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ABSTRACT 

The current SQL standard for access control is coarse grained, in 
that it grants access to all rows of a table or none. Fine-grained 
access control, which allows control of access at the granularity of 
individual rows, and to specific columns within those rows, is 
required in practically all database applications. There are several 
models for fine grained access control, but the majority of them 
follow a view replacement strategy. There are two significant 
problems with most implementations of the view replacement 
model, namely (a) the unnecessary overhead of the access control 
predicates when they are redundant and (b) the potential of infor-
mation leakage through channels such as user-defined functions, 
and operations that cause exceptions and error messages. We first 
propose techniques for redundancy removal.  We then define 
when a query plan is safe with respect to UDFs and other unsafe 
functions, and propose techniques to generate safe query plans. 
We have prototyped redundancy removal and safe UDF pushdown 
on the Microsoft SQL Server query optimizer, and present a pre-
liminary performance study.  

1. INTRODUCTION 
The current SQL standard for access control is coarse-grained, in 
that it grants access to all rows of a table or none at all.   Fine-
grained access control, which allows control of access at the granu-
larity of individual rows/columns, is required in practically all 
database applications, for example to ensure that employees can 
see only their own data, and relevant data of other employees that 
they manage.  Fine-grained access control has traditionally been 
performed at the level of application programs.  However, imple-
menting security at the application level makes management of 
authorization quite difficult, in addition to presenting a large sur-
face area for attackers --- any breach of security at the application 
level exposes the entire database to damage, since every part of the 
application has complete access to the data belonging to every 
application user.  There is, therefore, an increasing need to support 
fine-grained access control at the database level. 

Several models for fine-grained access control have been proposed 

in the recent past �[8]�[9]�[10]�[11]�[12]; two of these, Oracle’s Virtual 
Private Database (VPD) �[9], and Sybase’s row level security 
model �[10], are implemented as part of commercial database sys-
tems. With the exception of �[8] and �[11], all these models, in ef-
fect, replace each relation in a user query by a view of the relation 
that the user is authorized to see; the replacement view includes 
authorization checks. More details about these models are pro-
vided in Section �2.   

There are two significant problems that must be addressed by any 
implementation of fine-grained access control using the view re-
placement model: 

1. The first issue is a question of efficiency: The original query 
usually includes predicates/joins that restrict access to only 
authorized data. The authorization checks performed in the 
replacement views are often redundant, including not only 
cheap comparisons, but also expensive semi-joins.  The intro-
duction of complex authorizations also increases the complex-
ity of the rewritten query significantly, resulting in increased 
optimization time and worsened execution time. 

2. The second issue is a question of effectiveness of the access 
control implementation under a general model of attack, 
which may include users submitting arbitrary SQL queries. 
Although applications generally do not allow users to submit 
arbitrary SQL queries, hackers who break into an application 
may be able to submit such queries.  Further, in a hosted ap-
plication, a single database schema may be shared by a large 
number of independent users who may be authorized to sub-
mit SQL queries on their views of the data.    
Even if the fine-grained authorization implementation ensures 
that the query result contains only authorized information, it 
is possible for malicious users to gain access to unauthorized 
information based on information leakage through channels 
other than the query result. These channels include: 

i. Leakage of information through exceptions and error 
messages.  

ii. Leakage of information through user-defined functions 
(UDFs). In this case, the malicious user needs the ability 
to define user defined functions in addition to the ability 
to run SQL queries. 

As an example of leakage through UDFs, consider a relational 
schema  employee(emp_id, name, dept_id, salary)  and a view 

       CREATE VIEW myemployees AS  
       SELECT * FROM employee   
       WHERE dept_id in Q1 

which allows a user to see only the employee tuples with dept_id 
in the result of some query Q1. 
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Suppose the user issues the following query: 

         SELECT * FROM  myemployees   
        WHERE myudf(salary) 

(Or, equivalently, suppose the user writes the query on the relation 
employees, which is rewritten by replacing the relation by the 
authorized view myemployees.) Figure 1(a) shows the original 
user query. The query preprocessor replaces the view myemploy-
ees by its definition.  Figure 1(b) and 1(c) illustrate two alterna-
tive plans for the rewritten query. In the plan in Figure 1(b), every 
tuple for which myudf is executed has passed through the authori-
zation check of subquery Q1. However, in the plan in Figure 1(c), 
myudf is executed on every tuple in employee relation, even those 
that would not pass the authorization check of subquery Q1.   

The behavior of myudf is not under the control of the authoriza-
tion system, and it can potentially print out (or save in a separate 
relation) the salary values it is passed. While both the plans pro-
duce same result set, the plan in Figure 1(c) can potentially leak 
the salary information of all the tuples in employee relation.  

Such leakage can also occur with system defined functions that 
throw exceptions, or display error messages. We use the term un-
safe function (USF) to denote user-defined functions, system-
defined functions and operators that may reveal information, 
whether directly or by indirect means such as exceptions, error 
messages or timing.  We provide more concrete examples of these 
leakage channels in Section �5.1.  For any fine-grained authoriza-
tion implementation to be effective, it has to protect against infor-
mation leakage. 

One possible solution is to pull up USFs to the top of query plans, 
thereby ensuring that they are executed only on data that the user is 
authorized to see.  While correct, this solution can have poor per-
formance in many situations, especially if the USF is used in a 
predicate that allows very few tuples out. Sandboxing is another 
standard technique to protect database systems from potentially 
harmful effects of UDFs.  However, sandboxing cannot handle 
some leakage channels, and has other limitations, as discussed in 
Section �5.1. 

In this paper we address the problems of redundancy and informa-
tion leakage.  The contributions of this paper are as follows:  

• We describe how redundancy checks can be integrated into a 
rule based optimizer with low overheads.  We note that algo-
rithms for detecting redundant joins have been available from 
the early days of databases; our contribution is in engineering 
an existing optimizer to introduce redundancy detection, ex-

ploiting existing functionality that supports materialized view 
matching. 

• We target the problem of information leakage as follows: 

o We first explore what plans can be guaranteed to not leak 
information, and define a class of safe plans that are guaran-
teed to not leak information through unsafe functions.  

o We then describe techniques to find the optimal safe plan. 
In our performance study, we demonstrate the benefits of 
finding optimal safe plans, instead of settling for heuristics 
such as pulling USFs to the highest level in a query plan.  

The rest of the paper is organized as follows. Section �2 describes 
related work, while Section �3 presents a query rewriting model 
which we use to describe our techniques. Section �4 covers removal 
of redundant semijoins. In Section �5 we formally define when a 
query plan is safe in the presence of USFs, and describe how to 
extend a query optimizer to find an optimal safe plan.  The above 
algorithms have been prototyped on Microsoft SQL Server, and in 
Section �6, we present a performance study. In Section �7 we present 
our conclusions and directions for future work. 

2. RELATED WORK 
 The basic goal of fine-grained access control is to grant a particu-
lar user access to only specific columns of a subset of the tuples in 
a relation. In contrast, although the current SQL standard supports 
column level authorization, it does not provide any way of giving 
different authorizations to different rows.   

