex, Zipcode〉.

(a)

<S0, Z0>

<S0, Z1><S1, Z0>

<S1, Z1> <S0, Z2>

<S1, Z2>

<S0, Z1><S1, Z0>

<S1, Z1> <S0, Z2>

<S1, Z2>

<S1, Z0>

<S1, Z1> <S0, Z2>

<S1, Z2>

(b)

<B0, Z0>

<B0, Z1><B1, Z0>

<B1, Z1> <B0, Z2>

<B1, Z2>

<B0, Z1><B1, Z0>

<B1, Z1> <B0, Z2>

<B1, Z2>

<B1, Z0>

<B1, Z1> <B0, Z2>

<B1, Z2>

(c) <B1, S0> <B0, S1>

<B1, S1>

<B0, S0>

<B1, S0> <B0, S1>

<B1, S1>

Figure 5: Searching the candidate 2-attribute generalization graphs for Patients example (Figure 1)

3.1 Basic Incognito Algorithm
The Incognito algorithm generates the set of all possi-

ble k-anonymous full-domain generalizations of T , with an
optional tuple suppression threshold. Based on the subset
property, the algorithm begins by checking single-attribute
subsets of the quasi-identifier, and then iterates, checking
k-anonymity with respect to increasingly large subsets, in a
manner reminiscent of [2, 16]. Each iteration consists of two
main parts: (The basic algorithm is given in Figure 8.)

1. Each iteration considers a graph of candidate multi-
attribute generalizations (nodes) constructed from a
subset of the quasi-identifier of size i. We denote the
set of candidate nodes Ci. The set of direct multi-
attribute generalization relationships (edges) connect-
ing these nodes is denoted Ei. A modified breadth-first
search over the graph yields the set of multi-attribute
generalizations of size i with respect to which T is k-
anonymous (denoted Si).

2. After obtaining Si, the algorithm constructs the set
of candidate nodes of size i + 1 (Ci+1), and the edges
connecting them (Ei+1) using the subset property.

3.1.1 Breadth-First Search
The ith iteration of Incognito performs a search that de-

termines the k-anonymity status of table T with respect to
all candidate generalizations in Ci. This is accomplished
using a modified bottom-up breadth-first search, beginning
at each node in the graph that is not the direct generaliza-
tion of some other node, with the optimization of bottom-up
aggregation based on the rollup property.

The breadth-first search also makes use of the generaliza-
tion property. If a node satisfying k-anonymity is encoun-
tered, we are guaranteed by the generalization property that
all of its generalizations must also satisfy k-anonymity. For
this reason, when a node is found to be k-anonymous, all
of its direct generalizations are marked, and not checked in
subsequent iterations of the search.

Example 3.1 Consider again the Patients table in Fig-
ure 1 with quasi-identifier 〈Birthdate, Sex, Zipcode〉. The
first iteration of Incognito finds that T is k-anonymous with
respect to 〈B0〉, 〈S0〉, and 〈Z0〉, the un-generalized domains
of Birthdate, Sex, and Zipcode respectively. The second iter-
ation performs three breadth-first searches to determine the
k-anonymity status of T with respect to the multi-attribute
generalizations of 〈Birthdate, Sex〉, 〈Birthdate, Zipcode〉,
and 〈Sex, Zipcode〉. Figure 5 (a, b ,c) shows these searches.
In (a), for example, the algorithm first generates the fre-
quency set of T with respect to 〈S0, Z0〉, and finds that
2-anonymity is not satisfied. It then rolls up this frequency
set to generate the frequency sets with respect to 〈S1, Z0〉
and 〈S0, Z1〉, and uses these results to check k-anonymity. In
this example, Patients is 2-anonymous with respect to 〈S1,
Z0〉. Therefore, all generalizations of 〈S1, Z0〉 (ie., 〈S1, Z1〉,
〈S1, Z2〉) must also be 2-anonymous given the generalization
property, so they are marked. Patients is not 2-anonymous
with respect to 〈S0, Z1〉, so the algorithm then checks the
2-anonymity status of only 〈S0, Z2〉. Finding that Patients
is 2-anonymous with respect to this attribute set, the search
is complete.

Lemma The breadth-first search of the graph defined by
Ci and Ei determines the k-anonymity status of T with re-
spect to all i-attribute generalizations in Ci.

Proof During the breadth-first search, the k-anonymity
status of each node n is determined in one of two ways.
Either the frequency of n is computed with respect to T , and
k-anonymity checked, or n is the (direct or implied) multi-
attribute generalization of some node that is determined to
be k-anonymous. In this case, we know n is k-anonymous
based on the generalization property. 2

3.1.2 Graph Generation
We implemented each multi-attribute generalization graph

as two relational tables: one for the nodes and one for the
edges. Figure 6 shows the relational representation of the

Nodes Edges

ID dim1 index1 dim2 index2

1 Sex 0 Zipcode 0
2 Sex 1 Zipcode 0
3 Sex 0 Zipcode 1
4 Sex 1 Zipcode 1
5 Sex 0 Zipcode 2
6 Sex 1 Zipcode 2

Start End
1 2
1 3
2 4
3 4
3 5
4 6
5 6

Figure 6: Representation of sample generalization
lattice (Figure 3(a)) as nodes and edges relations

(a) <B1, S1, Z0>

<B1, S0, Z2> <B0, S1, Z2><B1, S1, Z1>

<B1, S1, Z2>

(b) <B0, S0, Z0>

<B1, S0, Z0> <B0, S1, Z0> <B0, S0, Z1>

<B1, S1, Z0> <B1, S0, Z1><B0, S1, Z1> <B0, S0, Z2>

<B1, S1, Z1> <B1, S0, Z2> <B0, S1, Z2>

<B1, S1, Z2>

Figure 7: (a) The 3-attribute graph generated
from 2-attribute results in Figure 5 and (b) The
3-attribute lattice that would have been searched
without a priori pruning

lattice depicted in Figure 3 (a). Notice that each node is
assigned a unique identifier (ID).

