

 Redundancy and Information Leakage
in Fine-Grained Access Control

 Govind Kabra 1 Ravishankar Ramamurthy S. Sudarshan 2
 Univ. of Illinois, Urbana-Champaign Microsoft Research I.I.T. Bombay

 gkabra2@uiuc.edu ravirama@microsoft.com sudarsha@cse.iitb.ac.in

ABSTRACT

The current SQL standard for access control is coarse grained, in
that it grants access to all rows of a table or none. Fine-grained
access control, which allows control of access at the granularity of
individual rows, and to specific columns within those rows, is
required in practically all database applications. There are several
models for fine grained access control, but the majority of them
follow a view replacement strategy. There are two significant
problems with most implementations of the view replacement
model, namely (a) the unnecessary overhead of the access control
predicates when they are redundant and (b) the potential of infor-
mation leakage through channels such as user-defined functions,
and operations that cause exceptions and error messages. We first
propose techniques for redundancy removal. We then define
when a query plan is safe with respect to UDFs and other unsafe
functions, and propose techniques to generate safe query plans.
We have prototyped redundancy removal and safe UDF pushdown
on the Microsoft SQL Server query optimizer, and present a pre-
liminary performance study.

1. INTRODUCTION
The current SQL standard for access control is coarse-grained, in
that it grants access to all rows of a table or none at all. Fine-
grained access control, which allows control of access at the granu-
larity of individual rows/columns, is required in practically all
database applications, for example to ensure that employees can
see only their own data, and relevant data of other employees that
they manage. Fine-grained access control has traditionally been
performed at the level of application programs. However, imple-
menting security at the application level makes management of
authorization quite difficult, in addition to presenting a large sur-
face area for attackers --- any breach of security at the application
level exposes the entire database to damage, since every part of the
application has complete access to the data belonging to every
application user. There is, therefore, an increasing need to support
fine-grained access control at the database level.

Several models for fine-grained access control have been proposed

in the recent past �[8]�[9]�[10]�[11]�[12]; two of these, Oracle’s Virtual
Private Database (VPD) �[9], and Sybase’s row level security
model �[10], are implemented as part of commercial database sys-
tems. With the exception of �[8] and �[11], all these models, in ef-
fect, replace each relation in a user query by a view of the relation
that the user is authorized to see; the replacement view includes
authorization checks. More details about these models are pro-
vided in Section �2.

There are two significant problems that must be addressed by any
implementation of fine-grained access control using the view re-
placement model:

1. The first issue is a question of efficiency: The original query
usually includes predicates/joins that restrict access to only
authorized data. The authorization checks performed in the
replacement views are often redundant, including not only
cheap comparisons, but also expensive semi-joins. The intro-
duction of complex authorizations also increases the complex-
ity of the rewritten query significantly, resulting in increased
optimization time and worsened execution time.

2. The second issue is a question of effectiveness of the access
control implementation under a general model of attack,
which may include users submitting arbitrary SQL queries.
Although applications generally do not allow users to submit
arbitrary SQL queries, hackers who break into an application
may be able to submit such queries. Further, in a hosted ap-
plication, a single database schema may be shared by a large
number of independent users who may be authorized to sub-
mit SQL queries on their views of the data.
Even if the fine-grained authorization implementation ensures
that the query result contains only authorized information, it
is possible for malicious users to gain access to unauthorized
information based on information leakage through channels
other than the query result. These channels include:

i. Leakage of information through exceptions and error
messages.

ii. Leakage of information through user-defined functions
(UDFs). In this case, the malicious user needs the ability
to define user defined functions in addition to the ability
to run SQL queries.

As an example of leakage through UDFs, consider a relational
schema employee(emp_id, name, dept_id, salary) and a view

 CREATE VIEW myemployees AS
 SELECT * FROM employee
 WHERE dept_id in Q1

which allows a user to see only the employee tuples with dept_id
in the result of some query Q1.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGMOD 2006, June 27-29, 2006, Chicago, Illinois, USA.
Copyright 2006 ACM 1-59593-256-9/06/0006…$5.00.

1 Work done during a summer internship at Microsoft Research
2 Work done during a sabbatical at Microsoft Research

Suppose the user issues the following query:

 SELECT * FROM myemployees
 WHERE myudf(salary)

(Or, equivalently, suppose the user writes the query on the relation
employees, which is rewritten by replacing the relation by the
authorized view myemployees.) Figure 1(a) shows the original
user query. The query preprocessor replaces the view myemploy-
ees by its definition. Figure 1(b) and 1(c) illustrate two alterna-
tive plans for the rewritten query. In the plan in Figure 1(b), every
tuple for which myudf is executed has passed through the authori-
zation check of subquery Q1. However, in the plan in Figure 1(c),
myudf is executed on every tuple in employee relation, even those
that would not pass the authorization check of subquery Q1.

The behavior of myudf is not under the control of the authoriza-
tion system, and it can potentially print out (or save in a separate
relation) the salary values it is passed. While both the plans pro-
duce same result set, the plan in Figure 1(c) can potentially leak
the salary information of all the tuples in employee relation.

Such leakage can also occur with system defined functions that
throw exceptions, or display error messages. We use the term un-
safe function (USF) to denote user-defined functions, system-
defined functions and operators that may reveal information,
whether directly or by indirect means such as exceptions, error
messages or timing. We provide more concrete examples of these
leakage channels in Section �5.1. For any fine-grained authoriza-
tion implementation to be effective, it has to protect against infor-
mation leakage.

One possible solution is to pull up USFs to the top of query plans,
thereby ensuring that they are executed only on data that the user is
authorized to see. While correct, this solution can have poor per-
formance in many situations, especially if the USF is used in a
predicate that allows very few tuples out. Sandboxing is another
standard technique to protect database systems from potentially
harmful effects of UDFs. However, sandboxing cannot handle
some leakage channels, and has other limitations, as discussed in
Section �5.1.

In this paper we address the problems of redundancy and informa-
tion leakage. The contributions of this paper are as follows:

• We describe how redundancy checks can be integrated into a
rule based optimizer with low overheads. We note that algo-
rithms for detecting redundant joins have been available from
the early days of databases; our contribution is in engineering
an existing optimizer to introduce redundancy detection, ex-

ploiting existing functionality that supports materialized view
matching.

• We target the problem of information leakage as follows:

o We first explore what plans can be guaranteed to not leak
information, and define a class of safe plans that are guaran-
teed to not leak information through unsafe functions.

o We then describe techniques to find the optimal safe plan.
In our performance study, we demonstrate the benefits of
finding optimal safe plans, instead of settling for heuristics
such as pulling USFs to the highest level in a query plan.

The rest of the paper is organized as follows. Section �2 describes
related work, while Section �3 presents a query rewriting model
which we use to describe our techniques. Section �4 covers removal
of redundant semijoins. In Section �5 we formally define when a
query plan is safe in the presence of USFs, and describe how to
extend a query optimizer to find an optimal safe plan. The above
algorithms have been prototyped on Microsoft SQL Server, and in
Section �6, we present a performance study. In Section �7 we present
our conclusions and directions for future work.

2. RELATED WORK
 The basic goal of fine-grained access control is to grant a particu-
lar user access to only specific columns of a subset of the tuples in
a relation. In contrast, although the current SQL standard supports
column level authorization, it does not provide any way of giving
different authorizations to different rows.