Oracle’s Virtual Private Database (VPD) model �[9] supports fine-
grained access control through functions that return strings con-
taining predicates.  A function is associated with each relation, and 
when invoked returns a string containing predicates that enforce 
fine-grained access control; the function takes as input the mode of 
access and an application context which includes information such 
as user-id of the end user.   

The policy based security management feature of Sybase Adaptive 
Server Enterprise �[10] allows the specification of predicates that 
are added to where clauses.  Different policies can be specified on 
different columns, and are automatically combined.  The idea of 
access control by query modification dates back to Ingres �[13]. 

Cell-level access control is described by LeFevre et al. �[4].  In their 
model, values of particular columns of particular tuples may be 
replaced by null, if the user is not authorized to see those values.  
Their target application is the handling of privacy policies, not 
general purpose authorization. However, their approach of nullifi-
cation is useful in a general purpose authorization model.  A pro-
posal to use predicated grants to manage cell-level access control 
is described by Agrawal et al. �[1].  

All the above models fall into the class of “Truman models” , in the 
terminology of �[11]. The non-Truman model described in �[11] has 
a different approach: under this model, a query is valid if it can be 
rewritten using only authorized views (there are two notions of 
validity, unconditional and conditional: see �[11] for details).  Que-
ries submitted to the system are checked for validity; if a query is 
valid it is executed with no modifications, otherwise it is rejected. 
Such behavior matches the authorization checking in standard 
SQL, but works with fine-grained authorizations specified by au-
thorized views.  The Non-Truman model is attractive for several 

myudf(E.salary)

myemployees

myudf(E.salary)

myemployees

myudf(E.salary)

employees Q1

myudf(E.salary)

employees Q1employees Q1

myudf(E.salary)

employees

Q1myudf(E.salary)

employees

Q1

                                                         
            (a)                                   (b)                            (c)           

Figure 1:  (a) User  query on an author ized view.   (b) A safe 
plan for  this query, and (c) A result-equivalent plan that can 
potentially leak unauthor ized information.             



 

reasons, such as guaranteeing correctness; that is, if a query is 
accepted, it will give the same result as if the user had full authori-
zations on all relations. In contrast, in the class of Truman models, 
the result of a query can be changed by the authorization mecha-
nism.   

However, any non-Truman model implementation is likely to be 
unpredictable in the following sense: the model requires a power-
ful query inferencing mechanism and since inferencing can never 
be complete, a query that is accepted by one database implementa-
tion may be rejected by another (perhaps even a different version 
of the same database system).  Such unpredictability is highly un-
desirable for applications, and inference procedures are expensive 
and far from complete; as a result the class of Truman models is 
used in practice, in preference to the non-Truman model. 

 Brodsky et al. �[2] provide a survey of secure databases, which 
includes coverage of inference channels.  Attacks on database ap-
plications using SQL injection coupled with inferencing using 
exceptions and error messages are well known in the hacker com-
munity; see for example, Litchfield �[7].   These attacks were de-
signed to subvert application level security, not fine-grained access 
control in the database, but as our examples in Section �5.1 show, 
exceptions and error messages can easily be used to leak informa-
tion in the context of fine-grained access control.   

As far as we are aware, the problem of leakage through exceptions 
and error messages have not been addressed in the past. We are 
also not aware of any published work on ensuring safety with re-
spect to UDFs.  

3. QUERY REWRITING MODEL 
The techniques we describe in this paper are applicable to authori-
zation models that are (conceptually) based on query rewriting, 
where references to database relations are replaced by references to 
corresponding authorized views; these include  �[1]�[4]�[9]�[10].     

Consider the TPC-H schema, and a user who is only authorized to 
see orders placed by that user.  Such an authorization can be speci-
fied by the following authorized view on the relation Orders. 

   CREATE VIEW authOrders AS  
   SELECT * FROM Orders   
   WHERE (o_custkey = userId()) 

Here, userId() is a function that (at runtime) returns the user iden-
tifier of the current user.  Note that applications built on top of 
databases often have thousands to millions of users; since data-
bases cannot efficiently support that many users, application pro-
grams usually run under a single database user-id, and maintain 
their own notion of application users. The userId() function above 
returns the user identifier at the application level, which must be 
provided to the database system by the application.  (In Oracle 
VPD, the application context provides information about the ap-
plication user, as well as other application level information.)    

In general, the authorized view can contain a subquery. For in-
stance, the following view grants a user access to the Lineitem 
tuples that the user has ordered.  

  CREATE VIEW authLineitem AS  
  SELECT  * FROM Lineitem    
  WHERE EXISTS (SELECT * FROM Orders 
                              WHERE l_orderkey = o_orderkey  
                                    AND o_custkey = userId( ) )  

Although an authorized view can be arbitrarily complex, we be-
lieve the most useful class of authorized views is one where the 
authorized views return a subset of the tuples of a relation, where 
the subset is defined by a predicate (which may include a sub-
query).  The view may additionally project away some columns.  

 In addition a view may replace a column value by some function.  
For example, in cell-level access control using nullification �[4], in 
the SELECT clause of a view on relation R, a column A1 may be 
replaced by the expression  

   (CASE WHEN P1 THEN A1 ELSE null) AS A1 

The AS clause above ensures the name A1 is retained for the result 
of the expression.  

In this paper we consider a class of authorized views of the form  

  CREATE VIEW auth_Ri AS  
  SELECT Li  FROM  Ri WHERE Pi   

where Pi may include subqueries, and Li is a list of attribute names 
or expressions, or may be * (to allow access to all columns). For 
simplicity, our presentation of redundancy removal techniques 
assumes that Li is just *, although we briefly outline how to handle 
the case where Li contains expressions implementing cell-level 
access control.  The case where Li contains only a subset of attrib-
utes of Ri is easier to handle: it is trivial to check if a query ac-
cesses  a column not in Li, and to reject such a query.  For simplic-
ity, we do not consider such projections hereafter. 

Authorized views of the above form, with Li being * can be repre-
sented as a semi-join  (Ri  �θi Ai), where Ai is an expression con-
taining the subqueries in Pi. For notational convenience, we as-
sume that selection conditions in Pi are folded into the semi-join 
condition θi.   

Given a query, the access control component of the database sys-
tem replaces the relations with the definitions of the corresponding 
authorized views. Thus, a query of the form (R1 � R2 � …� Rn) 
would get rewritten to the form ((R1 �θ1 A1) � (R2  �θ2 A2) � 
… (Rn �θn An)).  

Although we use the syntax of authorized views, the problems we 
describe as well as the solutions we present in this paper apply 
equally to these alternative models: 

• The Oracle VPD model, where for each Ri in a query, an au-
thorization predicate Pi is added to the where clause of the 
query.  This model is equivalent to defining authorized views 
where Li in the SELECT clause is “*” . 

• The use of views, where the user query references the views 
instead of the actual relation (as we did in the examples in 
Section �1).   This is the traditional SQL authorization model, 
except that the views may use application context information 
such as userId(). 

• Models based on authorization grants, where the grant may 
have a grant predicate, such as �[1].  Such grants can be trans-
lated into authorized views.  

The problems of redundancy and information leakage arise with all 
these approaches, and our techniques for redundancy removal and 
safe plan generation are applicable to these approaches. 

