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ABSTRACT
Research on query optimization has focused almost exclusively
on reducing query execution time, while important qualities such
as consistency and predictability have largely been ignored, even
though most database users consider these qualities to be at least
as important as raw performance. In this paper, we explore how
the query optimization process can be made more robust, focus-
ing on the important subproblem of cardinality estimation. The
robust cardinality estimation technique that we propose allows for
a user- or application-specified trade-off between performance and
predictability, and it captures multi-dimensional correlations while
remaining space- and time-efficient.

1. INTRODUCTION
From a system management point of view, theconsistencyand

predictabilityof a database management system are very important.
This is particularly true since the DBMS is typically just one com-
ponent of a larger system involving many application programs.
Tuning and testing of the system as a whole is greatly simplified
when its components behave predictably. Despite the importance
of consistency and predictability, these qualities have received rel-
atively little attention from database researchers and implementors,
as compared to raw performance considerations. One goal of this
paper is to argue that the oft-overlooked qualities that lead to main-
tainable systems should be formulated as important objectives for
database systems. Our results develop this principle in the context
of query planning: we illustrate how broader, system-level consid-
erations such as predictability can be incorporated into the query
optimization process to produce a more robust query optimizer.

The task of the query optimizer is to select a low-cost query
plan, but only incomplete and imprecise information about query
plan costs is available to the optimizer at query compilation time.
The standard approach to query optimization is as follows: first,
generate rough guesses as to the values of the relevant cost model
parameters, using rules of thumb or extrapolating from any avail-
able statistics. Next, using the rough guesses as inputs, invoke a
search algorithm to find the least costly plan. The search phase
typically treats the estimated parameter values as though they were
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completely precise and accurate, rather than the coarse estimates
that they actually are. Not surprisingly, query optimization has ac-
quired the dubious repuatation of being something of a black art.

In this paper, we argue for an alternative approach to query opti-
mization. Unlike the standard approach, which ignores the uncer-
tainty about the values of important cost parameters, our approach
uses probabilistic reasoning to acknowledge uncertainties in the
query planning process in a principled manner. Consequently, our
approach is capable of producing query plans that are more robust
to estimation errors and changes in the runtime environment.

Our particular focus is on the cardinality estimation phase of
query optimization. We propose a cardinality estimation procedure,
based on Bayesian inference from precomputed random samples,
that avoids the problematic attribute value independence assump-
tion. Recognizing that the goals of predictability and performance
may sometimes be at odds, our procedure selects the appropriate
trade-off between the two goals based on user or application pref-
erences, expressed at a system-wide and/or query-specific level.
Our procedure is compatible with the architecture of existing query
optimizers, allowing it to be easily integrated into a commercial
database management system.

2. CARDINALITY ESTIMATION
Cardinality estimation is a central subproblem in query optimiza-

tion. The time that a particular query plan takes to execute is cru-
cially dependent on the sizes of the relations accessed in the query,
both the base relations stored on disk and the temporary relations
produced at intermediate stages in the query plan. Of course, the
sizes of relations produced as intermediate results in a query plan
can not generally be computed exactly without first executing the
query plan, so in order to produce an estimate for the cost of a
query plan, the query optimizer needs to rely on quickly-computed
estimates of the sizes of intermediate relations. The problem of
producing accurate size estimates for intermediate results is known
as the cardinality estimation problem.

Typically, the sizes of base relations are known; the challenging
part of cardinality estimation involves estimating the selectivities
of the various selection conditions and join predicates in a query.
For this reason, we will use the terms “cardinality estimation” and
“selectivity estimation” mostly interchangeably1.