The graph generation component consists of three main
phases. First, we have a join phase and a prune phase for
generating the set of candidate nodes Ci with respect to
which T could potentially be k-anonymous given previous
iterations; these phases are similar to those described in [2].
The final phase is edge generation, through which the di-
rect multi-attribute generalization relationships among can-
didate nodes are constructed.

The join phase creates a superset of Ci based on Si−1.
The join query is as follows, and assumes some arbitrary
ordering assigned to the dimensions. As in [2], this ordering
is intended purely to avoid generating duplicates.

INSERT INTO Ci(dim1, index1,...,
dimi, indexi, parent1, parent2)

SELECT p.dim1, p.index1,..., p.dimi−1, p.indexi−1,
q.dimi−1, q.indexi−1, p.ID, q.ID

FROM Si−1 p, Si−1 q
WHERE p.dim1 = q.dim1 ∧ p.index1 = q.index1 ∧ ...

∧ p.dimi−2 = q.dimi−2 ∧ p.indexi−2 = q.indexi−2

∧ p.dimi−1 < q.dimi−1

The result of the join phase may include some nodes with
subsets not in Si−1, and during the prune phase, we use a
hash tree structure similar to that described in [2] to remove
these nodes from Ci.

Once Ci has been determined, it is necessary to construct
the set of edges connecting the nodes (Ei). Notice that
during the join phase we tracked the unique IDs of the two
nodes in Ci−1 that were combined to produce each node in
Ci (parent1 and parent2).

Ei is constructed using Ci and Ei−1 based on some sim-
ple observations. Consider two nodes A and B ∈ Ci. We
observe that if there exists a generalization relationship be-
tween the first parent of A and the first parent of B, and
the second parent of B is either equal to or a generaliza-
tion of the second parent of A, then B is a generalization of
A. In some cases, the resulting generalization relationships
may be implied, but they may only be separated by a single
node. We remove these implied generalization relationships
explicitly from the set of edges. The edge generation process
can be expressed in SQL as follows:

INSERT INTO Ei(start, end)
WITH CandidateEdges (start, end) AS (

SELECT p.ID, q.ID
FROM Ci p, Ci q, Ei−1 e, Ei−1 f
WHERE (e.start = p.parent1 ∧ e.end = q.parent1
∧ f.start = p.parent2 ∧ f.end = q.parent2)

∨ (e.start = p.parent1 ∧ e.end = q.parent1
∧ p.parent2 = q.parent2)

∨ (e.start = p.parent2 ∧ e.end = q.parent2
∧ p.parent1 = q.parent1)

)
SELECT D.start, D.end
FROM CandidateEdges D
EXCEPT
SELECT D1.start, D2.end
FROM CandidateEdges D1, CandidateEdges D2

WHERE D1.end = D2.start

Example 3.2 Consider again the Patients table in Fig-
ure 1 with quasi-identifier 〈Birthdate, Sex, Zipcode〉. Sup-
pose the results of the second-iteration graph search are
those shown in the final steps of Figure 5 (a, b, c). Fig-
ure 7 (a) shows the 3-attribute graph resulting from the
join, prune, and edge generation procedueres applied to the
2-attribute graphs. In many cases, the resulting graph is
smaller than the lattice that would have been produced
without a priori pruning. For example, see Figure 7(b).

3.2 Soundness and Completeness
As mentioned previously, Incognito generates the set of

all possible k-anonymous full-domain generalizations. For
example, consider the generalization lattice in Figure 7 (a).
If relation T is k-anonymous with respect to 〈B1, S1, Z0〉,
then this generalization will be among those produced as
the result of Incognito. If T is not k-anonymous with re-
spect to this generalization, then it will not be in the result
set. In this section, we sketch out a proof of soundness and
completeness. The full proof is omitted due to space con-
straints.

Theorem Basic Incognito is sound and complete for pro-
ducing k-anonymous full-domain generalizations.

Proof Sketch Consider a table T and its quasi-identifier
attribute set Q. Let Q′ denote the set of multi-attribute
domain generalizations of Q. Incognito determines the k-
anonymity status of each generalization q in Q′ in one of
three ways:

1. The k-anonymity of T with respect to some subset of q
is checked explicitly and found not to be k-anonymous.
In this case, we know by the subset property that T is
not k-anonymous with respect to q.