A user can have different authorized views for different operations 
on the relations, such as select, insert, delete or update.  In this 
paper we concentrate on the select authorization, and on queries, 



 

since these present the main challenges in terms of redundancy and 
information leakage.  

We note, however, that the approach of using authorized views to 
implement fine-grained access control can handle inserts, updates 
and deletes by defining corresponding authorized views for each 
operation; the views are of the same form as we use for the select 
operation, with Li restricted to being “*” .  As in Oracle VPD, such 
authorizations can be handled by ensuring that Pi is satisfied by the 
old and new values of updated tuples, and inserted and deleted 
tuples. Relations used in subqueries of an insert, delete or update 
statement are subject to view replacement using the authorized 
view for the select operation.  With this model, updates, inserts and 
deletes do not introduce any additional issues of redundancy and 
information leakage, beyond those introduced by select queries, 
and we ignore them in the remainder of  this paper. 

4. REDUNDANCY REMOVAL 
In the view replacement approach, the base relations in a query 
submitted by a user are replaced by authorized views. The original 
query usually includes predicates/joins that ensure that the query 
accesses only authorized tuples. In such cases the additional au-
thorization checks introduced by view replacement would be re-
dundant.  In particular, checks which involve semi-joins can be 
quite expensive, and should be removed if they are redundant. In 
this section, we study how such redundancy can be removed by 
leveraging the existing view matching infrastructure of the query 
optimizer. 

4.1 Motivating Example 
We first outline an example to motivate redundancy removal. Con-
sider the TPCH schema and assume the following authorized view 
for the Lineitem table which authorizes a customer to see only the 
lineitems corresponding to an order placed by him. 

      CREATE VIEW authLineitem AS 
      SELECT * FROM Lineitem   WHERE  
               EXISTS (SELECT * FROM Orders 
                           WHERE l_orderkey = o_orderkey   
                                          AND o_custkey = userId()) 

Suppose a customer with userId = 123 issues the following query: 

    SELECT  Lineitem.*  FROM  Lineitem, Orders  
    WHERE  l_orderkey = o_orderkey AND o_custkey = ‘123’ 

Fine-grained access control would replace the relation Lineitem 
with the corresponding authorized view. The rewritten query (after 
view expansion) is shown below 

SELECT  lineitem.*  FROM  Lineitem, Orders O1  
       WHERE  l_orderkey = O1.o_orderkey  
                     AND O1.o_custkey = ‘123’ and  
                       EXISTS (SELECT * FROM Orders O2 
                             WHERE l_orderkey = O2.o_orderkey  
                                          and O2.o_custkey = userId())      

 Note that the rewritten query includes an additional semi-join with 
the Orders table.  We assume that the function userId() is evalu-
ated at optimization time, and replaced by its return value, which 
would be 123 in the above example. Notice that the query has a 
selection o_custkey = 123, and thus accesses only tuples that are 
authorized. Thus, for this example the additional semi-join intro-
duced by the rewriting is actually redundant. In general the rewrit-
ten query could include many semi-joins that are redundant. In-

deed, we believe that it is fairly common for rewritten queries to 
include redundant semi-joins. This could potentially result in addi-
tional optimization as well as execution times for these queries.  In 
order to optimize for the “common” case, we investigate tech-
niques for redundancy removal and look at how they can be inte-
grated in an existing query optimizer. 

Although removal of redundant joins has been studied for many 
years (see, e.g. �[3]), current generation commercial optimizers 
have only very limited forms of redundancy removal. The main 
reason is that queries have thus far rarely had redundancy, and the 
optimization effort spent to detect redundancy did not have 
worthwhile payoffs.  The introduction of redundancy due to fine-
grained access control motivates redundancy detection and re-
moval.  Our contributions in this context are as follows:   

• We show how to detect and remove redundancy by exploiting 
existing code for matching (parts of) queries with materialized 
view definitions. 

• We show how to implement redundancy removal by means of 
a set of transformation rules, enabling easy deployment in an 
optimizer based on the Volcano/Cascades framework �[5]�[6], 
such as the SQL Server query optimizer. Since the redun-
dancy introduced by authorized views is typically redundant 
semi-joins, we consider removal of redundant semi-joins, 
rather than joins. Interaction of these rules with other trans-
formation rules is another issue that we address. 

• We have implemented the transformation rules and show that 
we can get good performance benefits. 

4.2 Detecting Redundancy 
In general, the problem of redundancy removal can be rephrased as 
a query minimization problem; query minimization is NP-complete 
for conjunctive queries �[3].  In fact, if we consider arbitrary arith-
metic expressions, query containment (and minimization) is unde-
cidable; however, in the special case where relations are not re-
peated, query minimization can be done in polynomial time for 
conjunctive (SPJ) queries. 

For the purpose of fine grained authorization, we are primarily 
interested in detecting redundancy in semi-joins introduced by 
authorized views, which may be part of a more complex query 
involving other operations such as grouping and aggregation. We 
use the notion of subsumption in order to detect redundancy, 
which we explain next.  

Definition (Subsumption).  An expression E2 subsumes expres-
sion E1 if E1�θE2 = E1. 

Thus if E2 subsumes E1, we can infer that E2 is redundant and 
transform E1�θE2 to E1.  Although it is difficult to get necessary 
conditions for subsumption, we can use sufficient conditions to 
test for subsumption.  

Consider the following transformation rule that replaces an expres-
sion with a selection over a materialized view 

(R1 �R2 �…� Rn )  �  (σθ (V1)) 

The above transformation is valid as long as the view V1 subsumes 
the expression (R1 �R2 �…� Rn). Thus, view matching in ex-
isting optimizer already uses subsumption checks. Optimizers typi-
cally normalize the expressions in order to check for subsumption. 
A SPGJ normal form has a cross product of relations, on which a 



 

selection is applied, on top of which a projection is applied, and 
finally an optional group-by/aggregation operation is applied on 
top. Using the SPGJ normal form is much more efficient than at-
tempting to match expression trees to determine subsumption. Of 
course, not all expressions have an SPGJ representation; our re-
dundancy removal techniques apply only to those subexpressions 
of the query where such a representation is possible.  

Our techniques are a minor variant of the conditions for rewriting 
using a materialized view. The primary change is that the sub-
sumption test used for view matching requires that E1 and E2 have 
the same set of relations − we relax this to allow E2 to have a sub-
set of the relations that E1 has.  We outline the procedure for test-
ing subsumption below.  

Using the SPGJ representation of E1 and E2, we can test for sub-
sumption of E1 by E2 in E1 �θ E2 by checking that E2 has a sub-
set of the relations that E1 has, and there is a mapping from the 
relations in E2 to those in E1 such that the following conditions 
hold: 

1. The predicates in the selection in the SPGJ-representation of 
E2 are weaker than the corresponding predicates in E1, that is 
the predicates in E1 imply the predicates in E2, and  

2. The semi-join condition in �θ equates columns of E1 and E2 
that are equivalent under the mapping.   

Using the above procedure for testing subsumption between two 
expressions, the following two transformation rules can be used to 
detect and remove redundant semi-joins: 

• At a semi-join E1 �θ E2, check if E2 subsumes E1. If so, 
transform E1� θ E2 to E1. 