Cardinality estimation is a well-studied problem with a rich lit-
erature. Early work on cardinality estimation is surveyed in [23],
while [16] surveys more recent approaches. Various estimation
techniques have been proposed, including histograms (e.g. [16, 18,
28]), sometimes compressed using discrete wavelet [24], fourier
[29], or cosine [20] transformations; sampling (e.g. [14, 15, 22,

1Some cases where cardinality estimation requires more than just
a selectivity estimate are discussed in Section 3.5
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31]); and parametric methods (e.g. [5]).
Theattribute value independence(AVI) assumption is a heuris-

tic used by practically all database systems to simplify the cardi-
nality estimation problem. Under the AVI assumption, predicates
on different attributes are assumed to be independent of each other.
The AVI assumption makes it easy to estimate the selectivity of a
conjunction of predicates on multiple attributes: simply take the
product of the marginal selectivities of the individual predicates,
e.g.Pr(A = a ∧ B = b) = Pr(A = a) · Pr(B = b).

There is no real practical justification for the AVI assumption—
it is basically an ad hoc measure that is used because it simplifies
the cardinality estimation process considerably, rather than because
it accurately models real data. In fact, the AVI assumption is fre-
quently violated in practice, and faulty application of the AVI as-
sumption is arguably the single biggest source of significant query
optimizer errors [2, 11, 17, 27]. For a broad class of queries, the
one-dimensional histograms used by most modern database sys-
tems are insufficient to adequately capture the necessary informa-
tion about data distributions that would allow the query optimizer
to choose satisfactory plans.

Because the shortcomings of the AVI assumption are widely rec-
ognized, numerous techniques for modeling correlated multidimen-
sional distributions (e.g., multidimensional histograms [20, 24, 25,
27] and graphical models [9, 12]) have been proposed in the re-
search literature. To the best of our knowledge, none of the above-
mentioned multidimensional summary techniques have yet been
adopted in commercial DMBSs, in part due to their complexity
and to the well-known “curse of dimensionality”: the number of
pairwise and higher-order interactions between attributes is much
higher than the number of attributes, so it is only feasible to main-
tain statistics about a small fraction of these interactions.

A consequence of the curse of dimensionality is that, even when
using multidimensional summary statistics, cardinality estimates
often exhibit a high degree of imprecision and uncertainty. Despite
this fact, most types of summary statistics conventionally used for
cardinality estimation only provide a single-point estimate of car-
dinality without providing any information about the uncertainty
of the estimate. This is unfortunate, because knowledge about the
degree of uncertainty can be quite important in selecting the most
appropriate query plan, as discussed next.

2.1 The Performance/Predictability Tradeoff
Frequently, the query optimizer has a choice of multiple query

plans which differ in the degree to which their execution time de-
pends on query selectivity. An example is the choice of the access
method used to retrieve records from relationR that satisfy the
predicate(A = a) ∧ (B = b), whereA andB are two indexed
attributes ofR. An index intersectionplan that identifies the qual-
ifying records based on the indexes and then retrieves just those
records will perform well if the number of records to be retrieved
is low. However, since the index intersection plan requires one
random disk read per record, it fares poorly when the selectivity
is high. The cost of asequential scanplan, on the other hand, is
essentially independent of the query selectivity.

When the query selectivity is uncertain, the decision to select a
risky query plan (such as index intersection) that might turn out
to be either blazingly fast or agonizingly slow, versus a steady but
mediocre alternative (such as sequential scan), should depend on
two factors: (1) What is the likelihood of a low selectivity vs. a
high selectivity, based on the best available evidence, and (2) What
is the risk tolerance of the current database application?

Whether a risky plan is sufficiently likely to be faster than a sta-
bler plan to justify adopting the risky plan depends on the require-

ments of the database application; different scenarios call for differ-
ent “standards of proof” for selecting a risky query plan. In some
cases, the riskier plan might be preferrable whenever the evidence
indicates that it would be more likely than not to be the fastest al-
ternative, while in other situations, the stable plan might be the
preferred choice unless the risky plan could be shown “beyond a
reasonable doubt” to be faster. In short, there is a tradeoff between
predictability and expected performance, and the optimal point in
the tradeoff space will vary from one application to another.