2. The k-anonymity of T with respect to some quasi-
identifier subset p is checked, and found not to be k-
anonymous, and some subset of q is a (multi-attribute)
generalization of p. In this case, we know based on the

Input: A table T to be k-anonymized, a set Q of n quasi-identifier attributes, and a set of dimension tables (one for each
quasi-identifier in Q)
Output: The set of k-anonymous full-domain generalizations of T

C1 = {Nodes in the domain generalization hierarchies of attributes in Q}
E1 = {Edges in the domain generalization hierarchies of attributes in Q}
queue = an empty queue
for i = 1 to n do

//Ci and Ei define a graph of generalizations
Si = copy of Ci

{roots} = {all nodes ∈ Ci with no edge ∈ Ei directed to them}
Insert {roots} into queue, keeping queue sorted by height
while queue is not empty do

node = Remove first item from queue
if node is not marked then

if node is a root then
frequencySet = Compute frequency set of T with respect to attributes of node using T .

else
frequencySet = Compute frequency set of T with respect to attributes of node using parent’s frequency set.

end if
Use frequencySet to check k-anonymity with respect to attributes of node
if T is k-anonymous with respect to attributes of node then

Mark all direct generalizations of node
else

Delete node from Si

Insert direct generalizations of node into queue, keeping queue ordered by height
end if

end if
end while
Ci+1, Ei+1 = GraphGeneration(Si, Ei)

end for
return Projection of attributes of Sn onto T and dimension tables

Figure 8: Basic Incognito algorithm.

generalization and subset properties that q is not k-
anonymous.

3. Generalization q is checked explicitly, and it is deter-
mined that T is k-anonymous with respect to q. 2

Soundness and completeness is a key distinction between
Incognito and Samarati’s binary search algorithm [14]. Incog-
nito will find all k-anonymous full-domain generalizations,
from which the “minimal” may be chosen according to any
criteria. The binary search is guaranteed to find only a sin-
gle k-anonymous full-domain generalization, which is min-
imal only according to the specific definition described in
Section 2.1. Bottom-up breadth-first search is also sound
and complete if run exhaustively.

3.3 Algorithm Optimizations
3.3.1 Super-roots

A candidate node n in Ci is a “root” if there is no gener-
alization edge in Ei directed from another node in Ci to n.
During each iteration of Incognito, the database is scanned
once per root to generate its frequency set. Because of the a
priori pruning optimization, however, we are not guaranteed
that the candidate nodes at each iteration will form lattices,
so some of these roots might come from the same “fam-
ily” (generalizations of the same quasi-identifier subset). In
this case, we observed that it was more efficient to group
roots according to family, and then scan the database once,
generating the frequency set corresponding to the least up-
per bound of each group (the “super-root”). We refer to the
basic algorithm, augmented by this optimization, as Super-
roots Incognito.

For example, in Figure 7(a), 〈B1, S1, Z0〉, 〈B1, S0, Z2〉,
and 〈B0, S1, Z2〉 are all roots of the 3-attribute graph, but
they come from the same family. Rather than scanning the

database once for each of these roots, Super-roots Incognito
would first compute the frequency set of Patients with re-
spect to 〈B0, S0, Z0〉, and would then use this to compute
the frequency set for each of these roots.

3.3.2 Bottom-Up Pre-computation
Even Super-roots Incognito scans T once per subset of the

quasi-identifier in order to generate the necessary frequency
sets. This drawback is fundamental to the a priori opti-
mization, where single-attribute subsets are processed first.
For example, we are not able to use the frequency set of T
with respect to 〈Zipcode〉 to generate the frequency set of T
with respect to 〈Sex, Zipcode〉. On the other hand, in the
context of computing the data cube, these group-by queries
would be processed in the opposite order [8], and rather than
re-scanning the database, we could compute the frequency
set of T with respect to 〈Zipcode〉 by simply rolling up the
frequency set with respect to 〈Sex, Zipcode〉.

Based on this observation, and with the hope of having
it both ways, we considered first generating the frequency
sets of T with respect to all subsets of the quasi-identifier
at the lowest level of generalization. These frequency sets
can be computed using bottom-up aggregation, similar to
that used for computing the data cube. When Incognito is
run, it processes the smallest subsets first, as before, but
these zero-level frequency sets can used on each iteration
instead of scanning the entire database. We refer to the ba-
sic algorithm that first pre-computes the zero-generalization
frequency sets as Cube Incognito.

4. PERFORMANCE ANALYSIS
To assess the performance of Incognito, we performed a

number of experiments using real-world data. We evaluated
Basic Incognito, Super-roots Incognito, and Cube Incognito

Adults Lands End
Attribute Distinct Values Generalizations

1 Age 74 5-, 10-, 20-year ranges(4)
2 Gender 2 Suppression(1)
3 Race 5 Suppression(1)
4 Marital Status 7 Taxonomy tree(2)
5 Education 16 Taxonomy tree(3)
6 Native country 41 Taxonomy tree(2)
7 Work Class 7 Taxonomy tree(2)
8 Occupation 14 Taxonomy tree(2)
9 Salary class 2 Suppression(1)

Attribute Distinct Values Generalizations
1 Zipcode 31953 Round each digit(5)
2 Order date 320 Taxonomy Tree(3)
3 Gender 2 Suppression(1)
4 Style 1509 Suppression(1)
5 Price 346 Round each digit(4)
6 Quantity 1 Suppression(1)
7 Cost 1412 Round each digit(4)
8 Shipment 2 Suppression(1)

Figure 9: Descriptions of the Adults and Lands End Databases used for performance experiments

against previous minimal full-domain generalization algo-
rithms, including Samarati’s Binary search [14], Bottom-up
search (without rollup), and the Bottom-up search (with
rollup) described in Section 2.2. Both bottom-up variations
were run exhaustively to produce all k-anonymous general-
izations. Throughout our experiments, we found that the
Incognito algorithms uniformly outperformed the others.