• Consider a query where rewriting using an authorized view 
results in a disjunction of subquery expressions, such as: 

              SELECT * FROM E1         
          WHERE (A IN (SELECT …))         
                 OR (B IN  (SELECT …))   
The first phase of the SQL Server optimizer transforms the 
where-clause expression into (in-effect) a disjunction of semi-
joins.  The subsumption test is applied to each of the dis-
juncts.   If any one of the disjuncts is found to subsume the 
expression E1, discard the entire set of semi-joins in the dis-
junction. 

Consider a rewritten query (after every relation is replaced by the 
corresponding authorized view) of the form 

    (…((R1 � θ1 A1) � (R2  � θ2 A2)) � … (Rn � θn An))  

The rules for redundancy removal check for patterns of the form 
E1 �θ E2. If applied to the above expression, it would check for 
subsumption only between the pairs (Ri, Ai). Of course, if we ap-
ply the redundancy removal rules during the transformation phase, 
rules that push/pull semi-joins through joins would ensure that all 
possibilities for detecting redundancy would be explored. But in 
the worst case, the number of times the redundancy removal rules 
is fired could be exponential in the number of relations. In order to 
have a more efficient solution, we use the following technique. 
During the simplification phase, we use a normalized form of the 
above expression in which all the authorization semi-joins are 
pulled up in the query tree. This is implemented as a simple set of 
transformation rules, which pull semijoins up through joins and 

selections. For the above example, the normalized version of the 
expression obtained by semi-join pull up would be: 

     ((..(R1 �R2 �…� Rn ) �θ1 A1) … �θn An). 

Now the redundancy removal rules would check for subsumption 
between the Ai’s and the original query expression (and not just 
the corresponding Ri’s) resulting in better detection of redundancy. 
The number of times the redundancy removal rules are fired would 
also now be at most linear in the number of authorizations. This 
approach is just a heuristic and does not guarantee elimination of 
all redundant authorizations. For instance, the set of authorizations 
removed could vary based on the order of the Ai’s in the normal-
ized version of the query. But this scheme seems to work well in 
practice and is easy to integrate in an existing optimizer infrastruc-
ture.  In Section �6, we present an experimental evaluation that 
shows the significant benefits of these techniques. 

Note also that redundancy detection rules above are best applied 
before query decorrelation transformations are applied, since 
decorrelation may translate semi-joins into outer-joins. Redun-
dancy detection on joins and outerjoins is harder, since we have to 
deal with duplicate counts, which can be ignored for semijoins. 

4.3 Discussion 
The transformation rules for redundancy removal described above 
are tailored for the case when the authorized view is a semi-join 
view, with all columns selected unchanged. Further transformation 
rules are required to effectively handle the case of expressions, 
such as nullification, in the select clause of the authorized view; 
we omit details for brevity. 

It is interesting to note that redundancy removal can be used as a 
sufficient condition to test for query validity in the non-Truman 
model of �[11]  Given a query, we replace each relation by a semi-
join with its authorizations, and then perform redundancy removal. 
If the query after redundancy removal is equivalent to the original 
query without the added authorization predicates, then the original 
query can be inferred to be valid.  

The above rule can supplement other sufficient conditions for in-
ferring validity that are presented in �[11]. Although the above in-
ference rule is not a necessary condition, we found that in many 
queries that accessed only authorized data, the added authorization 
predicates were all detected to be redundant and removed.   

As noted earlier, query rewriting can change the semantics of a 
query.  However, if we apply redundancy removal on a rewritten 
query, and get back the original query, we can infer that query 
rewriting does not change the semantics of the query. 

5. INFORMATION LEAKAGE THROUGH 
UNSAFE FUNCTIONS 
In this section, we first outline leakage channels from unsafe func-
tions (whether system defined or user defined).  We then define 
when a query plan can be judged as safe with respect to USF invo-
cations; we then consider how an optimizer can be extended to 
find optimal safe plans. We end the section with a discussion on 
further optimizations for handling exceptions in Section �5.6. 

5.1 Unsafe Functions 
Recall the example in Section 1; the rewritten query (after incorpo-
rating the authorized view) was  



 

    SELECT * FROM myemployees   
    WHERE myudf(salary) 

where myemployees represents an authorized view that involves 
a subquery. The optimizer could however pick a plan for evaluat-
ing this query in which myudf() is pushed below the access control 
check (Figure 1c). In such cases, the UDF has access to tuples that 
it is not authorized to see.  

The code defining the UDF is not under the control of the authori-
zation system and it could leak information about values passed to 
it in one of a number of ways, such as printing out the value, stor-
ing it in a database relation, generating an error message, raising an 
exception, or even through timing, by varying the execution time 
of the function depending on the values passed to the UDF.   

Leakage can occur even with system defined functions that can 
throw exceptions. Consider the following example. Assume an 
employee database and that managers are authorized to see the 
salaries of employees in their department. Thus, the authorization 
predicate on the employee relation uses a semi-join (subquery) 
with the relation manager (managerid, deptid). Consider the fol-
lowing query 

      SELECT * FROM employee   
      WHERE empid = ‘XYZ’  AND  1 / (salary – 100K) = 0.23 

Assume the query is issued by someone who is not a manager of 
XYZ and hence is not authorized to see his salary. The employee 
relation would be replaced with the corresponding authorized 
view. The selection predicate involving the salary attribute and the 
predicate on empid column could however be pushed below the 
access control semi-join; and if there is an divide by zero exception 
encountered during query execution, the information that the sal-
ary of XYZ is 100K can be inferred. 

Error messages generated by some functions are another source of 
information leakage. For example a system-defined function 
to_integer(), which converts strings to integers, would output an 
error message containing the string, if the string were not a valid 
integer; such error messages are important for finding erroneous 
data.  But if a query uses a to_integer() function on a string which 
is not an integer, the error message can leak information about the 
actual value of the string, just like a user-defined function.  

Sandboxing is a standard technique to protect database systems 
from potentially harmful effects of UDFs, such as accessing or 
corrupting system data.   Sandboxing can be used to prevent some 
side effects such as I/O, but exceptions and error messages would 
provide leakage channels.  Exceptions could perhaps be caught 

and hidden, but that may change the behavior of queries, and more 
importantly, update transactions.  Error messages can be blocked, 
but that may make it hard for a genuine user to trace errors. Worse, 
even if exceptions and error messages are blocked, timing can be 
used to leak information.  For example, a UDF which takes signifi-
cantly longer if the salary of user XYZ is less than some cutoff, say 
100K, can leak information through timing.  In fact, it can be used 
repeatedly, with different cutoffs, to determine the exact salary of 
XYZ. 

We say that a UDF or system-defined function/operator is safe if it 
has been (manually) verified to not leak information about parame-
ter values passed to it, through any means such as those outlined 
above. All other functions/operators are said to be unsafe func-
tions, or USFs. For example, the function userId(), which returns 
the identifier of the current user, is a UDF in the SQL sense, but 
we know it will not cause exceptions or leak information in any 
other fashion. The userId() function can therefore be treated as a 
safe function.  We assume that UDFs invoked in the authorized 
views are safe, since they are defined by the security administrator, 
not a user.   