Oracle’s Virtual Private Database (VPD) model �[9] supports fine-
grained access control through functions that return strings con-
taining predicates. A function is associated with each relation, and
when invoked returns a string containing predicates that enforce
fine-grained access control; the function takes as input the mode of
access and an application context which includes information such
as user-id of the end user.

The policy based security management feature of Sybase Adaptive
Server Enterprise �[10] allows the specification of predicates that
are added to where clauses. Different policies can be specified on
different columns, and are automatically combined. The idea of
access control by query modification dates back to Ingres �[13].

Cell-level access control is described by LeFevre et al. �[4]. In their
model, values of particular columns of particular tuples may be
replaced by null, if the user is not authorized to see those values.
Their target application is the handling of privacy policies, not
general purpose authorization. However, their approach of nullifi-
cation is useful in a general purpose authorization model. A pro-
posal to use predicated grants to manage cell-level access control
is described by Agrawal et al. �[1].

All the above models fall into the class of “Truman models” , in the
terminology of �[11]. The non-Truman model described in �[11] has
a different approach: under this model, a query is valid if it can be
rewritten using only authorized views (there are two notions of
validity, unconditional and conditional: see �[11] for details). Que-
ries submitted to the system are checked for validity; if a query is
valid it is executed with no modifications, otherwise it is rejected.
Such behavior matches the authorization checking in standard
SQL, but works with fine-grained authorizations specified by au-
thorized views. The Non-Truman model is attractive for several

myudf(E.salary)

myemployees

myudf(E.salary)

myemployees

myudf(E.salary)

employees Q1

myudf(E.salary)

employees Q1employees Q1

myudf(E.salary)

employees

Q1myudf(E.salary)

employees

Q1

 (a) (b) (c)

Figure 1: (a) User query on an author ized view. (b) A safe
plan for this query, and (c) A result-equivalent plan that can
potentially leak unauthor ized information.

reasons, such as guaranteeing correctness; that is, if a query is
accepted, it will give the same result as if the user had full authori-
zations on all relations. In contrast, in the class of Truman models,
the result of a query can be changed by the authorization mecha-
nism.

However, any non-Truman model implementation is likely to be
unpredictable in the following sense: the model requires a power-
ful query inferencing mechanism and since inferencing can never
be complete, a query that is accepted by one database implementa-
tion may be rejected by another (perhaps even a different version
of the same database system). Such unpredictability is highly un-
desirable for applications, and inference procedures are expensive
and far from complete; as a result the class of Truman models is
used in practice, in preference to the non-Truman model.

 Brodsky et al. �[2] provide a survey of secure databases, which
includes coverage of inference channels. Attacks on database ap-
plications using SQL injection coupled with inferencing using
exceptions and error messages are well known in the hacker com-
munity; see for example, Litchfield �[7]. These attacks were de-
signed to subvert application level security, not fine-grained access
control in the database, but as our examples in Section �5.1 show,
exceptions and error messages can easily be used to leak informa-
tion in the context of fine-grained access control.

As far as we are aware, the problem of leakage through exceptions
and error messages have not been addressed in the past. We are
also not aware of any published work on ensuring safety with re-
spect to UDFs.

3. QUERY REWRITING MODEL
The techniques we describe in this paper are applicable to authori-
zation models that are (conceptually) based on query rewriting,
where references to database relations are replaced by references to
corresponding authorized views; these include �[1]�[4]�[9]�[10].

Consider the TPC-H schema, and a user who is only authorized to
see orders placed by that user. Such an authorization can be speci-
fied by the following authorized view on the relation Orders.

 CREATE VIEW authOrders AS
 SELECT * FROM Orders
 WHERE (o_custkey = userId())

Here, userId() is a function that (at runtime) returns the user iden-
tifier of the current user. Note that applications built on top of
databases often have thousands to millions of users; since data-
bases cannot efficiently support that many users, application pro-
grams usually run under a single database user-id, and maintain
their own notion of application users. The userId() function above
returns the user identifier at the application level, which must be
provided to the database system by the application. (In Oracle
VPD, the application context provides information about the ap-
plication user, as well as other application level information.)

In general, the authorized view can contain a subquery. For in-
stance, the following view grants a user access to the Lineitem
tuples that the user has ordered.

 CREATE VIEW authLineitem AS
 SELECT * FROM Lineitem
 WHERE EXISTS (SELECT * FROM Orders
 WHERE l_orderkey = o_orderkey
 AND o_custkey = userId())

Although an authorized view can be arbitrarily complex, we be-
lieve the most useful class of authorized views is one where the
authorized views return a subset of the tuples of a relation, where
the subset is defined by a predicate (which may include a sub-
query). The view may additionally project away some columns.

 In addition a view may replace a column value by some function.
For example, in cell-level access control using nullification �[4], in
the SELECT clause of a view on relation R, a column A1 may be
replaced by the expression

 (CASE WHEN P1 THEN A1 ELSE null) AS A1

The AS clause above ensures the name A1 is retained for the result
of the expression.

In this paper we consider a class of authorized views of the form

 CREATE VIEW auth_Ri AS
 SELECT Li FROM Ri WHERE Pi

where Pi may include subqueries, and Li is a list of attribute names
or expressions, or may be * (to allow access to all columns). For
simplicity, our presentation of redundancy removal techniques
assumes that Li is just *, although we briefly outline how to handle
the case where Li contains expressions implementing cell-level
access control. The case where Li contains only a subset of attrib-
utes of Ri is easier to handle: it is trivial to check if a query ac-
cesses a column not in Li, and to reject such a query. For simplic-
ity, we do not consider such projections hereafter.

Authorized views of the above form, with Li being * can be repre-
sented as a semi-join (Ri �θi Ai), where Ai is an expression con-
taining the subqueries in Pi. For notational convenience, we as-
sume that selection conditions in Pi are folded into the semi-join
condition θi.

Given a query, the access control component of the database sys-
tem replaces the relations with the definitions of the corresponding
authorized views. Thus, a query of the form (R1 � R2 � …� Rn)
would get rewritten to the form ((R1 �θ1 A1) � (R2 �θ2 A2) �
… (Rn �θn An)).

Although we use the syntax of authorized views, the problems we
describe as well as the solutions we present in this paper apply
equally to these alternative models:

• The Oracle VPD model, where for each Ri in a query, an au-
thorization predicate Pi is added to the where clause of the
query. This model is equivalent to defining authorized views
where Li in the SELECT clause is “*” .

• The use of views, where the user query references the views
instead of the actual relation (as we did in the examples in
Section �1). This is the traditional SQL authorization model,
except that the views may use application context information
such as userId().

• Models based on authorization grants, where the grant may
have a grant predicate, such as �[1]. Such grants can be trans-
lated into authorized views.

The problems of redundancy and information leakage arise with all
these approaches, and our techniques for redundancy removal and
safe plan generation are applicable to these approaches.

A user can have different authorized views for different operations
on the relations, such as select, insert, delete or update. In this
paper we concentrate on the select authorization, and on queries,

since these present the main challenges in terms of redundancy and
information leakage.

We note, however, that the approach of using authorized views to
implement fine-grained access control can handle inserts, updates
and deletes by defining corresponding authorized views for each
operation; the views are of the same form as we use for the select
operation, with Li restricted to being “*” . As in Oracle VPD, such
authorizations can be handled by ensuring that Pi is satisfied by the
old and new values of updated tuples, and inserted and deleted
tuples. Relations used in subqueries of an insert, delete or update
statement are subject to view replacement using the authorized
view for the select operation. With this model, updates, inserts and
deletes do not introduce any additional issues of redundancy and
information leakage, beyond those introduced by select queries,
and we ignore them in the remainder of this paper.

