Seminar on
Approaches for improving Cache Line Utilization
in Database Systems

Kamlesh Ladhhad (05329014)
Unmesh Deshmukh (05329012)

March 14, 2006

Motivation

» Growing need for efficient cache memory utilization in
Modern Database Systems
» Different Approaches

» Cache conscious index structures
» New layout for data records
» Explicit buffering of operators at specific points

Growing need for efficient cache utilization

» CPU speeds have been increasing at a much faster rate
than memory speeds

» Conclusion: improving cache behavior is going to be an
imperative task in main memory data processing

T T
E cry Pefanmance (Gosan —-
E DRANM Parfarmance { 10%.5m)

ain Memory (DRAM)

/ Disk

ps urmana imp rovamnt

=
T
|
|
1
1
i
4
1
1
i
]

Cache Memories

» Small, fast SRAM memories that improve performance by

holding recently referenced data

» Memory reference: Cache Hit, Cache Miss

» Parameters:
» Capacity
» Block size (cache line)
» Associativity

Type of Memory Typical Size
Ragisters 32" 4 Eytes
Lewval 1 Cache = G4 KBytes
Lewval 2 Cache = 1 MegaByta
Main Memory = 1 Gigabyta
Disk 10 Gigabytes

Typical Speed (latency}
CPU Spead (< Z nsj
CPU speed {= Z ns)

5 - 20 cycles

10 - 100 cycles

10,000 000 cycles

Cache conscious index structures

» Cache Sensitive Search (CSS) trees

Each node contains only keys and no pointers

Nodes are stored level by level from left to right

Arithmetic operations on offsets to find child nodes

Better Search Performance and Cache line utilization than B*-Trees
Incremental updates difficult so suitable for DSS workloads only

Node0

vVvyVvYVvyy

1123

TR eT

Nodel Node2 Node3 Noded

Comparison between B*-Tree and CSS Tree

» Cache line size=12 bytes, Key size=Pointer size=4 bytes
» Search key=3

5 \ Node0
/ \ 1|23
L ‘l L \ , v ‘* ‘*
/ \ f \ L2 i3 yl4]
TENENE ' v + +
1 i T i~ |Nodel Node2 Node3 Node4
m I- 2 I At) e T e R | 311.3-4|--35|

|4| [=)= 2|13| 1,_"]19|21|21,_"|2A|2?|29L_‘"|3;|34|38|

Cache Sensitive B™-Tree

» Goal
» Retain good cache behaviour of CSS-Trees while at the same time
being able to support incremental updates
» This way it will be useful even for non-DSS workloads
» Idea
» Use Partial Pointer Elimination Technique
» Have fewer pointers per node than a B™-Tree so more space for keys
» Use limited amount of arithmetic on offsets to compensate for less
number of pointers
» Structure
» Put all child nodes of a given node in a Node Group
» Store nodes within a node group contiguously and use offset
arithmetic for access

BT-Tree Vs CSB*-Tree

v

Cache line size=Node size=64 bytes

v

Key and child pointer each occupy 4 bytes
Keys per node for B™-Tree=7
Keys per node for CSB™-Tree=14

In CSB*-Trees, number of cache lines to be searched are
fewer

v

v

v

Example CSB™-Tree

Figure 2: A CSB*-Tree of Order 1

Operations on CSB™-Tree

» Bulkload

» Allocate space for leaf entries
» Calculate how many nodes are needed at higher level and allocate
them contiguously
» Fill in the entries at higher level appropriately and set first child
pointers
» Continue with the same process until only one node remains i.e, root
» Search

» Similar to B*-Tree search algorithm

> Locate rightmost key K in the node that is smaller than the search
key and add the offset of K to the first child pointer to get the
address of the child node

Operations on CSB*-Tree ..contd.

» Insertion

» Again similar to B*-Tree insertion algorithm
Pseudo-code
Search the leaf node n to insert the entry
If n is not full then insert the new entry into the appropriate place
Otherwise split n. Let p be the parent node of n, f be the first child
pointer in p and g be the node group pointed to by f.
» If p is not full then copy g to g' in which n is split in two nodes. Let
f point to g'
> If p is full copy half of g to g'. Let f point to g’. Split the node
group of p according to as above

vVvyVvyy

Insertion example

key =34 &

7 30| |

——

3 13/19) 25 33|

/. [/

23 57 12013 16/19 20]22 24125 2730 31[33 36)39

a CSB+-Tree of Order 1

Insertion example

2|

key = 34 ‘ 7 30 ‘

13]19) 25| 3336

/ S)]

23 517 1213 1619 20|22 24/25 2730 31|33 34[36 39|

Operations on CSB*-Tree ..contd.