One straightforward solution to the information leakage problem is 
to ensure that invocations of USFs happen only after all authoriza-
tion checks have been carried out, by pulling USFs to the top of 
the query plan. Such an approach clearly ensures that USFs only 
see authorized information.  However, pulling USFs to the top of 
the query plan can lead to inefficient query plans.  To allow other 
plans to be considered, we first need to define when a query plan is 
safe with respect to USFs.  

5.2 Safety of plans with respect to USFs 
Consider a naïve (and as we shall see, incorrect) approach to de-
termining safety of a query plan: suppose a USF invocation in a 
query plan is judged to be safe if all its parameters are from rela-
tions that have their access control checks enforced.  It may appear 
that since each value passed to the USF is in the result of an au-
thorized view, no unauthorized information can be revealed.   

In reality, information can be leaked not only by values that are 
revealed, but also by values that are not revealed, as the following 
example shows.  Suppose a particular user is allowed to access all 
tuples from the employee relation and only those tuples from the 
relation  medical_record(emp_id, disease)  that appear in the 
following view:  

      CREATE VIEW auth_medical_record AS  
         SELECT * FROM medical_record  
         WHERE emp_id in Q2 

where Q2 is a subquery that determines the set of employees 
whose medical records a particular user is allowed to see. Suppose 
this user executes the following query:  

       SELECT *   
      FROM employee E, auth_medical_record  A  
      WHERE E.emp_id = A.emp_id  
                   AND A.disease=’AIDS’ AND udf2(E.name) 

Of the several alternative plans for this query, we illustrate three 
plans in Figure 2. As the user has full access to employee relation, 
the parameter E.name to udf2() in all three plans trivially satisfies 
the above naïve condition. However, in the plan in Figure 2(b), 
names of all employees having AIDS disease reach udf2(), some 
of which may not have qualified subquery Q2, thereby leaving a 
channel open for information leakage.  
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Figure 2: All the plans satisfy the naïve approach to determin-
ing safety, however, the UDF placement in (b) can potentially 
leak information. 
 



 

Thus, the naïve approach to inferring safety described above does 
not actually guarantee safety with respect to USF invocations.  

Given that the above naïve approach does not work, we now pre-
sent a correct definition of safety.  Before we do so, we point out 
one more detail that has to be handled, namely parameters to a 
correlated subquery.  If a correlated subquery in a query plan has a 
USF in it (or nested anywhere below it), an invocation of the sub-
query can reveal information about the parameter values. For ex-
ample, if we had a query 

    SELECT * FROM employee E, auth_medical_record A     
    WHERE E.emp_id = A.emp_id   
             AND disease=’AIDS’   
             AND EXISTS  
                      (SELECT * FROM R WHERE  udf2(E.name)) 

where R is any non-empty relation. If in the query plan the condi-
tion disease=AIDS is checked first, and then the subquery with 
udf2() is invoked, and the authorization test (using Q1) is per-
formed last, udf2() in the subquery can reveal unauthorized infor-
mation about which employees have AIDS. This problem can be 
handled by treating the invocation of a subquery containing a USF 
in the same fashion as the invocation of a USF.  

The Microsoft SQL Server optimizer represents correlated evalua-
tion plans algebraically using an apply operator E1 Α E2; the apply 
operator A invokes its right input E2 for each tuple generated by its 
left input E1.  Correlation variables are bound by E1 and used by 
E2.  

Definition 1: (Author ized Expression) An (algebraic) expression 
is authorized if it is equivalent to an expression defined using only 
authorized views.  

Clearly, the query obtained by replacing each relation in the origi-
nal user query by its authorized view is authorized since it is an 
expression defined using only authorized views.  However, trans-
formations applied to the query during query optimization can 
generate a number of different expressions. A key issue is to effi-
ciently infer which of these expressions is authorized.  We return 
to this issue in Section �5.3.   

We now define when a plan is safe. Note that the property of being 
authorized is different from plan safety: authorization is a logical 
property of  an expression, regardless of the plan used to compute 
the expression, whereas safety is a property of a particular query 
plan, which ensures that it cannot leak information (using channels 
other than the query result itself).  

Definition 2 (Safety w.r .t. USFs)  A node in a query plan is safe 
w.r.t. USFs if: 

1. it there are no USFs in the node, and all inputs (if any) of the 
node are safe, or 

2. the node has a USF, it is not an apply operator, and all its in-
puts are safe and authorized (treating correlation variables de-
fined by ancestor apply operators as constants), or 

3. the node is an apply operator, both its children are safe, and  
either (a) the right child (subquery) does not have any USF 
invocations, or (b) the left child is authorized (treating any 
correlation variables defined by ancestor apply operators as 
constants) 

A plan is safe if its root node is safe (or, equivalently, all its nodes 
are safe).�   

It should be clear that in a safe plan, USFs are invoked only on the 
results of expressions which can be computed using only author-
ized views. For cases where some correlation variables may be 
defined higher up, by part 3 of the above definition, these correla-
tion variables are themselves generated by authorized expressions.  
As a result, unauthorized information is never passed to a USF. 

Note also that the above definition of safety does not depend on 
the form of the authorized view.  As a result it can be used with 
arbitrary views, including those which perform nullification. 

5.3 Inferr ing Author ization 
We now consider how to infer if an expression is authorized.   To 
do so we need to find an equivalent expression that has as leaves 
authorized views.  Unfortunately, this is not an easy task: first, the 
problem of query equivalence is NP complete as discussed earlier 
in Section �4.2.  Further, we don’ t even know which expression on 
authorized views to compare the subexpression to.  Several infer-
ence rules to check for authorization are presented in �[11]; the goal 
there was to check for authorization of the given query, whereas 
we are trying to apply authorization tests to a potentially large 
number of subexpressions generated by a query optimizer (Section 
�5.4). 

We use the “validity propagation”  approach of �[11] to infer au-
thorization, since it can be used to infer authorization for multiple 
subexpressions at a low cost.  The intuition behind the approach is 
as follows: authorized views (which replace the relations) in a 
query plan are all marked as authorized, and any expression gener-
ated during optimization is marked as authorized if all its inputs 
have been marked as authorized.  

More formally, the validity propagation approach modifies the 
optimizer to infer authorization of expressions as follows. In the 
Volcano/Cascades optimization framework �[5]�[6], an expression is 
represented by a group (or equivalence node), representing a group 
of equivalent expressions. A group may have multiple children, 
each of which is an operation node (such as join or selection); the 
children of the operation node are in turn equivalence nodes.  
Transformation rules may add more operation node children to a 
group node. 

For illustration, we apply this mechanism on the example query in 
Section 5.1 in Figure 3. For simplicity, we remove UDF from this 
query, to focus on validity propagation instead of safety. 

In the validity propagation approach, authorization is maintained 
as a group property in the optimizer’s memo structure. This prop-
erty is independent of which plan is chosen to implement the ex-
pression.  We start with the rewritten form of the query in which 
each relation Ri is replaced by its authorized view (with semi-join 
authorizations, Ri �θ1 Ai). The groups corresponding to the indi-
vidual authorized views (Ri � θ1 Ai) are initially marked as au-
thorized. As shown in Figure 3, we mark G1 and G5 as authorized 
as they correspond to the authorized expressions. 

The following inference rule IA is then used repeatedly: Rule IA: 
If all the children group nodes of an operation node are marked as 
authorized, the group node which is the parent of that operation 
node is also marked as authorized. 