4. REDUNDANCY REMOVAL
In the view replacement approach, the base relations in a query
submitted by a user are replaced by authorized views. The original
query usually includes predicates/joins that ensure that the query
accesses only authorized tuples. In such cases the additional au-
thorization checks introduced by view replacement would be re-
dundant. In particular, checks which involve semi-joins can be
quite expensive, and should be removed if they are redundant. In
this section, we study how such redundancy can be removed by
leveraging the existing view matching infrastructure of the query
optimizer.

4.1 Motivating Example
We first outline an example to motivate redundancy removal. Con-
sider the TPCH schema and assume the following authorized view
for the Lineitem table which authorizes a customer to see only the
lineitems corresponding to an order placed by him.

 CREATE VIEW authLineitem AS
 SELECT * FROM Lineitem WHERE
 EXISTS (SELECT * FROM Orders
 WHERE l_orderkey = o_orderkey
 AND o_custkey = userId())

Suppose a customer with userId = 123 issues the following query:

 SELECT Lineitem.* FROM Lineitem, Orders
 WHERE l_orderkey = o_orderkey AND o_custkey = ‘123’

Fine-grained access control would replace the relation Lineitem
with the corresponding authorized view. The rewritten query (after
view expansion) is shown below

SELECT lineitem.* FROM Lineitem, Orders O1
 WHERE l_orderkey = O1.o_orderkey
 AND O1.o_custkey = ‘123’ and
 EXISTS (SELECT * FROM Orders O2
 WHERE l_orderkey = O2.o_orderkey
 and O2.o_custkey = userId())

 Note that the rewritten query includes an additional semi-join with
the Orders table. We assume that the function userId() is evalu-
ated at optimization time, and replaced by its return value, which
would be 123 in the above example. Notice that the query has a
selection o_custkey = 123, and thus accesses only tuples that are
authorized. Thus, for this example the additional semi-join intro-
duced by the rewriting is actually redundant. In general the rewrit-
ten query could include many semi-joins that are redundant. In-

deed, we believe that it is fairly common for rewritten queries to
include redundant semi-joins. This could potentially result in addi-
tional optimization as well as execution times for these queries. In
order to optimize for the “common” case, we investigate tech-
niques for redundancy removal and look at how they can be inte-
grated in an existing query optimizer.

Although removal of redundant joins has been studied for many
years (see, e.g. �[3]), current generation commercial optimizers
have only very limited forms of redundancy removal. The main
reason is that queries have thus far rarely had redundancy, and the
optimization effort spent to detect redundancy did not have
worthwhile payoffs. The introduction of redundancy due to fine-
grained access control motivates redundancy detection and re-
moval. Our contributions in this context are as follows:

• We show how to detect and remove redundancy by exploiting
existing code for matching (parts of) queries with materialized
view definitions.

• We show how to implement redundancy removal by means of
a set of transformation rules, enabling easy deployment in an
optimizer based on the Volcano/Cascades framework �[5]�[6],
such as the SQL Server query optimizer. Since the redun-
dancy introduced by authorized views is typically redundant
semi-joins, we consider removal of redundant semi-joins,
rather than joins. Interaction of these rules with other trans-
formation rules is another issue that we address.

• We have implemented the transformation rules and show that
we can get good performance benefits.

4.2 Detecting Redundancy
In general, the problem of redundancy removal can be rephrased as
a query minimization problem; query minimization is NP-complete
for conjunctive queries �[3]. In fact, if we consider arbitrary arith-
metic expressions, query containment (and minimization) is unde-
cidable; however, in the special case where relations are not re-
peated, query minimization can be done in polynomial time for
conjunctive (SPJ) queries.

For the purpose of fine grained authorization, we are primarily
interested in detecting redundancy in semi-joins introduced by
authorized views, which may be part of a more complex query
involving other operations such as grouping and aggregation. We
use the notion of subsumption in order to detect redundancy,
which we explain next.

Definition (Subsumption). An expression E2 subsumes expres-
sion E1 if E1�θE2 = E1.

Thus if E2 subsumes E1, we can infer that E2 is redundant and
transform E1�θE2 to E1. Although it is difficult to get necessary
conditions for subsumption, we can use sufficient conditions to
test for subsumption.

Consider the following transformation rule that replaces an expres-
sion with a selection over a materialized view

(R1 �R2 �…� Rn) � (σθ (V1))

The above transformation is valid as long as the view V1 subsumes
the expression (R1 �R2 �…� Rn). Thus, view matching in ex-
isting optimizer already uses subsumption checks. Optimizers typi-
cally normalize the expressions in order to check for subsumption.
A SPGJ normal form has a cross product of relations, on which a

selection is applied, on top of which a projection is applied, and
finally an optional group-by/aggregation operation is applied on
top. Using the SPGJ normal form is much more efficient than at-
tempting to match expression trees to determine subsumption. Of
course, not all expressions have an SPGJ representation; our re-
dundancy removal techniques apply only to those subexpressions
of the query where such a representation is possible.

Our techniques are a minor variant of the conditions for rewriting
using a materialized view. The primary change is that the sub-
sumption test used for view matching requires that E1 and E2 have
the same set of relations − we relax this to allow E2 to have a sub-
set of the relations that E1 has. We outline the procedure for test-
ing subsumption below.

Using the SPGJ representation of E1 and E2, we can test for sub-
sumption of E1 by E2 in E1 �θ E2 by checking that E2 has a sub-
set of the relations that E1 has, and there is a mapping from the
relations in E2 to those in E1 such that the following conditions
hold:

1. The predicates in the selection in the SPGJ-representation of
E2 are weaker than the corresponding predicates in E1, that is
the predicates in E1 imply the predicates in E2, and

2. The semi-join condition in �θ equates columns of E1 and E2
that are equivalent under the mapping.

Using the above procedure for testing subsumption between two
expressions, the following two transformation rules can be used to
detect and remove redundant semi-joins:

• At a semi-join E1 �θ E2, check if E2 subsumes E1. If so,
transform E1� θ E2 to E1.

• Consider a query where rewriting using an authorized view
results in a disjunction of subquery expressions, such as:

 SELECT * FROM E1
 WHERE (A IN (SELECT …))
 OR (B IN (SELECT …))
The first phase of the SQL Server optimizer transforms the
where-clause expression into (in-effect) a disjunction of semi-
joins. The subsumption test is applied to each of the dis-
juncts. If any one of the disjuncts is found to subsume the
expression E1, discard the entire set of semi-joins in the dis-
junction.

Consider a rewritten query (after every relation is replaced by the
corresponding authorized view) of the form

 (…((R1 � θ1 A1) � (R2 � θ2 A2)) � … (Rn � θn An))

The rules for redundancy removal check for patterns of the form
E1 �θ E2. If applied to the above expression, it would check for
subsumption only between the pairs (Ri, Ai). Of course, if we ap-
ply the redundancy removal rules during the transformation phase,
rules that push/pull semi-joins through joins would ensure that all
possibilities for detecting redundancy would be explored. But in
the worst case, the number of times the redundancy removal rules
is fired could be exponential in the number of relations. In order to
have a more efficient solution, we use the following technique.
During the simplification phase, we use a normalized form of the
above expression in which all the authorization semi-joins are
pulled up in the query tree. This is implemented as a simple set of
transformation rules, which pull semijoins up through joins and

selections. For the above example, the normalized version of the
expression obtained by semi-join pull up would be:

 ((..(R1 �R2 �…� Rn) �θ1 A1) … �θn An).