The databases used in our performance experiments repre-
sent the largest-scale evaluation that we are aware of for min-
imal full-domain k-anonymization. Previously, full-domain
k-anonymity techniques were demonstrated using only a toy
database of 265 records [15]. No experimental evaluation
was provided for binary search [14]. The genetic algorithm
in [11] was evaluated using a somewhat larger database, but
this algorithm does not guarantee minimality.

4.1 Experimental Data and Setup
We evaluated the algorithms using two databases. The

first was based on the Adults database from the UC Irvine
Machine Learning Repository [5], which is comprised of data
from the US Census. We used a configuration similar to that
in [11], using nine of the attributes, all of which were consid-
ered as part of the quasi-identifier, and eliminating records
with unknown values. The resulting table contained 45,222
records (5.5 MB). The second database was much larger,
and contained point-of-sale information from Lands End
Corporation. The database schema included eight quasi-
identifier attributes, and the database contained 4,591,581
records (268 MB).

The experimental databases are described in Figure 9,
which lists the number of unique values for each attribute,
and gives a brief description of the associated generaliza-
tions. In some cases, these were based on a categorical tax-
onomy tree, and in other cases they were based on rounding
numeric values or simple suppression. The height of each do-
main generalization hierarchy is listed in parentheses. We
implemented the generalization dimensions as a relational
star-schema, materializing the value generalizations in the
dimension tables.

We implemented the three Incognito variations, Sama-
rati’s binary search2, and the two variations of bottom-up
breadth-first search using Java and IBM DB2. All frequency
sets were implemented as un-logged temporary tables. All
experiments were run on a dual-processor AMD Athlon 1.5
GHz machine with 2 GB physical memory. The software in-
cluded Microsoft Windows Server 2003 and DB2 Enterprise

2We implemented the k-anonymity check as a group-by
query over the star schema. Samarati suggests an alterna-
tive approach whereby a matrix of distance vectors is con-
structed between unique tuples [14]. However, we found
constructing this matrix prohibitively expensive for large
databases.

Server Edition Version 8.1.2. The buffer pool size was set
to 256 MB. Because of the computational intensity of the
algorithms, each experiment was run 2-3 times, flushing the
buffer pool and system memory between runs. We report
the average cold performance numbers, and the numbers
were quite consistent across runs.

4.2 Experimental Results
The complexity of each of the algorithms, including Incog-

nito, is ultimately exponential in the size of the quasi-identifier.
However, we found that in practice the rollup and a priori
optimizations go a long way in speeding up performance.

Figure 10 shows the execution time of Incognito and pre-
vious algorithms on the experimental databases for varied
quasi-identifier size (k = 2, 10). We began with the first
three quasi-identifier attributes from each schema (Figure 9),
and added additional attributes in the order they appear in
these lists.

We found that Incognito substantially outperformed Bi-
nary Search on both databases, despite the fact that Incog-
nito generates all possible k-anonymous generalizations, while
Binary Search finds only one. Incognito also out-performed
Bottom-up search (with and without rollup). The perfor-
mance of Binary Search varied based on the pattern of the
search performed. Bottom-up search was more consistent,
but overall both were slower than Incognito.

4.2.1 Effects of Rollup and the A Priori Optimization
As mentioned previously, we observed that the bottom-up

breadth-first search can be improved by using rollup aggre-
gation, an idea incorporated into the Incognito algorithm.
To gauge the effectiveness of this optimization, we compared
the version of the bottom-up algorithm with rollup to the
version without rollup. Figure 10 shows that bottom-up
performs substantially better on the Adults database when
it takes advantage of rollup.

We also found that the a priori optimization, the other key
component of Incognito, went a long way in helping to prune
the space of nodes searched, in turn improving performance.
In particular, the number of nodes searched by Incognito was
much smaller than the number searched by bottom-up, and
the size of the frequency sets computed for each of these
nodes is generally smaller. For the Adults database, k=2,
and varied quasi-identifier size(QID), the number of nodes
searched is shown below.

QID size Bottom-Up Incognito
3 14 14
4 47 35
5 206 103
6 680 246
7 2088 664
8 6366 1778
9 12818 4307

Adults database (k=2) Adults database (k=10)

0

10

20

30

40

3 4 5 6 7 8 9

Quasi-Identifier Size

E
la

p
se

d
 T

im
e

(m
in

u
te

s)

Bottom-Up (w/o rollup)
Binary Search
Bottom-Up (w/ rollup)
Basic Incognito
Cube Incognito
Super-roots Incognito

0

10

20

30

40

3 4 5 6 7 8 9

Quasi-Identifier Size

E
la

p
se

d
 T

im
e

(m
in

u
te

s)

Bottom-Up (w/o rollup)
Binary Search
Bottom-Up (w/rollup)
Basic Incognito
Cube Incognito
Super-roots Incognito

Lands End database (k=2) Lands End database (k=10)

0

50

100

150

200

250

300

1 2 3 4 5 6

Quasi-Identifier Size

E
la

p
se

d
 T

im
e

(m
in

u
te

s) Bottom-Up (w/o rollup)
Bottom-Up(w/rollup)
Binary Search
Cube Incognito
Basic Incognito
Super-roots Incognito

0

50

100

150

200

250

300

1 2 3 4 5 6

Quasi-Identifier Size

E
la

p
se

d
 T

im
e

(m
in

u
te

s) Bottom-Up (w/o rollup)
Bottom-Up (w/rollup)
Binary Search
Cube Incognito
Basic Incognito
Super-roots Incognito

Figure 10: Performance by varied quasi-identifier size on Adults and Lands End databases for k = 2, 10

As the size of k increases, more generalizations are pruned
as part of smaller subsets, and the performance of Incognito
improves. For example, Figure 11 compares Incognito and
the other algorithms as k increases, and Incognito trends
downward. Because of the search pattern, binary search is
more erratic.