» Deletion
» Handled in a way similar to insertion
» Lazy deletion - Locate the data entry, remove it but don’t
restructure the tree

Segmented CSB™-Tree

» Problem: Increase in maximum size of the node group due
to increase in cache line size means more copying of data
in case of split

» Solution: Divide the child nodes into segments, store in
each node pointers to segments and only child nodes in
the same segment are stored contiguously

Segmented CSB™-Tree

» Tree of order 2 with 2 segments

Variants of SCSB™*-Tree

» Two variants of SCSBT-Tree:

» Fixed Size Segments
» Start by filling the nodes in the first segment till it is full
» Then fill the nodes in second segment, this requires copying nodes in
this segment only
» Varying Size Segments
» For bulkload, distribute nodes evenly among the segments
» On every new node insertion, create a new segment for the segment
to which the new node belongs
» Touches only one segment in each insert as opposed to the fixed size
variant

Full CSB™-Tree

» Higer frequency of memory allocation and deallocation
calls in CSB™-Trees is a problem

» Another approach is to pre-allocate memory for entire
node group
» Space-time tradeoff:

» Node split in Full CSB*-Tree is efficient than normal CSB*-Tree
» This efficiency comes at the expense of pre-allocated space

Implementation details

» Node size = Cache line size=64 bytes
» Key size=Pointer size= 4 bytes
» For CSS trees: 16 keys per node

» For B™-Trees: Internal node 7 keys, 8 child pointers and
number of keys used

» For CSB™-Trees: Internal node 14 keys, first child pointer
and number of keys used

Pure Search Performance Graph

0.9 m——]
(ba5|c) -
0.8 | CSB+ (basic)
B+ (varlable)
0.7F cSB+ (variable) -+-- -
) ;
)

06 L B+ (uniform
’ CSB+ (uniform
CS

wn

0.5
0.4
0.3
0.2
0.1

time(s)

O L L 1 Ll 1 1 1 -1 L L1 L
100 1000 10000 100000 1e+06 1e+07
entries in the leaf

(a) Sun’s CC

» Time for 200K searches
» B*-Trees are more than 25% slower than CSB™-Tree

Experiments on stabilized index structures-Search

timels)

07
B+-Tree —+—
i CSB+-Tree ——
OB T scseeTroe (2 seq) =— ey
SCSB4-Tree (3 ceq) *—
05 b CSB+-Trea (full) -+

oa}

03 F

02 F

01 F

20 40 80 100 120 140 160 180 200
ST oF S (% 1000)

Segmented CSB™-Tree search slower than CSB™-Tree
because:branching factor of former is less (More cache

secandary level cache missas (X 1000}

700
BrTree ——
600 | CSB+-Tree —— il
SCSB+-Tree (2 seg) =a—
SCSB+-Tree (3 s0q) —x—
500 | CSB+-Tree (full) -+-- //%
o0 | -
300 -
200 -
100 -
o L.
20 40 60 100 120 140 160 180 Z0O
numbzr of search (X 1000)

misses) , extra comparisons needed to choose right

segment

Experiments on stabilized index structures-Delete

07 T T T T T T T T 800
E+-Tree -o—
05k CSB+-Tree —
SCSB+Tree (2 seg) -5—
SCSB+Tree (2 :eg] =
05| CSB+-Tree (ull) -+-

B+Tree —<—
700 | CSBi-Tres ——
SCSB+-Tree (2 seg) -a—
SC5B+-Tree (3 seq) ——

CSB+-Tree (full) =----

=)
=]
-]
=
4
2
E
& o4} i
2 Q 400
= oz} =
T 300
0z =
g 200
B
o1k 5 100
@
o L L L L 0 L L L L L
20 40 60 80 100 120 140 160 180 200 20 40 B0 8O 100 120 140 160 180 200
number of deletion (X 1000) number of deletion {X 1000}

» Because of lazy deletion most of the time is spent in
locating the record, so delete performance similar to
search.

Experiments on stabilized index structures-Insert

T T T T T 1600 T T T
1.4 B+-Tree =—o— g B+ Tree —»—
CSBr-Tree —— g a0} CSB+Trae ——
12l scsBeTree @ seq) =— = SCSB+-Tree (2 seq) -S—
* SCSB+-Tree (3 56g) #— = g b SCSBi-Tree (3seq) w—
CSBa-Tree (Rl —+ 2 CsB+-Tree full) -+
i
4 000 b
_ £
z os} 2
z g ow
= oes} iy
R -
02 P25 S 0 ;/ﬁfﬁ(/‘
- P S " P
20 40 60 BO 100 120 140 160 180 200 20 40 B0 80 100 120 140 160 180 200
number of insertion (X 1000) number of insertion (X 1000)
. ta) Time (h) Secondarv Level Cache Misses

» CSB*-Trees are worse than B™-Trees for insertion because
of the split cost

» SCSB™-Trees reduce split cost so give intermediate
performance

» BT-Trees have to allocate a new node on every split while
Full CSB™-Trees make allocation when node group is full.