Now the redundancy removal rules would check for subsumption
between the Ai’s and the original query expression (and not just
the corresponding Ri’s) resulting in better detection of redundancy.
The number of times the redundancy removal rules are fired would
also now be at most linear in the number of authorizations. This
approach is just a heuristic and does not guarantee elimination of
all redundant authorizations. For instance, the set of authorizations
removed could vary based on the order of the Ai’s in the normal-
ized version of the query. But this scheme seems to work well in
practice and is easy to integrate in an existing optimizer infrastruc-
ture. In Section �6, we present an experimental evaluation that
shows the significant benefits of these techniques.

Note also that redundancy detection rules above are best applied
before query decorrelation transformations are applied, since
decorrelation may translate semi-joins into outer-joins. Redun-
dancy detection on joins and outerjoins is harder, since we have to
deal with duplicate counts, which can be ignored for semijoins.

4.3 Discussion
The transformation rules for redundancy removal described above
are tailored for the case when the authorized view is a semi-join
view, with all columns selected unchanged. Further transformation
rules are required to effectively handle the case of expressions,
such as nullification, in the select clause of the authorized view;
we omit details for brevity.

It is interesting to note that redundancy removal can be used as a
sufficient condition to test for query validity in the non-Truman
model of �[11] Given a query, we replace each relation by a semi-
join with its authorizations, and then perform redundancy removal.
If the query after redundancy removal is equivalent to the original
query without the added authorization predicates, then the original
query can be inferred to be valid.

The above rule can supplement other sufficient conditions for in-
ferring validity that are presented in �[11]. Although the above in-
ference rule is not a necessary condition, we found that in many
queries that accessed only authorized data, the added authorization
predicates were all detected to be redundant and removed.

As noted earlier, query rewriting can change the semantics of a
query. However, if we apply redundancy removal on a rewritten
query, and get back the original query, we can infer that query
rewriting does not change the semantics of the query.

5. INFORMATION LEAKAGE THROUGH
UNSAFE FUNCTIONS
In this section, we first outline leakage channels from unsafe func-
tions (whether system defined or user defined). We then define
when a query plan can be judged as safe with respect to USF invo-
cations; we then consider how an optimizer can be extended to
find optimal safe plans. We end the section with a discussion on
further optimizations for handling exceptions in Section �5.6.

5.1 Unsafe Functions
Recall the example in Section 1; the rewritten query (after incorpo-
rating the authorized view) was

 SELECT * FROM myemployees
 WHERE myudf(salary)

where myemployees represents an authorized view that involves
a subquery. The optimizer could however pick a plan for evaluat-
ing this query in which myudf() is pushed below the access control
check (Figure 1c). In such cases, the UDF has access to tuples that
it is not authorized to see.

The code defining the UDF is not under the control of the authori-
zation system and it could leak information about values passed to
it in one of a number of ways, such as printing out the value, stor-
ing it in a database relation, generating an error message, raising an
exception, or even through timing, by varying the execution time
of the function depending on the values passed to the UDF.

Leakage can occur even with system defined functions that can
throw exceptions. Consider the following example. Assume an
employee database and that managers are authorized to see the
salaries of employees in their department. Thus, the authorization
predicate on the employee relation uses a semi-join (subquery)
with the relation manager (managerid, deptid). Consider the fol-
lowing query

 SELECT * FROM employee
 WHERE empid = ‘XYZ’ AND 1 / (salary – 100K) = 0.23

Assume the query is issued by someone who is not a manager of
XYZ and hence is not authorized to see his salary. The employee
relation would be replaced with the corresponding authorized
view. The selection predicate involving the salary attribute and the
predicate on empid column could however be pushed below the
access control semi-join; and if there is an divide by zero exception
encountered during query execution, the information that the sal-
ary of XYZ is 100K can be inferred.

Error messages generated by some functions are another source of
information leakage. For example a system-defined function
to_integer(), which converts strings to integers, would output an
error message containing the string, if the string were not a valid
integer; such error messages are important for finding erroneous
data. But if a query uses a to_integer() function on a string which
is not an integer, the error message can leak information about the
actual value of the string, just like a user-defined function.

Sandboxing is a standard technique to protect database systems
from potentially harmful effects of UDFs, such as accessing or
corrupting system data. Sandboxing can be used to prevent some
side effects such as I/O, but exceptions and error messages would
provide leakage channels. Exceptions could perhaps be caught

and hidden, but that may change the behavior of queries, and more
importantly, update transactions. Error messages can be blocked,
but that may make it hard for a genuine user to trace errors. Worse,
even if exceptions and error messages are blocked, timing can be
used to leak information. For example, a UDF which takes signifi-
cantly longer if the salary of user XYZ is less than some cutoff, say
100K, can leak information through timing. In fact, it can be used
repeatedly, with different cutoffs, to determine the exact salary of
XYZ.

We say that a UDF or system-defined function/operator is safe if it
has been (manually) verified to not leak information about parame-
ter values passed to it, through any means such as those outlined
above. All other functions/operators are said to be unsafe func-
tions, or USFs. For example, the function userId(), which returns
the identifier of the current user, is a UDF in the SQL sense, but
we know it will not cause exceptions or leak information in any
other fashion. The userId() function can therefore be treated as a
safe function. We assume that UDFs invoked in the authorized
views are safe, since they are defined by the security administrator,
not a user.

One straightforward solution to the information leakage problem is
to ensure that invocations of USFs happen only after all authoriza-
tion checks have been carried out, by pulling USFs to the top of
the query plan. Such an approach clearly ensures that USFs only
see authorized information. However, pulling USFs to the top of
the query plan can lead to inefficient query plans. To allow other
plans to be considered, we first need to define when a query plan is
safe with respect to USFs.

5.2 Safety of plans with respect to USFs
Consider a naïve (and as we shall see, incorrect) approach to de-
termining safety of a query plan: suppose a USF invocation in a
query plan is judged to be safe if all its parameters are from rela-
tions that have their access control checks enforced. It may appear
that since each value passed to the USF is in the result of an au-
thorized view, no unauthorized information can be revealed.

In reality, information can be leaked not only by values that are
revealed, but also by values that are not revealed, as the following
example shows. Suppose a particular user is allowed to access all
tuples from the employee relation and only those tuples from the
relation medical_record(emp_id, disease) that appear in the
following view:

 CREATE VIEW auth_medical_record AS
 SELECT * FROM medical_record
 WHERE emp_id in Q2

where Q2 is a subquery that determines the set of employees
whose medical records a particular user is allowed to see. Suppose
this user executes the following query:

 SELECT *
 FROM employee E, auth_medical_record A
 WHERE E.emp_id = A.emp_id
 AND A.disease=’AIDS’ AND udf2(E.name)

Of the several alternative plans for this query, we illustrate three
plans in Figure 2. As the user has full access to employee relation,
the parameter E.name to udf2() in all three plans trivially satisfies
the above naïve condition. However, in the plan in Figure 2(b),
names of all employees having AIDS disease reach udf2(), some
of which may not have qualified subquery Q2, thereby leaving a
channel open for information leakage.

�

udf2(E.name)

employees

�

disease=‘AIDS’

medical-record

Q2Q2

�

udf2(E.name)

employees
�

disease=‘AIDS’

medical-record

Q2
�

udf2(E.name)

employees
�

disease=‘AIDS’

medical-record

Q2

�

udf2(E.name)

employees
�

disease=‘AIDS’

medical-record

Q2

�

udf2(E.name)

employees
�

disease=‘AIDS’

medical-record

Q2Q2

 (a) (b) (c)

Figure 2: All the plans satisfy the naïve approach to determin-
ing safety, however, the UDF placement in (b) can potentially
leak information.