4.2.2 Effects of Super-Roots
The super-roots optimization was very effective in reduc-

ing the Incognito runtime because it substantially reduced
access to the original data, instead computing many of the
frequency sets from other frequency sets. By creating a sin-
gle super-root frequency set (which requires a single scan),
in practice we eliminate up to 4 or 5 scans of the data. This
performance gain is most pronounced in the larger Lands
End database (See Figure 10).

4.2.3 Effects of Pre-computation and Materialization
Figure 10 shows the cost of Cube Incognito, which in-

cludes both the cost of building the zero-generalization fre-
quency sets from the bottom-up and the cost of anonymiza-
tion using these frequency sets. Figure 12 breaks down this
cost. Because the Adults database is small, it is relatively
inexpensive to build the zero-generalization frequency sets,
and the Cube Incognito algorithm beats Basic Incognito. On
the larger Lands End database, Cube Incognito is slower
than the basic variation. However, the marginal cost of
anonymization is faster than Basic Incognito once the zero-
generalization frequency sets have been materialized.

Strategic materialization is an important future direction.
In many cases, especially when many quasi-identifier at-
tributes are considered, the zero-generalization frequency
sets can be quite large. Because iterations of Incognito are
actually likely to need frequency sets at higher levels of gen-
eralization, we suspect that materializing frequency sets at
multiple levels of generalization is likely to provide substan-
tial performance improvement.

5. TAXONOMY OF K-ANONYMIZATION
MODELS

The algorithms considered throughout this paper have fo-
cused on finding k-anonymous full-domain generalizations.
However, a wide variety of other anonymization models have
been proposed, and it is our hope that a side-by-side com-
parison will ultimately lead to a suite of algorithms allowing
us to make explicit tradeoffs between performance and flex-
ibility. In this section, we distill these proposed models into
a single taxonomy, and in doing so, we also expose several
promising new models. From our perspective, the proposed
models can be roughly categorized according to three main
criteria:

• Generalization vs. Suppression Some models only
consider suppressing data items altogether, while oth-
ers consider generalizing values through some number
of intermediate states.

• Global vs. Local Recoding Some models seek to
anonymize a given database by mapping the values
in the domains of quasi-identifier attributes to modi-
fied values. Following the terminology in [20], we refer
to this as global recoding. Alternatively, some models
modify individual instances of data items, using local
recoding.

• Hierarchy-Based vs. Partition-Based Generaliza-
tion models can be categorized into two main sub-
groups. First, there are those that use fixed value-
generalization hierarchies, as described in Section 2.
Also, there is a class of models that consider the do-
main of an attribute to be a totally-ordered set, and
define generalizations by partitioning the set into dis-
joint ranges [3, 11]. Generally, the ordered-set par-
titioning models are most suitable for continuous- or
numeric-valued data, and the hierarchy-based models
are better-suited for categorical values.

Adults database (quasi-identifier size 8) Lands End database (staggered quasi-identifier size)

0

10

20

30

40

50

2 5 10 25 50

k

E
la

p
se

d
 T

im
e

(m
in

u
te

s)

Binary Search
Bottom-Up (w/ rollup)
Basic Incognito
Super-roots Incognito

0

50

100

150

200

250

300

2 5 10 25 50

k

E
la

p
se

d
 T

im
e

(m
in

u
te

s)

Binary Search (QID = 6)
Basic Incognito (QID = 8)
Super-roots Incognito (QID = 8)

Figure 11: Performance of algorithms for fixed quasi-identifier size and varied values of k

Adults database (k=2) Lands End database (k=2)

0

5

10

15

20

3 4 5 6 7 8 9

Quasi-Identifier Size

E
la

p
se

d
 T

im
e

(m
in

u
te

s)

Anonymization Time
Cube Build Time

0

50

100

150

200

250

300

3 4 5 6 7 8

Quasi-Identifier Size

E
la

p
se

d
 T

im
e

(m
in

u
te

s)

Anonymization Time
Cube Build Time

Figure 12: Combined cost of building zero-generalization cube and anonymization

These models provide varying amounts of flexibility in
choosing what data is released, and at what level of gener-
ality. Some of the models encompass a space of anonymiza-
tions that others do not. For this reason, what is the optimal
anonymization due to one scheme may be “better” than the
optimal anonymization due to another scheme. In the fol-
lowing sections, we provide an overview of these different
approaches.