For example, a user who is issuing a series of ad hoc, exploratory
data analysis queries is likely to prefer that queries be answered
as quickly as possible, while being willing to wait if a few of the
queries turn out to run slowly. On the other hand, for an applica-
tion that involves a series of short end user interactions repeated
over time, consistent query execution times may be of paramount
importance. Users develop expectations about application respon-
siveness through repeated interactions, and if those expectations are
violated, the users are likely to become dissatisfied. A query that
occasionally takes significantly longer than usual can lead to the
perception of performance problems, even if the execution time is
low on average.

2.2 Reasoning About Uncertainty
From the optimizer’s point of view, the best case would be for

the selectivity estimation process to produce not a point estimate
of selectivity, but rather aprobability distributionover possible se-
lectivities. Such a probability distribution fully quantifies the es-
timation uncertainty, allowing the optimizer to intelligently select
the appropriate query plan after taking into consideration the rel-
ative importance of predictability and performance for the current
application.

The observation that information is lost when the probability dis-
tribution for a parameter (i.e. selectivity) is collapsed to its expected
value has been made in previous papers [6, 7, 8, 10, 31]. These
papers have advocated selecting the query plan that hasleast ex-
pected cost. Because query cost does not necessarily depend lin-
early on parameters such as selectivity, the plan with least expected
cost need not be the same as the least-cost plan for the expected
value of the parameter, which is what traditional query optimizers
aim to produce. A major goal of the papers [6, 7, 10] is to lever-
age the additional information present in a probability distribution
while keeping the basic structure of existing query optimizers.

The query optimizer in a modern commercial database system is
a sophisticated and extremely complex software artifact, the prod-
uct of many person-years of labor. Because the development of an
industrial-strength query optimizer is so expensive, query optimizer
modifications that can be easily incorporated into existing optimiz-
ers are greatly preferrable to modifications that require wholesale
restructuring of the optimizer. Previous approaches that modeled
uncertain parameters using probability distributions treated the ex-
isting query optimizer as a black box that is invoked multiple times
as a subroutine, using different parameter values on each invocation
[7, 10]. Such an approach is faithful to the goal of minimizing dis-
ruption, but it results in a blowup in optimization time by a factor
equal to the number of subroutine invocations.

In this work, we adopt a different approach: after deriving a
probability distribution for selectivity, the next step in cardinality
estimation is to interpret the distribution in light of user prefer-
ences about the predictability vs. performance tradeoff to produce
a single-value cardinality estimate, suitable for consumption by an
existing query optimizer. Our solution (described in the next sec-
tion) avoids the AVI assumption, does not suffer from the “curse of
dimensionality” and has minimal impact on optimization time.
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Figure 1: Execution Costs for Two Hypothetical Plans

3. MAKING UNCERTAINTY EXPLICIT
The preceding discussion motivates the desirability of quantify-

ing estimation uncertainty and incorporating knowledge about this
uncertainty in the query optimization process, but it leaves unan-
swered two questions: how can knowledge of the probability dis-
tribution for selectivity be used to improve the query optimizer,
and how can such a probability distribution be estimated? These
questions are addressed in the next three subsections. Section 3.1
demonstrates that taking advantage of knowledge about uncertainty
need not require fundamental changes to the architecture of the
query optimizer. Section 3.2 discusses the advantages of using pre-
computed uniform random samples as concise summaries of the
data for the purposes of cardinality estimation. Finally, Section 3.3
shows how a random sample of the data can be used to describe the
selectivity of a query predicate as a probability distribution, rather
than merely providing a single-point estimate of the selectivity.