Thus, the naïve approach to inferring safety described above does
not actually guarantee safety with respect to USF invocations.

Given that the above naïve approach does not work, we now pre-
sent a correct definition of safety. Before we do so, we point out
one more detail that has to be handled, namely parameters to a
correlated subquery. If a correlated subquery in a query plan has a
USF in it (or nested anywhere below it), an invocation of the sub-
query can reveal information about the parameter values. For ex-
ample, if we had a query

 SELECT * FROM employee E, auth_medical_record A
 WHERE E.emp_id = A.emp_id
 AND disease=’AIDS’
 AND EXISTS
 (SELECT * FROM R WHERE udf2(E.name))

where R is any non-empty relation. If in the query plan the condi-
tion disease=AIDS is checked first, and then the subquery with
udf2() is invoked, and the authorization test (using Q1) is per-
formed last, udf2() in the subquery can reveal unauthorized infor-
mation about which employees have AIDS. This problem can be
handled by treating the invocation of a subquery containing a USF
in the same fashion as the invocation of a USF.

The Microsoft SQL Server optimizer represents correlated evalua-
tion plans algebraically using an apply operator E1 Α E2; the apply
operator A invokes its right input E2 for each tuple generated by its
left input E1. Correlation variables are bound by E1 and used by
E2.

Definition 1: (Author ized Expression) An (algebraic) expression
is authorized if it is equivalent to an expression defined using only
authorized views.

Clearly, the query obtained by replacing each relation in the origi-
nal user query by its authorized view is authorized since it is an
expression defined using only authorized views. However, trans-
formations applied to the query during query optimization can
generate a number of different expressions. A key issue is to effi-
ciently infer which of these expressions is authorized. We return
to this issue in Section �5.3.

We now define when a plan is safe. Note that the property of being
authorized is different from plan safety: authorization is a logical
property of an expression, regardless of the plan used to compute
the expression, whereas safety is a property of a particular query
plan, which ensures that it cannot leak information (using channels
other than the query result itself).

Definition 2 (Safety w.r .t. USFs) A node in a query plan is safe
w.r.t. USFs if:

1. it there are no USFs in the node, and all inputs (if any) of the
node are safe, or

2. the node has a USF, it is not an apply operator, and all its in-
puts are safe and authorized (treating correlation variables de-
fined by ancestor apply operators as constants), or

3. the node is an apply operator, both its children are safe, and
either (a) the right child (subquery) does not have any USF
invocations, or (b) the left child is authorized (treating any
correlation variables defined by ancestor apply operators as
constants)

A plan is safe if its root node is safe (or, equivalently, all its nodes
are safe).�

It should be clear that in a safe plan, USFs are invoked only on the
results of expressions which can be computed using only author-
ized views. For cases where some correlation variables may be
defined higher up, by part 3 of the above definition, these correla-
tion variables are themselves generated by authorized expressions.
As a result, unauthorized information is never passed to a USF.

Note also that the above definition of safety does not depend on
the form of the authorized view. As a result it can be used with
arbitrary views, including those which perform nullification.

5.3 Inferr ing Author ization
We now consider how to infer if an expression is authorized. To
do so we need to find an equivalent expression that has as leaves
authorized views. Unfortunately, this is not an easy task: first, the
problem of query equivalence is NP complete as discussed earlier
in Section �4.2. Further, we don’ t even know which expression on
authorized views to compare the subexpression to. Several infer-
ence rules to check for authorization are presented in �[11]; the goal
there was to check for authorization of the given query, whereas
we are trying to apply authorization tests to a potentially large
number of subexpressions generated by a query optimizer (Section
�5.4).

We use the “validity propagation” approach of �[11] to infer au-
thorization, since it can be used to infer authorization for multiple
subexpressions at a low cost. The intuition behind the approach is
as follows: authorized views (which replace the relations) in a
query plan are all marked as authorized, and any expression gener-
ated during optimization is marked as authorized if all its inputs
have been marked as authorized.

More formally, the validity propagation approach modifies the
optimizer to infer authorization of expressions as follows. In the
Volcano/Cascades optimization framework �[5]�[6], an expression is
represented by a group (or equivalence node), representing a group
of equivalent expressions. A group may have multiple children,
each of which is an operation node (such as join or selection); the
children of the operation node are in turn equivalence nodes.
Transformation rules may add more operation node children to a
group node.

For illustration, we apply this mechanism on the example query in
Section 5.1 in Figure 3. For simplicity, we remove UDF from this
query, to focus on validity propagation instead of safety.

In the validity propagation approach, authorization is maintained
as a group property in the optimizer’s memo structure. This prop-
erty is independent of which plan is chosen to implement the ex-
pression. We start with the rewritten form of the query in which
each relation Ri is replaced by its authorized view (with semi-join
authorizations, Ri �θ1 Ai). The groups corresponding to the indi-
vidual authorized views (Ri � θ1 Ai) are initially marked as au-
thorized. As shown in Figure 3, we mark G1 and G5 as authorized
as they correspond to the authorized expressions.

The following inference rule IA is then used repeatedly: Rule IA:
If all the children group nodes of an operation node are marked as
authorized, the group node which is the parent of that operation
node is also marked as authorized.

In the example in Figure 3, by applying IA we infer that G6 is also
authorized. A subtle point in our setting is the fact that a Group G1
might not be inferred as authorized when it is created, but later if a
new expression is added as a child of G1, it allows us to infer that

G1 is authorized. This information may in turn allow us to deduce
that a parent (or ancestor) group is authorized. As a result, when-
ever we infer a group to be authorized we need to propagate the
authorization property changes up to parent and ancestor groups in
the memo structure.

A key difference with �[11] is the fact that they assume that trans-
formation rules have been completely applied before checking for
validity (authorization), whereas in our context the inference has to
take place while transformations are being applied (Section �5.4).

It may appear that this inference rule is overly simplistic. In fact, it
can be quite powerful, as the following theorem shows.

Theorem 1. If the entire search space is explored by optimizer,
every authorized expression that is generated will be marked as
authorized using the inference rule IA. �

We omit the proof for lack of space. We note that �[11] does not
consider completeness of the authorization propagation rule. In
general optimizers prune the search space, so there is no guarantee
that all authorized expressions are marked as authorized, but our
performance study shows this rule works quite well in practice.
We note that the results in this section are independent of the form
of the authorized view, and can therefore also handle nullification
based cell-level authorization.

5.4 Approaches to Generating Safe Plans
We now elaborate how a top-down optimizer based on Vol-
cano/Cascades �[5]�[6], such as the query optimizer used in Micro-
soft SQL Server, can be modified to generate safe query plans
involving USFs.

It is easy to devise heuristics to find a safe plan. A naïve method is
to ensure that the USF invocations are never pushed down (by
disabling the corresponding optimizer rule for
UDF/selection/projection push down). Since the USFs stay at the
top of the query plan, all the necessary access control checks will
be applied before USF invocation and the resulting query plan
would be safe. However, the plan obtained can be far from opti-
mal, especially if the USFs are used in predicates that are very
selective (i.e. eliminate most tuples). This point is substantiated in
our performance study in Section 6.