5.1 Global Recoding Models
Full-domain generalization (Section 2.1) is one example of

global-recoding. However, more flexible models have been
proposed, and there are undoubtedly a number of other pos-
sibilities. Most of these models have focused on recoding the
domains of the quasi-identifier attributes individually, which
we term single-dimension recoding. A single-dimension re-
coding defines some function φi : DQi → D′ for each at-
tribute Qi of the quasi-identifier. A generalization V of T is
obtained by applying each φi to the values of Qi in each tu-
ple of T . Models of this variety have been used in a number
of anonymization schemes [3, 7, 11, 19].

Alternatively, it is possible to construct an anonymization
model that recodes the multi-attribute domain of the quasi-
identifier, rather than recoding the domain of each attribute
independently. We call this class of models multi-dimension
recoding. A multi-dimension recoding is defined by a single
function φ : 〈DQ1× ...×DQn〉 → D′, which is used to recode
the domain of value vectors associated with the set of quasi-
identifier attributes. Generalization V of T is obtained by
applying φ to the vector of quasi-identifier values in each tu-
ple of T . Recent results suggest that multi-dimension mod-
els might produce better anonymizations than their single-
dimension counterparts [12].

5.1.1 Hierarchy-Based Single-Dimension Recoding
A single-dimension recoding defines some function φi for

each attribute Qi of the quasi-identifier. The single-dimension
recoding models differ in how this function is defined. We
first consider several hierarchy-based models.

The Full-domain Generalization model defines φi to
map every value in DQi to a generalized value at the same
level of the value generalization hierarchy. There is also a
special case of full-domain generalization, which we call At-
tribute Suppression [13]. If ∗ denotes a suppressed value,
φi must either map every value in DQi to its unmodified
value qi, or it must map every value in DQi to ∗.

More flexible hierarchy-based models relax the require-
ments of full-domain generalization. One such model, which
we will call Single-Dimension Full-Subtree Recoding,
was used for categorical data in [11]. Recall from Section 2
the (single-dimension) many-to-one value generalization func-
tion (γ : Di → Dj), that mapped values from domain Di

into the more general domain Dj . Under the full-subtree
recoding model, each φi is defined such that for each value
q ∈ DQi , φi(q) = q or φi(q) ∈ γ+(q). If φi maps any q to
some value g ∈ γ+(q), then it must map to g all values in
the subtree of the value generalization hierarchy rooted at g.
For example, consider the value generalization hierarchy for
Zipcode in Figure 2 (b). If a single-dimension full-subtree
recoding maps 53715 to 5371*, then it must also map 53710
to 5371*. If it maps any value to 537**, then it must map
the entire subtree rooted at 537** to 537**.

We might consider further relaxing the requirements to
obtain an even more flexible model that we call Unre-
stricted Single-Dimension Recoding.3 Under this model,
the only restriction on recoding function φi is that for each
value q in the domain of Qi, φi(q) = q or φi(q) ∈ γ+(q).

3There are situations where the application of this model
may lead to certain types of inference, for example map-
ping the value “Male” to “Person” while leaving “Female”
ungeneralized. Nonetheless, we include it as a possibility.

53703Female

53703Male

53706Female

53706Male

53710Female

53710Male

53715Female

53715Male
53703Person

53706Person

53710Person

53715Person

5370*Female

5370*Male

5371*Female

5371*Male

5370*Person

5371*Person

537**Female

537**Male

537**Person

Figure 13: Multi-dimensional value generalization
lattice for the Sex and Zipcode attributes.

5.1.2 Partition-Based Single-Dimension Recoding
Single-dimension recoding models have also been proposed

that use an ordered-set partitioning approach [3, 11]. Un-
der the Single-Dimension Ordered-Set Partitioning
model, we assume that the domain of each attribute DQi

can be represented as a totally-ordered set. φi maps the set
of values in DQi into a set of disjoint intervals that cover
DQi . For example, consider DZipcode = 〈53703, 53706,
53710, 53715〉 as an ordered-set, and a possible set of in-
tervals: 〈53703, 53705, 53710〉, 〈53715〉. Under this model,
φzipcode(53705) = [53703-53710], and φzipcode(53710) = [53710].

5.1.3 Hierarchy-Based Multi-Dimension Recoding
A multi-dimension recoding is defined by a single function

φ : 〈DQ1 × ...×DQn〉 → D′, which is used to recode the do-
main of n-vectors corresponding to the set of quasi-identifier
attributes. The hierarchy-based models for single-dimension
recoding are readily extended to multiple dimensions.

In order to define these models, we first extend the idea of
a value generalization function to multiple dimensions. Let
the multi-attribute value generalization function γ : 〈DA1 ×
... × DAn〉 → 〈DB1 × ... × DBn〉 be a many-to-one func-
tion, and let 〈DA1 , ..., DAn〉 <D 〈DB1 , ..., DBn〉 denote the
domain generalization relationship. (Again, we use the no-
tation γ+ to denote the composition of one or more multi-
attribute value generalization functions.) Like the single-
dimension case, the multi-attribute value generalization re-
lationships associated with a multi-attribute domain induce
a multi-attribute value generalization lattice. The directed
edges in this lattice represent direct value generalizations
(based on γ), while indirect paths represent implied gener-
alizations (based on γ+). The sub-graph rooted at node n
in the lattice is the set of all nodes and edges encountered
by recursively traversing all edges backwards from n.