In the example in Figure 3, by applying IA we infer that G6 is also 
authorized. A subtle point in our setting is the fact that a Group G1 
might not be inferred as authorized when it is created, but later if a 
new expression is added as a child of G1, it allows us to infer that 



 

G1 is authorized. This information may in turn allow us to deduce 
that a parent (or ancestor) group is authorized. As a result, when-
ever we infer a group to be authorized we need to propagate the 
authorization property changes up to parent and ancestor groups in 
the memo structure.   

A key difference with �[11] is the fact that they assume that trans-
formation rules have been completely applied before checking for 
validity (authorization), whereas in our context the inference has to 
take place while transformations are being applied (Section �5.4). 

It may appear that this inference rule is overly simplistic.  In fact, it 
can be quite powerful, as the following theorem shows. 

Theorem 1.  If the entire search space is explored by optimizer, 
every authorized expression that is generated will be marked as 
authorized using the inference rule IA. � 

We omit the proof for lack of space. We note that �[11] does not 
consider completeness of the authorization propagation rule. In 
general optimizers prune the search space, so there is no guarantee 
that all authorized expressions are marked as authorized, but our 
performance study shows this rule works quite well in practice.  
We note that the results in this section are independent of the form 
of the authorized view, and can therefore also handle nullification 
based cell-level authorization. 

5.4 Approaches to Generating Safe Plans 
We now elaborate how a top-down optimizer based on Vol-
cano/Cascades �[5]�[6], such as the query optimizer used in Micro-
soft SQL Server,  can be modified to generate safe query plans 
involving USFs.   

It is easy to devise heuristics to find a safe plan. A naïve method is 
to ensure that the USF invocations are never pushed down (by 
disabling the corresponding optimizer rule for 
UDF/selection/projection push down). Since the USFs stay at the 
top of the query plan, all the necessary access control checks will 
be applied before USF invocation and the resulting query plan 
would be safe. However, the plan obtained can be far from opti-
mal, especially if the USFs are used in predicates that are very 
selective (i.e. eliminate most tuples). This point is substantiated in 
our performance study in Section 6. 

   Another possible approach is to just tweak the optimal unsafe 
plan (by pulling up USFs) till the plan becomes safe. This is a 
simple technique that requires relatively little modification of the 
query optimizer. Unfortunately, the resultant plan may not be the 
optimal safe plan, and may in fact be quite inefficient compared to 
the optimal safe plan. Moreover, to check if a node in the query 
plan is authorized we need the memo structure after the query is 
expanded, and the memo structures of the authorized views after 
expansion.  

   Given that the memo structures are needed anyway, it is natural 
to ask if there is a principled way to extend the search algorithm of 
the query optimizer to find the optimal safe plan. It turns out we 
can achieve this by enforcing safety either at every transformation 
rule (that involve USFs) or only when we pick the final plan. The 
two strategies are discussed below 

1. One approach is to modify all the optimizer rules such that 
USFs are only pushed on top of authorized expressions.  The 
transformation rule that pushes USF to a query expression suc-
ceeds only if the query expression is known to be authorized. It 
is easy to see this approach would generate a safe query plan.  A 
potential drawback is that the rule may fail if a group which is 
actually authorized has not yet been inferred to be authorized.  
Some candidate plans may be missed as a result. 

2. The second approach allows unsafe transformations but en-
forces safety when picking the optimal plan. In this approach, 
USFs are pushed down (as a transformation, not a substitution) 
even to potentially unauthorized query expressions. When the 
optimal plan is picked, the safety property can be enforced us-
ing an existing optimizer feature called required/derived proper-
ties. The physical operators derive the safety property from the 
their corresponding logical operators, while the procedure that 
finds the optimal plan ensures that only plans satisfying the 
safety property are considered. This is similar to the notion of 
enforcing a sort order to support an order-by clause. 

The two approaches are related, we can in fact show that in certain 
cases the two approaches would in fact explore the same set of safe 
plans, as the following theorem states. 

Theorem 2. For the case where queries as well as authorized views 
are conjunctive (SPJ) queries, if the entire search space of the 
optimizer is explored, all the safe plans obtained by approach 2 can 
also be obtained by approach 1.�  

In our implementation, we currently chose approach 1 above, dis-
allowing USF pushdown into expressions that have not been in-
ferred to be authorized. We intend to further explore the relation-
ship between the two approaches as part of future work.   
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 Figure 3: (a) The initial query tree for  query in Section 5.1 
without UDF. (b) The DAG representation of query. (c) The 
expanded query tree after  applying transformation rules. 
Commutativity and Selection pull up not shown. Black boxes 
represent the author ized groups, and white boxes represent 
the unauthor ized groups. 



 

5.5 Integrating Redundancy Removal and 
Safety 
We illustrated how redundancy removal could be implemented by 
transformation rules that pull up semi-joins and detect redundancy 
using the view matching infrastructure (Section �4.2). We had men-
tioned earlier that these rules are executed as part of query simpli-
fication (since redundancy removal is almost always guaranteed to 
produce a better plan, much like pushing down selections). 

 However, it turns out there is a subtle interaction between redun-
dancy removal and safety inference of UDFs. The key point is the 
fact that in order to infer if sub-expressions are authorized using 
the validity propagation approach, we need the query expression 
which is input to the transformation phase to be in the canonical 
form shown below, with authorization checks intact. 

    (.. ((R1 � A1) � (R2 � A2)) �… (Rn � An)) 

If redundancy removal were applied prior to the transformation 
phase, we may have eliminated some of the Ai’s; the validity 
propagation approach would then not be able to infer many inter-
mediate results to be authorized even if they actually are: for if any 
Ai is found to be redundant and deleted, notice that Ri will not be 
part of any authorized expression. There are a couple of ways to 
circumvent this problem, which we now describe. 

5.5.1 Redundancy Removal During Transformation 
One simple approach to solving this problem is to apply redun-
dancy removal during the transformation phase (instead of the 
simplification phase), so that the Ai’s are preserved and can be 
used to infer authorization.  

To prevent other simplification rules from affecting the normal 
form, we introduce authorization-anchor operation nodes before 
the simplification stage, which prevent any transformations that 
pull up any of the Ri’s or Ai’s, or push down any operation into 
the Ri � Ai expressions. At the start of the transformation phase, 
we remove the authorization-anchor nodes and mark as authorized 
the corresponding groups.  Propagation of authorization is done as 
usual during optimization. (Propagating the authorization marking 
up on the initial query tree actually results in all the par-
ent/ancestor groups being marked as authorized.  However, only 
some of groups added subsequently may be authorized.)   

Redundancy removal rules are then applied during the transforma-
tion phase.  Because groups have alternatives with the authoriza-
tion predicates in place, we can infer authorization of groups using 
the validity propagation approach.  At the same time, the group can 
have other equivalent expressions with redundant parts removed, 
allowing more efficient evaluation.  Thus, we are able to get an 
optimal safe plan.   