Conclusion

» Full CSB™-Trees are better than B*-Trees in all aspects
except for space

» In limited space environment CSB™-Trees and Segmented
CSB™-Trees provide faster searches while still being able
to support incremental updates

» Suitable for applications like Digital libraries, Online
shopping- Searching much more frequent than updates

Weaving Relations for Cache Performance

Motivation for devising new data layout model

» Main Problem Being Addressed: Only a fraction of data
transferred to cache is useful for the query
» lll-effects caused by the problem:

» Wastage of bandwidth
» Polluting the cache
» May result in replacing useful information

An illustrative example

v

Most widely used N-ary Storage Model (NSM) stores
relation’s records sequentially in slotted disk pages

v

Sample Query:

v

select name from R where age < 40
Relation R contains three attributes SSN, Name and Age

For the above query the NSM model has inferior cache
performance that is shown in the next slide

v

v

NSM cache behaviour

NSM PAGE CACHE
v - - 1
PAGE HEADER | RH1|0962 |I
Jane |30 [RH2 [7658 John: | Jane | 30 | RH
45 | RH3| 3589 | Jim| 20 |RH4 |
.
5525 | Susan|'52 LT 5280
v /
\ \ IR Jim | 20 | RH4 |
\ \ |
/
AR I |§ 5523
A I
\/ \ |
JAN \ |
o | @ 0 e U

FIGURE 1: The cache behavior of NSM.

DSM Example

PAGE HEADER |[1]0962[4
2|7658]3|3859]4]5523

sub-relation R1

PAGE HEADER |1]Jane [H
2| John|3] Jim |4]Susan

sub-relation R2

PAGE HEADER [1]30|2[h
4513|120 |4] 52

sub-relation R3

Decomposition Storage Model (DSM)

v

Fully decomposed form of Vertical Partitioning
Partitions an n-attribute relation into n sub-relations

v

v

Each sub-relation contains two attributes: a logical record
id and the attribute value

» Sub-relations are stored as regular relations in slotted
pages
Advantages:
» High degree of spatial locality for sequential access of an attribute
» Better I/O and Cache performance
Disadvantage:

» Performance significantly deteriorates for queries involving multiple
attributes for each participating relation

v

v

Partition Attributes Across (PAX)

» |dea is to keep the attribute values of each record on the
same page as in NSM while using a cache-friendly
algorithm for placing them inside the page

» Vertically partition records within page, storing together
values of each attribute in a minipage
» Advantages:
» maximizes inter-record spatial locality thus improving cache
performance

» minimal record reconstruction cost
» orthogonal to other design decisions as it affects only the data within

a page
» The following slide shows the cache behaviour of PAX

Cache Behaviour of PAX
PAX PAGE

PAGE HEADER

0962

7658

CACHE

3859

5323

Jane

John

Jim

Susan

30 52[45] 20

[TTT]

30 | 52

FIGURE 3: The cache behavior of PAX

An example PAX page
attributes free space

#records
attr. sizes
R

pid L 31214 v]|4]|f ||pageheader
0962 | 7658

F-minipage

presence bits |1]1
—» Jane John
A F 9
V-minipage
v-offsets Il pag
—»1 30 | 45

F-minipage

presence bits |1]1

FIGURE 4: An example PAX page.

Design of Page in PAX

» For storing a relation of degree n, PAX partitions the page
into n minipages

» Page Header contains pointers to begining of each
minipage, number of attributes, the attribute sizes, current
number of records on the page and free space available

» Fixed length attributes are stored in F-minipages. The end
of F-minipage has presence bit vector

» Variable length attributes are stored in V-minipages.
These are slotted with pointers to the end of each value

Data Manipulation Algorithms

» Bulk-loading and Insertions
> Allocate each minipage on the page based on attribute value size
» Inserts records by copying actual value to each minipage
» When variable length values are present, minipage boundaries need to
be adjusted to accomodate records as they are inserted in the page
» PAX calculates the position of each attribute value of the page,
stores the value and updates the bitmaps and offset arrays
appropriately
» Updations
» Find the position of the attribute value of the record and then
update the value
» Updates to variable length values may require minipage level
reorganizations
» If the space is not sufficient to accomodate and re-organization is
not possible then record is moved to other page

Data Manipulation Algorithms...contd.