 Another possible approach is to just tweak the optimal unsafe
plan (by pulling up USFs) till the plan becomes safe. This is a
simple technique that requires relatively little modification of the
query optimizer. Unfortunately, the resultant plan may not be the
optimal safe plan, and may in fact be quite inefficient compared to
the optimal safe plan. Moreover, to check if a node in the query
plan is authorized we need the memo structure after the query is
expanded, and the memo structures of the authorized views after
expansion.

 Given that the memo structures are needed anyway, it is natural
to ask if there is a principled way to extend the search algorithm of
the query optimizer to find the optimal safe plan. It turns out we
can achieve this by enforcing safety either at every transformation
rule (that involve USFs) or only when we pick the final plan. The
two strategies are discussed below

1. One approach is to modify all the optimizer rules such that
USFs are only pushed on top of authorized expressions. The
transformation rule that pushes USF to a query expression suc-
ceeds only if the query expression is known to be authorized. It
is easy to see this approach would generate a safe query plan. A
potential drawback is that the rule may fail if a group which is
actually authorized has not yet been inferred to be authorized.
Some candidate plans may be missed as a result.

2. The second approach allows unsafe transformations but en-
forces safety when picking the optimal plan. In this approach,
USFs are pushed down (as a transformation, not a substitution)
even to potentially unauthorized query expressions. When the
optimal plan is picked, the safety property can be enforced us-
ing an existing optimizer feature called required/derived proper-
ties. The physical operators derive the safety property from the
their corresponding logical operators, while the procedure that
finds the optimal plan ensures that only plans satisfying the
safety property are considered. This is similar to the notion of
enforcing a sort order to support an order-by clause.

The two approaches are related, we can in fact show that in certain
cases the two approaches would in fact explore the same set of safe
plans, as the following theorem states.

Theorem 2. For the case where queries as well as authorized views
are conjunctive (SPJ) queries, if the entire search space of the
optimizer is explored, all the safe plans obtained by approach 2 can
also be obtained by approach 1.�

In our implementation, we currently chose approach 1 above, dis-
allowing USF pushdown into expressions that have not been in-
ferred to be authorized. We intend to further explore the relation-
ship between the two approaches as part of future work.

�

employees

medical-records

Q1
�

employees

medical-records

Q1

G5

G1 G4

G2

G6

G3

�employees

medical-records

Q1

G5

G1 G4

G2

G6

G3

�employees

medical-records

Q1

 (a) (b)

G5G7

G1 G4

G2

G6

G3

�employees

medical-records

Q1

G5G7

G1 G4

G2

G6

G3

�employees

medical-records

Q1

 (c)

 Figure 3: (a) The initial query tree for query in Section 5.1
without UDF. (b) The DAG representation of query. (c) The
expanded query tree after applying transformation rules.
Commutativity and Selection pull up not shown. Black boxes
represent the author ized groups, and white boxes represent
the unauthor ized groups.

5.5 Integrating Redundancy Removal and
Safety
We illustrated how redundancy removal could be implemented by
transformation rules that pull up semi-joins and detect redundancy
using the view matching infrastructure (Section �4.2). We had men-
tioned earlier that these rules are executed as part of query simpli-
fication (since redundancy removal is almost always guaranteed to
produce a better plan, much like pushing down selections).

 However, it turns out there is a subtle interaction between redun-
dancy removal and safety inference of UDFs. The key point is the
fact that in order to infer if sub-expressions are authorized using
the validity propagation approach, we need the query expression
which is input to the transformation phase to be in the canonical
form shown below, with authorization checks intact.

 (.. ((R1 � A1) � (R2 � A2)) �… (Rn � An))

If redundancy removal were applied prior to the transformation
phase, we may have eliminated some of the Ai’s; the validity
propagation approach would then not be able to infer many inter-
mediate results to be authorized even if they actually are: for if any
Ai is found to be redundant and deleted, notice that Ri will not be
part of any authorized expression. There are a couple of ways to
circumvent this problem, which we now describe.

5.5.1 Redundancy Removal During Transformation
One simple approach to solving this problem is to apply redun-
dancy removal during the transformation phase (instead of the
simplification phase), so that the Ai’s are preserved and can be
used to infer authorization.

To prevent other simplification rules from affecting the normal
form, we introduce authorization-anchor operation nodes before
the simplification stage, which prevent any transformations that
pull up any of the Ri’s or Ai’s, or push down any operation into
the Ri � Ai expressions. At the start of the transformation phase,
we remove the authorization-anchor nodes and mark as authorized
the corresponding groups. Propagation of authorization is done as
usual during optimization. (Propagating the authorization marking
up on the initial query tree actually results in all the par-
ent/ancestor groups being marked as authorized. However, only
some of groups added subsequently may be authorized.)

Redundancy removal rules are then applied during the transforma-
tion phase. Because groups have alternatives with the authoriza-
tion predicates in place, we can infer authorization of groups using
the validity propagation approach. At the same time, the group can
have other equivalent expressions with redundant parts removed,
allowing more efficient evaluation. Thus, we are able to get an
optimal safe plan.

We note that the redundancy removal rules in our prototype are
substitution rules, which allow partial pruning of the search space
when redundancy is detected; we omit details for brevity. This can
reduce the optimization overhead compared to an approach that
does not remove redundancy, or which does not do the partial
pruning mentioned above. However, the overhead in this case is
larger than when redundancy removal is applied in the simplifica-
tion stage, because the redundancy of semi-joins gets tested multi-
ple times, and because of the increased search space due to late
detection of the redundant parts.

An interesting challenge in applying redundancy removal as part of
the transformation phase is the fact that this could lead to potential

cycles in the memo structure. For instance, when we eliminate a
semi-join, we generate a child node that is equivalent to the parent
and is part of the same group. The SQL Server optimizer which
we used for our prototype had partial support for handling cycles
in the memo, which we had to extend. Details are beyond the
scope of this paper.

5.5.2 Conditioned Authorization
A better approach to integrating safe plan generation is to perform
redundancy removal at simplification time, but use an extended
notion of authorization, which we call conditioned authorization.
(Note: this notation is not to be confused with the conditional va-
lidity notion of �[11].)

With conditioned authorization, instead of making an expression
as authorized, we may mark it as authorized conditioned on a
join/semijoin with another expression. For example suppose we
have a relation Ri with authorization Ai. Ai could possibly be de-
leted by redundancy removal or moved elsewhere in the expression
during simplification. We mark Ri as authorized conditioned on
Ai, that is, conditioned on it being joined/semi-joined with Ai. (We
can add the join condition to the authorization, but for simplicity
we omit the join condition in our discussion.) Authorization condi-
tioned on an empty expression is the same as unconditioned au-
thorization.

Groups (or equivalence nodes in the memo) derive their authoriza-
tions as follows. If any child is unconditionally authorized, so is
the group. Otherwise, the authorization condition for a group is the
disjunction of the authorization conditions of its children; the dis-
junction can be suitably simplified.

The rule for propagating authorization is then modified. For exam-
ple, if expression E is of the form E1 � E2, where E1 is author-
ized conditioned on Ai, while E2 is unconditionally authorized, if
E2 is equivalent to Bj � Ai, we can infer that the resultant expres-
sion is unconditionally authorized. The extended propagation rule
is as follows:

1. If an operation has two child groups E1 and E2 that are each
authorized conditioned on A1 and A2 respectively, the result
of the operation is authorized conditioned on A1 and A2.

2. The above condition is then simplified as follows: if A1 sub-
sumes E2, we drop A1 (and similarly for A2) from the condi-
tion.