We note that the redundancy removal rules in our prototype are 
substitution rules, which allow partial pruning of the search space 
when redundancy is detected; we omit details for brevity.  This can 
reduce the optimization overhead compared to an approach that 
does not remove redundancy, or which does not do the partial 
pruning mentioned above.  However, the overhead in this case is 
larger than when redundancy removal is applied in the simplifica-
tion stage, because the redundancy of semi-joins gets tested multi-
ple times, and because of the increased search space due to late 
detection of the redundant parts.  

An interesting challenge in applying redundancy removal as part of 
the transformation phase is the fact that this could lead to potential 

cycles in the memo structure. For instance, when we eliminate a 
semi-join, we generate a child node that is equivalent to the parent 
and is part of the same group.  The SQL Server optimizer which 
we used for our prototype had partial support for handling cycles 
in the memo, which we had to extend.  Details are beyond the 
scope of this paper. 

5.5.2  Conditioned Authorization   
A better approach to integrating safe plan generation is to perform 
redundancy removal at simplification time, but use an extended 
notion of authorization, which we call conditioned authorization.  
(Note: this notation is not to be confused with the conditional va-
lidity notion of �[11].)  

With conditioned authorization, instead of making an expression 
as authorized, we may mark it as authorized conditioned on a 
join/semijoin with another expression. For example suppose we 
have a relation Ri with authorization Ai. Ai could possibly be de-
leted by redundancy removal or moved elsewhere in the expression 
during simplification. We mark Ri as authorized conditioned on 
Ai, that is, conditioned on it being joined/semi-joined with Ai. (We 
can add the join condition to the authorization, but for simplicity 
we omit the join condition in our discussion.) Authorization condi-
tioned on an empty expression is the same as unconditioned au-
thorization. 

Groups (or equivalence nodes in the memo) derive their authoriza-
tions as follows. If any child is unconditionally authorized, so is 
the group. Otherwise, the authorization condition for a group is the 
disjunction of the authorization conditions of its children; the dis-
junction can be suitably simplified. 

The rule for propagating authorization is then modified. For exam-
ple, if expression E is of the form E1 � E2, where E1 is   author-
ized conditioned on Ai, while E2 is unconditionally authorized, if 
E2 is equivalent to Bj � Ai, we can infer that the resultant expres-
sion is unconditionally authorized. The extended propagation rule 
is as follows: 

1. If an operation has two child groups E1 and E2 that are each 
authorized conditioned on A1 and A2 respectively, the result 
of the operation is authorized conditioned on A1 and A2.  

2. The above condition is then simplified as follows: if A1 sub-
sumes E2, we drop A1 (and similarly for A2) from the condi-
tion.   

If simplification results in an empty condition, we can infer that 
the expression is unconditionally authorized. Note that if  authori-
zation condition A1 (on relation R1) were dropped as redundant 
during initial query simplification, surely the query would have 
had an expression that is subsumed by A1; this expression will be 
joined with R1 at some point in the query plan; at this point, the 
authorization condition A1 would get dropped.  

For lack of space we omit the complete formalization of condi-
tioned authorization.   

5.6 Handling Exceptions and Error  Messages 
We have seen how to handle USFs by moving them to safe loca-
tions.  The most common USFs are built-in functions and opera-
tions (such as division or conversion to integer) that can cause 
exceptions or error messages (such as divide by zero or a bad input 
error message), such as the examples we saw in Section �1.  We can 
improve execution costs significantly for built-in functions, as 



 

follows.  For each built-in function (or operation), we create a safe 
version of the function that ignores exceptions, does not output 
error messages, and does not have any side effects. For instance, 
we can create a safe version of the division function, which catches 
exceptions, and returns a null value.   

Predicates using unsafe functions are rewritten using the corre-
sponding safe versions of the functions, in such a way that the 
rewritten predicate is weaker than the original one.  In the example 
from Section �1, we can create a safe version of the predicate  (1 / 
(salary-100K) = 0.23) by using the safe division.  However, replac-
ing an unsafe function in a predicate by a safe function may allow 
tuples through that would not have passed the original predicate 
(e.g. the predicate 1/ (salary-100K) is null) and vice-versa.  We can 
however rewrite the predicate using safe functions in such a way 
that it is weaker than the original condition.  The rewriting has to 
deal with negations and null/unknown results; we omit details for 
brevity. 

We can then push down the safe version of the predicate while 
retaining the unsafe version on top, above authorization predicates. 
In general, let the original predicate be θ, and the rewritten safe 
one be θ1.  We can then transform a selection σθ(E) to σθ (σθ1(E)), 
and push the rewritten selection θ1 down into the query.  The 
original predicate θ remains on top, to filter out tuples that get 
erroneously included by θ1.  

We note that catching exceptions can alter the behavior of the 
query, in terms of what it executes before an exception prevents 
further execution; this is especially true for updates that are not 
transactional. However, even in current SQL implementations the 
behavior in such situations is not defined by the SQL standard, and 
depends on the query plan chosen. 

6. PERFORMANCE EVALUATION 
We have built a prototype that incorporates our techniques for 
redundancy removal, and for generating safe plans. We added the 
transformation rules for implementing redundancy removal to the 
SQL Server query optimizer, and also modified it to take safety 
with respect to USFs into account. (Unsafe system functions can 
be handled by modifying the code to recognize USFs such as 
arithmetic operations and to handle them in the same way as 
UDFs). For queries that require both redundancy removal and safe 
USF placement, our prototype adopts the technique described in 
Section �5.5.1. 

6.1 Benefits of Redundancy Removal 
In order to illustrate the benefits of redundancy removal, we pre-
sent a sample scenario using the TPCH schema. Consider a user 
who is trying to analyze data that have been shipped in the last ten 
years. For this user, the DBA may create authorized views in order 
to ensure that the user is not allowed to access data from an earlier 
period. A possible set of authorized views are shown below 

authLineitem:  σl_shipdate > ‘1995-01-01’  (Lineitem) 

authOrders:     (Orders � authLineitem) 

authSupplier : (Supplier � authLineitem) 

authCustomer: (Customer � (Orders  � authLineitem) 

The views essentially restrict access in each of the tables to only 
those tuples that correspond to a lineitem that has been shipped 
after 1995. Input queries will be rewritten by replacing each of the 

base relations with the corresponding authorized views. We modi-
fied the query predicates in the TPCH queries to restrict the access 
to only those lineitems that have been shipped after 1995. Thus the 
authorization checks for the purpose of this experiment are all 
redundant.  

Table 1 shows the benefits of performing redundancy removal for 
a few queries of varying complexity from the TPCH suite. For 
instance, Query 6 is a single table query, while the rest of the que-
ries involve multiple joins. Query 10 is a join between 4 tables and 
the rewritten version of the query has 3 additional (redundant) 
joins. For each query, the execution times with and without redun-
dancy removal is shown. The execution times shown have been 
normalized. The transformation rules that we discussed in Section 
�4.2 manage to detect and eliminate all the redundant semi-joins 
which were added as a result of the authorized views.  The addi-
tional optimization overheads (due to redundancy removal) were 
around 10-15%, which is certainly reasonable, given the sizable 
gains in execution time. As the numbers indicate, redundancy re-
moval can lead to a significant improvement. 

6.2 Plan Safety and Redundancy Removal 
In this section, we illustrate the importance of combining redun-
dancy removal and safe USF pushdown, using an example. We 
construct a hypothetical scenario using the TPCH schema, where 
authorizations are created for managers in Europe. The authorized 
views restrict access to information that is only pertinent to regions 
in Europe, by using appropriate semi-joins.  