» Deletion

» NSM uses slot array to mark an entry as deleted

» PAX keeps track of deleted records using a bitmap at the start of the
page and uses bitwise calculations to find whether a record is deleted

» Reorganization can be done within minipage after deletion so as to
minimize fragmentation

» For deletion intensive workloads, reorganization can be deferred.

Experimental Results-1

NSM/PAX/DSM Elapsed Time

50 -
—&— NSM
— 40| —=—PAX
= —e— DSM
Q
9 30 1
8
Q
£ 201
k=)
Q
0
2 10 1
T
0 L] L] L] L] L] L]

1 2 3 4 5 6
number of attributes in query

Experimental Results-2

NSM PAX

160 1 @L1Data Penalty 160 1 @ 1 pata Penalty
140 { [IL2 Data penalty . 140 1 @L2 Data penalty

60|
wd|

N
=1

clock cycles per record

(=]

v T o 0 —
1% 5% 10% 20% 50% 100% 1% 5% 10% 20% 50% 100%
selectivity selectivity
FIGURE T: PAX impact on memory stalls

» NSM Vs PAX Impact on cache behaviour

» PAX reduces data penalty at both cache levels L1 and L2 and
reduces stall time

» This reduction in number of misses results in further reduction of
instruction cache misses as cache space is judiciously used

Experimental Results-3

NSM/PAX Elapsed Time NSM/PAX Elapsed Time per Record
5.5 6
’ —a—h n % ’ .f
)
- Q4
S 45 o
o
2 e3
2 4 5
g —a— NSM £? —&— NSM
= 3.5 o
—e—PAX gl —e—PAX
3+ T T T T T T] 0+ T T T T T
1 2 3 4 5 6 7 2 4 8 16 32 64
projectivity number of attributes in relation

NSM/PAX Sensitivity Analysis

» Query execution time of NSM and PAX converge as the
number of projected attributes increase

» As the degree of relation increases other factors such as
buffer manager start to play a dominant role.

Buffering Database Operations for Enhanced Instruction
Cache Performance

A typical scenario

» In a demand-driven query execution plan child operator
returns control to parent operator immediately after
generating one tuple

» So the operator execution sequence is like
'PCPCPCPCPCPCP..’

» Instruction cache thrashing can occur when the combined
size of two operators exceeds the size of the smallest,
fastest cache unit

Buffer operator

Parent .
Operator etNext(
Buffer Buffer
Operator Pool
Child o

Operator [z

Solution that uses buffering

» Given a query, add a special buffer operator at certain
places between a parent operator/operator group and child
operator/operator group

» Buffer operator above child has an array of pointers that
point to intermediate result tuples

» This effectively changes the execution sequence to
'PCCCCCPPPPPCCCCCPPPPP..’

» The execution sequence shows that number of instruction
cache misses decrease substantially

» The reduced cache misses are due to improved instruction
spatial and temporal locality

New Buffer Operator

» Given a query plan identify the execution groups that are
candidate units for buffering

» Add a new explicit buffering operator above the execution
group, if necessary
» Implementation of buffer operator:
» Supports open-next-close interface
» Maintains two states : Whether end-of-tuples is received from the
child operator and Whether its buffered tuples have been consumed
» Maintains an array of pointers to tuples that are stored in child
operator’s space
» Benefits of buffer operator:
» Increase in query throughput due to decrease in instruction cache
misses
» Better hardware branch prediction

Other Detalls

» All operators don't benefit from buffering e.g. small
cardinality operators, blocking operators like sort

» The placement of buffer operators in a query plan can be
done by using a bottom-up pass of the plan tree

» This however needs some mechanism of estimating the
memory needed by various query operators

Conclusion

v

We looked at three approches for improving cache
performance

CSB™-Tree approach was able to give better search
performance while at the same time allowing incremental
updates

PAX approach changed the data layout model to ensure
that cache space is occupied by useful data and it also
remained orthogonal to other design decisions

Buffering approach tried to solve the problem of improving
instruction cache performance for demand-driven pipelined
query execution environment

References

» Jun Rao, Kenneth A. Ross: Making B*-Trees Cache
Conscious in Main Memory. SIGMOD Conference 2000:
475-486

» Anastassia Ailamaki, David J. DeWitt, Mark D. Hill,
Marios Skounakis: Weaving Relations for Cache
Performance. VLDB 2001:169-180

» Jingren Zhou, Kenneth A. Ross: Buffering Database
Operations for Enhanced Instruction Cache Performance.
SIGMOD Conference 2004:191-202

Thank Youl!