For example, Figure 13 depicts the multi-attribute value
generalization lattice for Sex and Zipcode. (For clarity, not
all value generalization relationships are shown. The dot-
ted arrows indicate the direct and implied multi-attribute
value generalizations of 〈Male, 53715〉.) In this example, the
subgraph rooted at 〈Person, 5371*〉 contains nodes 〈Person,
53715〉, 〈Person, 53710〉, 〈Male, 5371*〉, 〈Female, 5371*〉,
〈Male, 53715〉, 〈Female, 53715〉, 〈Male, 53710〉, and 〈Female,
53710〉.

Several new recoding models can be defined in terms of
the multi-dimensional value generalization lattice. One such
model, Multi-Dimension Full-Subgraph Recoding, is

an extension of single-dimension full-subtree recoding. Un-
der this model, multi-dimension recoding function φ is de-
fined such that for each tuple 〈q1, ...,qn〉 in the multi-attribute
domain of the quasi-identifier attribute set, φ(〈q1, ..., qn〉) =
〈q1,...,qn〉 or φ(〈q1, ..., qn〉) ∈ γ+(〈q1, ..., qn〉). If φ maps
any 〈q1, ..., qn〉 to some 〈g1, ..., gn〉 ∈ γ+(〈q1, ..., qn〉), then
it must map to 〈g1, ..., gn〉 all values in the subgraph of
the (multi-dimensional) value generalization lattice rooted
at 〈g1, ..., gn〉. For example, suppose a multi-dimension full-
subgraph value generalization mapped pair 〈Male, 53715〉,
to 〈Person, 5371*〉. In this case, it must also map pairs
〈Female, 53715〉, 〈Male, 53710〉, and 〈Female, 53710〉 to
value 〈Person, 5371*〉

Like the single-dimension model, we can relax the re-
quirements to obtain a more flexible model, which we call
the Unrestricted Multi-Dimension Recoding. Such a
recoding is defined by a single function φ such that, for
each tuple 〈q1, ..., qn〉 in the multi-attribute domain of the
quasi-identifier attribute set, φ(〈q1, ..., qn〉) = 〈q1,...,qn〉 or
φ(〈q1, ..., qn〉) ∈ γ+(〈q1, ...,qn〉).

5.1.4 Partition-Based Multi-Dimension Recoding
The ordered-set partitioning model can also be extended

to multiple dimensions. Again, consider the domain of each
attribute DQi to be an ordered set of values, and let a
multidimensional interval be defined by a pair of points
(p1, ..., pn), (v1, ..., vn) in the multi-dimensional space such
that ∀i, pi ≤ vi. The Multi-Dimension Ordered-Set
Partitioning model defines a set of disjoint multi-dimensional
intervals that cover the domain DQ1 × ...×DQn . Recoding
function φ maps each tuple (q1, ..., qn) ∈ DQ1 × ...×DQn to
a multi-dimensional interval in the cover such that ∀i, pi ≤
qi ≤ vi.

5.2 Local Recoding Models
Consider a relation T with quasi-identifier attribute set

Q. The local recoding models produce k-anonymization V
of T by defining a bijective4 function φ from each tuple
〈a1, ..., nn〉 in the projection of Q on T to some new tuple
〈a′1, ..., a′n〉. V is defined by replacing each tuple t in the pro-
jection of Q on T with φ(t). Two main local recoding models
have been proposed in the literature. The first (Cell Sup-
pression) produces V by suppressing individual cells of T
[1, 13, 20]. The second (Cell Generalization) maps indi-
vidual cells to their value generalizations using a hierarchy-
based generalization model [17]. It should be noted that
local recoding models are likely to be more powerful than
global recoding.

6. RELATED WORK
Protecting anonymity when publishing microdata has long

been recognized as a problem [20], and there has been much
recent work on computing k-anonymizations for this pur-
pose. The µ-Argus system was also implemented to anonymize
microdata [10], but considered attribute combinations of
only a limited size, so the results were not always guaran-
teed to be k-anonymous. The generalization and suppression
framework employed by Incognito was originally defined by
Samarati and Sweeney [15], and Samarati proposed a bi-
nary search algorithm for discovering a single minimal full-
domain generalization [14]. A greedy heuristic algorithm for

4Recall that T and V are multisets.

full-domain generalization (“Datafly”) was described in [17],
and although the resulting generalization is guaranteed to
be k-anonymous, there are no minimality guarantees.

Cost metrics intended to quantify loss of information due
to generalization, both for general data use and in the con-
text of data mining applications, were described in [11].
Given such a cost metric, genetic algorithms [11] and simu-
lated annealing [21] have been considered for finding locally
minimal anonymizations, using the single-dimension full-
subtree recoding model for categorical attributes and the
single-dimension ordered-set partitioning model for numeric
data. Recently, top-down [7] and bottom-up [19] greedy
heuristic algorithms were proposed for producing anony-
mous data that remains useful for building decision-tree clas-
sifiers.