If simplification results in an empty condition, we can infer that
the expression is unconditionally authorized. Note that if authori-
zation condition A1 (on relation R1) were dropped as redundant
during initial query simplification, surely the query would have
had an expression that is subsumed by A1; this expression will be
joined with R1 at some point in the query plan; at this point, the
authorization condition A1 would get dropped.

For lack of space we omit the complete formalization of condi-
tioned authorization.

5.6 Handling Exceptions and Error Messages
We have seen how to handle USFs by moving them to safe loca-
tions. The most common USFs are built-in functions and opera-
tions (such as division or conversion to integer) that can cause
exceptions or error messages (such as divide by zero or a bad input
error message), such as the examples we saw in Section �1. We can
improve execution costs significantly for built-in functions, as

follows. For each built-in function (or operation), we create a safe
version of the function that ignores exceptions, does not output
error messages, and does not have any side effects. For instance,
we can create a safe version of the division function, which catches
exceptions, and returns a null value.

Predicates using unsafe functions are rewritten using the corre-
sponding safe versions of the functions, in such a way that the
rewritten predicate is weaker than the original one. In the example
from Section �1, we can create a safe version of the predicate (1 /
(salary-100K) = 0.23) by using the safe division. However, replac-
ing an unsafe function in a predicate by a safe function may allow
tuples through that would not have passed the original predicate
(e.g. the predicate 1/ (salary-100K) is null) and vice-versa. We can
however rewrite the predicate using safe functions in such a way
that it is weaker than the original condition. The rewriting has to
deal with negations and null/unknown results; we omit details for
brevity.

We can then push down the safe version of the predicate while
retaining the unsafe version on top, above authorization predicates.
In general, let the original predicate be θ, and the rewritten safe
one be θ1. We can then transform a selection σθ(E) to σθ (σθ1(E)),
and push the rewritten selection θ1 down into the query. The
original predicate θ remains on top, to filter out tuples that get
erroneously included by θ1.

We note that catching exceptions can alter the behavior of the
query, in terms of what it executes before an exception prevents
further execution; this is especially true for updates that are not
transactional. However, even in current SQL implementations the
behavior in such situations is not defined by the SQL standard, and
depends on the query plan chosen.

6. PERFORMANCE EVALUATION
We have built a prototype that incorporates our techniques for
redundancy removal, and for generating safe plans. We added the
transformation rules for implementing redundancy removal to the
SQL Server query optimizer, and also modified it to take safety
with respect to USFs into account. (Unsafe system functions can
be handled by modifying the code to recognize USFs such as
arithmetic operations and to handle them in the same way as
UDFs). For queries that require both redundancy removal and safe
USF placement, our prototype adopts the technique described in
Section �5.5.1.

6.1 Benefits of Redundancy Removal
In order to illustrate the benefits of redundancy removal, we pre-
sent a sample scenario using the TPCH schema. Consider a user
who is trying to analyze data that have been shipped in the last ten
years. For this user, the DBA may create authorized views in order
to ensure that the user is not allowed to access data from an earlier
period. A possible set of authorized views are shown below

authLineitem: σl_shipdate > ‘1995-01-01’ (Lineitem)

authOrders: (Orders � authLineitem)

authSupplier : (Supplier � authLineitem)

authCustomer: (Customer � (Orders � authLineitem)

The views essentially restrict access in each of the tables to only
those tuples that correspond to a lineitem that has been shipped
after 1995. Input queries will be rewritten by replacing each of the

base relations with the corresponding authorized views. We modi-
fied the query predicates in the TPCH queries to restrict the access
to only those lineitems that have been shipped after 1995. Thus the
authorization checks for the purpose of this experiment are all
redundant.

Table 1 shows the benefits of performing redundancy removal for
a few queries of varying complexity from the TPCH suite. For
instance, Query 6 is a single table query, while the rest of the que-
ries involve multiple joins. Query 10 is a join between 4 tables and
the rewritten version of the query has 3 additional (redundant)
joins. For each query, the execution times with and without redun-
dancy removal is shown. The execution times shown have been
normalized. The transformation rules that we discussed in Section
�4.2 manage to detect and eliminate all the redundant semi-joins
which were added as a result of the authorized views. The addi-
tional optimization overheads (due to redundancy removal) were
around 10-15%, which is certainly reasonable, given the sizable
gains in execution time. As the numbers indicate, redundancy re-
moval can lead to a significant improvement.

6.2 Plan Safety and Redundancy Removal
In this section, we illustrate the importance of combining redun-
dancy removal and safe USF pushdown, using an example. We
construct a hypothetical scenario using the TPCH schema, where
authorizations are created for managers in Europe. The authorized
views restrict access to information that is only pertinent to regions
in Europe, by using appropriate semi-joins.

The authorized views for the different relations are shown below
(the selection predicate θ on the region table selects regions that
are in Europe). The example shows that even such a simple sce-
nario could result in complex authorized views.

authNation: access to nation information for nations that are in
Europe: (Nation � (σθ (Region))

authCustomer: provides access to customer information that are
in some nation in Europe: (Customer � (Nation � (σθ (Region))

authOrders: provides access to orders that have been placed by
customers from a nation in Europe.

 (Orders � (Customer � (Nation � (σθ (Region)))

authLineitem: provides access to lineitems that have been ordered
by some customer in Europe:
 (Lineitem � (Orders � (Customer � (Nation � (σθ (Region))))

authSupplier : provides access to suppliers that have supplied
some lineitems for an order placed by some customer in Europe.

 (Supplier � (Lineitem � (Orders � (Customer � (Nation �
(σθ (Region)))))

TPCH Query Execution Time
Without RR

Execution Time
With RR

 Query 3 100.00 48.28

 Query 6 56.03 38.79

 Query 10 94.83 55.45

 Query 12 77.57 43.97

 Query 14 49.14 38.79

Table 1: Results with redundancy removal

As the view definitions indicate, the authorized views include mul-
tiple semi-joins to restrict access to only those tuples that are rele-
vant. Now, consider a query issued by a manager in Europe in
order to examine the details of suppliers who supplied the
lineitem’s for the “sensitive” orders that were placed by customer
in Europe. Suppose a UDF sensitiveOrder() is used to define
which orders are sensitive, and it is not verified and may be unsafe,
The preprocessor will replace the relations in the user query by the
corresponding authorized views to obtain the following query.

 SELECT *
 FROM authSupplier, authLineitem, authOrders
 WHERE s_suppkey = l_suppkey
 AND l_orderkey = o_orderkey
 AND o_custkey IN
 (SELECT c_custkey FROM authCustomer
 WHERE c_nationkey IN
 (SELECT n_nationkey FROM authNation
 WHERE n_regionkey IN
 (SELECT r_regionkey FROM authRegion
 WHERE r_name='Europe')))
 AND dbo.sensitiveOrder(o_totalprice)

The above query is then rewritten by expanding the authorized
views. It is easy to see that the rewritten query would some redun-
dant authorization checks since the query is only evaluated on
European regions anyway.

We study the performance of the techniques we present in this
paper for the above query. Table 2 illustrates the tradeoffs between
using redundancy removal and/or safe USF pushdown in terms of
execution times (which have been normalized). The corresponding
query plans are illustrated in Figure 4. Notice that all the alterna-
tives would generate safe query plans. We also measured the exe-
cution cost of the optimal unsafe plan, and found that it was the
same as that of the optimal safe plan, since the UDF was not as
selective as the join, and was pulled up above the join based on
cost considerations. This may not happen always, of course.