The authorized views for the different relations are shown below 
(the selection predicate θ on the region table selects regions that 
are in Europe). The example shows that even such a simple sce-
nario could result in complex authorized views.  

authNation:  access to nation information for nations that are in 
Europe:      (Nation � (σθ (Region)) 

authCustomer: provides access to customer information that are 
in some nation in Europe:  (Customer � (Nation � (σθ (Region)) 

authOrders: provides access to orders that have been placed by 
customers from a nation in Europe. 

     (Orders � (Customer  � (Nation � (σθ (Region))) 

authLineitem: provides access to lineitems that have been ordered 
by some customer in Europe:       
  (Lineitem � (Orders � (Customer � (Nation � (σθ (Region)))) 

authSupplier : provides access to suppliers that have supplied 
some lineitems for an order placed by some customer in Europe. 

    (Supplier � (Lineitem � (Orders � (Customer  � (Nation � 
(σθ (Region))))) 

TPCH Query Execution Time 
Without RR 

Execution Time 
With RR 

   Query  3       100.00        48.28 

   Query  6         56.03        38.79 

   Query  10         94.83        55.45 

   Query  12         77.57        43.97 

   Query  14         49.14        38.79 

Table 1: Results with redundancy removal 



 

As the view definitions indicate, the authorized views include mul-
tiple semi-joins to restrict access to only those tuples that are rele-
vant. Now, consider a query issued by a manager in Europe in 
order to examine the details of suppliers who supplied the 
lineitem’s for the “sensitive”  orders that were placed by customer 
in Europe. Suppose a UDF sensitiveOrder() is used to define 
which orders are sensitive, and it is not verified and may be unsafe,  
The preprocessor will replace the relations in the user query by the 
corresponding authorized views to obtain the following query.  

  SELECT *   
  FROM authSupplier, authLineitem, authOrders     
  WHERE  s_suppkey = l_suppkey   
      AND l_orderkey = o_orderkey     
      AND o_custkey  IN  
         (SELECT c_custkey FROM authCustomer  
          WHERE  c_nationkey  IN    
            (SELECT n_nationkey FROM authNation  
             WHERE n_regionkey  IN    
                  (SELECT r_regionkey FROM authRegion  
                   WHERE  r_name='Europe')))   
     AND dbo.sensitiveOrder(o_totalprice) 

The above query is then rewritten by expanding the authorized 
views. It is easy to see that the rewritten query would some redun-
dant authorization checks since the query is only evaluated on 
European regions anyway. 

We study the performance of the techniques we present in this 
paper for the above query. Table 2 illustrates the tradeoffs between 
using redundancy removal and/or safe USF pushdown in terms of 
execution times (which have been normalized). The corresponding 
query plans are illustrated in Figure 4. Notice that all the alterna-
tives would generate safe query plans.  We also measured the exe-
cution cost of the optimal unsafe plan, and found that it was the 
same as that of the optimal safe plan, since the UDF was not as 
selective as the join, and was pulled up above the join based on 
cost considerations.  This may not happen always, of course. 

In the absence of the techniques we present in this paper, an im-
plementation of fine-grained access control would process this 
query without removing any redundancies and by pulling the UDF 
to the highest level in query plan. The resulting plan, given in 
Figure 4 (a), executes in 100 units of time (after normalization). 
We find that either of the techniques we propose in this paper – 
redundancy removal or safe placement of USFs – helps us reduce 
the execution times by nearly 50%. The corresponding query plans 
are illustrated in Figure 4 (b) and Figure 4 (c).  

Finally, we find that when we apply both the techniques, we are 
able to find the plan, shown in Figure 4 (d), that further reduce the 
execution time by another 50%.  

 Thus, both redundancy removal and safe USF pushdown are es-
sential components in implementing fine grained access control.  

6.3 Optimization Cost 
 Redundancy removal can be performed either at the simplification 
phase or the transformation phase. As described in section �5.5.1, 
the key difference is the overheads involved.  Table 3 shows the 
normalized optimization time cost of various alternative combina-
tions of approaches for redundancy removal and USF placement 
from the example in the previous section.   

 As can be seen from Table 3, performing redundancy removal 
during transformations is quite expensive compared to performing 
redundancy removal during simplification.  This is not surprising, 
since redundancy removal at simplification time can reduce the 
size of the query very significantly. The ideal solution would em-
ploy redundancy removal in the simplification stage and still use 
safe USF placement. This can be achieved using the notion of 
conditioned authorization inference (Section �5.5.2). Since simpli-
fication would have the same effect in this case, and conditioned 
authorization inference is similar in cost to materialized view 
matching, which is quite efficient, we believe the optimization 
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Figure 4: Optimal plans for  query in Section 6.2 with  
(a) No redundancy removal and pulling USFs to highest level.   
(b) Applying redundancy removal.  (c) Pushing USFs to safe 
places.  (d) Both redundancy removal and pushing USFs to 
safe places. 

Redundancy Removal 
Phase 

USF placement   Exec time 

No removal    USF on Top 100.00 

Simplification phase USF on Top 47.83 

No removal     Optimal safe  52.25 

Transformation phase   Optimal safe  23.25 

Table 2: Combinations of optimization alternatives 

Redundancy Re-
moval Phase 

 USF  Placement Normalized Opti-
mization Time 

Transformation USF on Top      100.00   

Transformation Optimal Safe        43.29 

Simplification USF on Top          7.62 

Table 3: Normalized optimization time 



 

costs will be similar to the third row (simplification+USF at top), 
which is quite low. 

To summarize our performance results, (a) redundancy removal 
can give very significant performance improvements with low 
optimization overhead, and can in fact reduce optimization costs 
greatly, (b) although pulling USFs to the top works well in several 
cases, optimal placement of USFs can give significantly better 
results in many cases, and (c)  it is feasible to modify an optimizer 
to generate safe plans.  As part of ongoing work we are implement-
ing conditioned authorization inference, and we believe that this 
would reduce the overheads to a reasonable fraction of the optimi-
zation costs for the same query (with redundancy removal).  

7. CONCLUSIONS 
Any fine-grained authorization implementation has to address the 
problem of redundant authorization checks, and the problem of 
information leakage. We showed how redundancy removal can be 
done effectively and efficiently as a query simplification step. We 
then defined when a query expression can be considered safe with 
respect to unsafe function invocations. We illustrated how redun-
dancy removal and safe USF pushdown can be incorporated in an 
existing rule based query optimizer by adding new transformation 
rules. Our performance study shows that redundancy removal is 
feasible, and gives significant performance benefits with only a 
very small effect on optimization cost.  The study also shows that 
leakage of information through USFs, exceptions and error mes-
sages can be efficiently tackled by choosing good safe plans. 

As part of future work, we intend to extend our prototype to in-
clude conditioned authorization, which will reduce optimization 
time, and carry out a more detailed performance study.  We also 
need to add rules to better optimize authorized views more com-
plex than semi-join views, in particular to support nullification. 
We also plan to study and address other potential sources of in-
formation leakage, such as timing based on subquery execution 
time.   
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