In [3], Bayardo and Agrawal propose a top-down set-
enumeration approach for finding an anonymization that is
optimal according to a given cost metric, given the single-
dimension ordered-set partitioning model. Subsequent work
shows that optimal anonymizations under this model may
not be as good as anonymizations produced with a multi-
dimension variation [12]. Finally, the minimal cell- and
attribute-suppression varieties of k-anonymization were proven
to be NP-hard (with hardness proofs constructed based on
the number of cells and number of attributes, respectively),
and O(klogk) [13] and O(k) [1] approximation algorithms
were proposed.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we showed that the multi-dimensional data

model is a simple and clear way to describe full-domain gen-
eralization, and we introduced a class of algorithms that are
sound and complete for producing k-anonymous full-domain
generalizations using the two key ideas of bottom-up aggre-
gation along generalization dimensions and a priori com-
putation. Although our algorithms (like the previous algo-
rithms) are ultimately exponential in the size of the quasi-
identifier, we are able to improve performance substantially,
and in some cases perform up to an order of magnitude
faster. Through our experiments, we showed that it is feasi-
ble to perform minimal full-domain generalization on large
databases.

In the future, we believe that the performance of Incog-
nito can be enhanced even more by strategically materializ-
ing portions of the data cube, including count aggregates at
various points in the dimension hierarchies, much like what
was done in [9]. It is also important to perform a more exten-
sive evaluation of the scalability of Incognito and previous
algorithms in the case where the original database or the
intermediate frequency tables do not fit in main memory.

The second main contribution of this paper is a taxon-
omy categorizing a number of the possible anonymization
models. Building on the ideas of Incognito, we are looking
at possible algorithms for the more flexible k-anonymization
models described in Section 5.

8. ACKNOWLEDGEMENTS
This work was partially supported by a Microsoft Re-

search graduate fellowship and National Science Foundation
Grants IIS-0326328 and IIS-0086002.

Our thanks also to Roberto Bayardo, Chris Kaiserlian,
Asher Langton, and three anonymous reviewers for their
thoughtful comments on various drafts of this paper.

9. REFERENCES
[1] G. Aggarwal, T. Feder, K. Kenthapadi, R. Motwani,

R. Panigrahy, D. Thomas, and A. Zhu. Anonymizing
tables. In Proc. of the 10th Int’l Conference on Database
Theory, January 2005.

[2] R. Agrawal and R. Srikant. Fast algorithms for mining
association rules. In Proc. of the 20th Int’l Conference on
Very Large Databases, August 1994.

[3] R. Bayardo and R. Agrawal. Data privacy through optimal
k-anonymity. In Proc. of the 21st Int’l Conference on Data
Engineering, April 2005.

[4] R. Bellman. Dynamic Programming. Princeton University
Press, Princeton, NJ, 1957.

[5] C. Blake and C. Merz. UCI repository of machine learning
databases, 1998.

[6] S. Chaudhuri and U. Dayal. An overview of data
warehousing and OLAP technology. SIGMOD Record, 26,
1997.

[7] B. Fung, K. Wang, and P. Yu. Top-down specialization for
information and privacy preservation. In Proc. of the 21st
Int’l Conference on Data Engineering, April 2005.

[8] J. Gray, S.Chaudhuri, A. Bosworth, A. Layman,
D. Reichart, M. Venkatrao, F. Pellow, and H. Pirahesh.
Data cube: A relational aggregation operator generalizing
group-by, cross-tab, and sub-totals. Data Mining and
Knowledge Discovery, 1(1), November 1996.

[9] V. Harinarayan, A. Rajaraman, and J. Ullman.
Implementing data cubes efficiently. In Proc. of the ACM
SIGMOD Int’l Conference on Management of Data, June
1996.

[10] A. Hundepool and L. Willenborg. µ- and τ -ARGUS:
Software for statistical disclosure control. In Proc. of the
Third Int’l Seminar on Statistical Confidentiality, 1996.

[11] V. Iyengar. Transforming data to satisfy privacy
constraints. In Proc. of the 8th ACM SIGKDD Int’l
Conference on Knowledge Discovery and Data Mining,
August 2002.

[12] K. LeFevre, D. DeWitt, and R. Ramakrishnan.
Multidimensional k-anonymity. Technical Report 1521,
University of Wisconsin, 2005.

[13] A. Meyerson and R. Williams. On the complexity of
optimal k-anonymity. In Proc. of the 23rd ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, June 2004.

[14] P. Samarati. Protecting respondants’ identities in
microdata release. IEEE Transactions on Knowledge and
Data Engineering, 13(6), November/December 2001.

[15] P. Samarati and L. Sweeney. Protecting privacy when
disclosing information: k-anonymity and its enforcement
through generalization and suppression. Technical Report
SRI-CSL-98-04, SRI Computer Science Laboratory, 1998.

[16] R. Srikant and R. Agrawal. Mining generalized association
rules. In Proc. of the 21st Int’l Conference on Very Large
Databases, August 1995.

[17] L. Sweeney. Achieving k-anonymity privacy protection
using generalization and suppression. International Journal
on Uncertainty, Fuzziness, and Knowledge-based Systems,
10(5):571–588, 2002.

[18] L. Sweeney. K-anonymity: A model for protecting privacy.
International Journal on Uncertainty, Fuzziness, and
Knowledge-based Systems, 10(5):557–570, 2002.

[19] K. Wang, P. Yu, and S. Chakraborty. Bottom-up
generalization: A data mining solution to privacy
protection. In Proc. of the 4th IEEE Internatioal
Conference on Data Mining, November 2004.

[20] L. Willenborg and T. deWaal. Elements of Statistical
Disclosure Control. Springer Verlag Lecture Notes in
Statistics, 2000.

[21] W. Winkler. Using simulated annealing for k-anonymity.
Research Report 2002-07, US Census Bureau Statistical
Research Division, November 2002.