In the absence of the techniques we present in this paper, an im-
plementation of fine-grained access control would process this
query without removing any redundancies and by pulling the UDF
to the highest level in query plan. The resulting plan, given in
Figure 4 (a), executes in 100 units of time (after normalization).
We find that either of the techniques we propose in this paper –
redundancy removal or safe placement of USFs – helps us reduce
the execution times by nearly 50%. The corresponding query plans
are illustrated in Figure 4 (b) and Figure 4 (c).

Finally, we find that when we apply both the techniques, we are
able to find the plan, shown in Figure 4 (d), that further reduce the
execution time by another 50%.

 Thus, both redundancy removal and safe USF pushdown are es-
sential components in implementing fine grained access control.

6.3 Optimization Cost
 Redundancy removal can be performed either at the simplification
phase or the transformation phase. As described in section �5.5.1,
the key difference is the overheads involved. Table 3 shows the
normalized optimization time cost of various alternative combina-
tions of approaches for redundancy removal and USF placement
from the example in the previous section.

 As can be seen from Table 3, performing redundancy removal
during transformations is quite expensive compared to performing
redundancy removal during simplification. This is not surprising,
since redundancy removal at simplification time can reduce the
size of the query very significantly. The ideal solution would em-
ploy redundancy removal in the simplification stage and still use
safe USF placement. This can be achieved using the notion of
conditioned authorization inference (Section �5.5.2). Since simpli-
fication would have the same effect in this case, and conditioned
authorization inference is similar in cost to materialized view
matching, which is quite efficient, we believe the optimization

S

�

R

C

O

N

L

�

R

C

N

L

�

R

C

O

N

�

R

C

N

O

�

udf(O.totalprice)

SS

�

R

C

O

N

L

�

R

CC

OO

NN

LL

�

R

CC

NN

LL

�

R

C

O

N
�

R

CC

OO

NN

�

R

CC

NN

OO

�

udf(O.totalprice)

S

�

R

C

O

N

L

�

udf(O.totalprice)

SS

�

R

C

O

N

L

�

R

CC

OO

NN

LL

�

udf(O.totalprice)

 (a) (b)

�

R

C

N

L

�

R

C

O

N

�

R

C

N

OL

�

R

C

O

N

�

udf(O.totalprice)

S

�

R

CC

NN

LL

�

R

C

O

N
�

R

CC

OO

NN

�

R

CC

NN

OOL

�

R

C

O

N

�

udf(O.totalprice)

S

LL

�

R

C

O

N
�

R

CC

OO

NN

�

udf(O.totalprice)

SS
L

�

R

C

O

N

�

udf(O.totalprice)

S

LL

�

R

C

O

N
�

R

CC

OO

NN

�

udf(O.totalprice)

SS

(c) (d)

Figure 4: Optimal plans for query in Section 6.2 with
(a) No redundancy removal and pulling USFs to highest level.
(b) Applying redundancy removal. (c) Pushing USFs to safe
places. (d) Both redundancy removal and pushing USFs to
safe places.

Redundancy Removal
Phase

USF placement Exec time

No removal USF on Top 100.00

Simplification phase USF on Top 47.83

No removal Optimal safe 52.25

Transformation phase Optimal safe 23.25

Table 2: Combinations of optimization alternatives

Redundancy Re-
moval Phase

 USF Placement Normalized Opti-
mization Time

Transformation USF on Top 100.00

Transformation Optimal Safe 43.29

Simplification USF on Top 7.62

Table 3: Normalized optimization time

costs will be similar to the third row (simplification+USF at top),
which is quite low.

To summarize our performance results, (a) redundancy removal
can give very significant performance improvements with low
optimization overhead, and can in fact reduce optimization costs
greatly, (b) although pulling USFs to the top works well in several
cases, optimal placement of USFs can give significantly better
results in many cases, and (c) it is feasible to modify an optimizer
to generate safe plans. As part of ongoing work we are implement-
ing conditioned authorization inference, and we believe that this
would reduce the overheads to a reasonable fraction of the optimi-
zation costs for the same query (with redundancy removal).

7. CONCLUSIONS
Any fine-grained authorization implementation has to address the
problem of redundant authorization checks, and the problem of
information leakage. We showed how redundancy removal can be
done effectively and efficiently as a query simplification step. We
then defined when a query expression can be considered safe with
respect to unsafe function invocations. We illustrated how redun-
dancy removal and safe USF pushdown can be incorporated in an
existing rule based query optimizer by adding new transformation
rules. Our performance study shows that redundancy removal is
feasible, and gives significant performance benefits with only a
very small effect on optimization cost. The study also shows that
leakage of information through USFs, exceptions and error mes-
sages can be efficiently tackled by choosing good safe plans.

As part of future work, we intend to extend our prototype to in-
clude conditioned authorization, which will reduce optimization
time, and carry out a more detailed performance study. We also
need to add rules to better optimize authorized views more com-
plex than semi-join views, in particular to support nullification.
We also plan to study and address other potential sources of in-
formation leakage, such as timing based on subquery execution
time.

Acknowledgements: We wish to thank Paul Larson for dis-
cussions on SQL Server query optimizer and on view matching,
and for his help with the implementation, Surajit Chaudhuri and
Tanmoy Dutta for discussions on fine-grained authorization, and
the anonymous referees for their insightful suggestions.

8. REFERENCES
[1] R. Agrawal, P. Bird, T. Grandison, J. Kiernan, S. Logan, W.

Rjaibi: Extending Relational Database Systems to Automati-
cally Enforce Privacy Policies. In ICDE, pages 1013–1022,
2005.

[2] A. Brodsky, C. Farkas, and S. Jajodia. Secure databases: Con-
straints, inference channels, and monitoring disclosures. IEEE
Trans. on Knowl. and Data Engg., 12(6):900–919, 2000.

[3] A.K Chandra and P.M Merlin, Optimal Implementation of
conjunctive queries in relational databases. STOC, 1977

[4] K. LeFevre, R. Agrawal, V. Ercegovac, R. Ramakrishnan, Y.
Xu and D. DeWitt, Limiting disclosure in Hippocratic data-
bases, In VLDB, 2004

[5] G. Graefe, W. McKenna, The Volcano Optimizer Generator:
Extensibility and Efficient Search, In ICDE, 1993

[6] G. Graefe, The Cascades Optimization Framework, Data
Engg. Bulletin, 1995

[7] D. Litchfield, Web Application Disassembly with ODBC
Error Messages, 2001, http://www.blackhat.com/presen-
tations/win-usa-01/Litchfield/BHWin01Litchfield.doc

[8] A. Motro. An access authorization model for relational data-
bases based on algebraic manipulation of view definitions. In
ICDE, pages 339–347, 1989.

[9] The Virtual Private Database in Oracle9ir2: An Oracle Tech-
nical White Paper http://otn.oracle.com/deploy/
security/oracle9ir2/pdf/vpd9ir2twp.pdf.

[10] New Security Features in Sybase Adaptive Server Enterprise.
Sybase Technical White Paper, 2003.

[11] S. Rizvi, A. Mendelzon, S. Sudarshan and P. Roy, Extending
query rewriting techniques for fine-grained access control. In
SIGMOD, 2004

[12] A. Rosenthal and E. Sciore. Abstracting and Refining Au-
thorization in SQL. In Secure Data Management (SDM)
workshop, In VLDB, 2004.

[13] M. Stonebraker and E. Wong. Access control in a relational
database management system by query modification. In Procs
of the ACM Annual Conference, pages 180-186, 1974.