3.1 Incorporating the Probability Distribution
We will illustrate our technique for deriving a single-value esti-

mate from the distribution of possible selectivities using an exam-
ple. Suppose the query optimizer is trying to decide between two
alternative query execution plans for some queryQ. The two plans
have different degrees of dependency on the (unknown) query se-
lectivity. This situation is depicted graphically in Figure 1, which
plots the execution cost of two hypothetical query plans, labeled
“Plan 1” and “Plan 2”, as a function of the query selectivity. As
can be seen from the figure, Plan 1 is the lower-cost plan if the
query selectivity is less than 26%, whereas Plan 2 is preferrable if
the query selectivity is greater than 26%. Of course, the query op-
timizer cannot know in advance what is the exact selectivity of a
given query, because it must rely on imprecise, quickly-computed
selectivity estimates. We refer to a selectivity value (such as 26% in
this example) where execution cost functions for two query plans
cross, causing the optimal query plan to change, as acrossover
point. In general, a query can have many crossover points.

Let us assume for a moment that the optimizer is able to de-
rive probability distributions for the execution cost of each query
plan for Q. The use of a distribution over possible cost values,
rather than a single fixed cost, reflects the fact that the optimizer is
uncertain about the query selectivity, an important cost estimation
parameter. The probability distribution for an uncertain quantityY
can be represented by its probability density functionf(Y ), which
has the property thatPr[a ≤ Y ≤ b] =

∫ b

a
f(z)dz. The probabil-

ity density functions for the execution costs of the two alternative
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Figure 2: Probability Density Function for Execution Cost

plans for queryQ are shown in Figure 2. (Section 3.1.1 explains
how Figure 2 is derived based on statistics collected by the query
optimizer and knowledge of the execution cost functions for each
query plan.) As can be seen from Figure 2, the optimizer’s un-
certainty about the actual selectivity has a much more pronounced
impact on Plan 1’s execution cost than on the cost of Plan 2. This
is because the execution cost of Plan 1 is more dependent on query
selectivity compared to the cost of Plan 2, as can be observed from
Figure 1. Based on Figure 2, we can conclude that the cost of Plan
2 will almost certainly be between 30 and 33, whereas the cost of
Plan 1 might be as low as 20 or as high as 40.

Whether Plan 1 or Plan 2 would be a better choice in this scenario
depends on the relative importance that the database user or appli-
cation places onexpected costvs. predictability of cost. If mini-
mizing expected cost is the overriding concern, then Plan 1 should
be selected. However, for users that are more risk-averse, Plan 2
may be preferrable, since the slightly higher expected cost of Plan
2 may be compensated for by its greater predictability, which re-
duces the risk that the query will take much longer than expected to
execute. Essentially, the decision comes down to which part of the
probability distribution is more important: should the focus be on
the middle part of the distribution (i.e. the “typical” behavior), or
the right-hand tail of the distribution (i.e. the “realistic worst-case”
behavior)?

In our approach to cardinality estimation, the desired tradeoff
between performance and predictability is expressed by means of
an user- or application-specified parameter called theconfidence
threshold. The confidence threshold specifies what percentile value
of the query execution cost probability distribution to look at when
comparing alternative query plans, giving a way to condense the
probability distribution to a single cost value. For example, when
using a confidence threshold of50%, query plans are ranked ac-
cording to the median value of their cost distributions, meaning the
estimated cost of Plan 1 would be30.2 and the estimated cost of
Plan 2 would be31.5. Using a confidence threshold of80%, on
the other hand, would result in cost estimates of33.5 for Plan 1
and31.9 for Plan 2. This is because there is an80% chance that
the cost of Plan 1 will be33.5 or less, and there is an80% chance
that the cost of Plan 2 will be31.9 or less. The name “confidence
threshold” reflects the fact that, when using a confidence threshold
of T%, cost estimates are assigned in such a way that the optimizer
is T% confident that the actual cost of using a particular query plan
will not exceed the optimizer’s estimated cost for that plan. Increas-
ing the confidence threshold causes the query optimizer to adopt a
more conservative strategy, while decreasing the threshold makes
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Figure 3: Cumulative Probability for Execution Cost

the optimizer behave more aggressively.
The confidence threshold can be alternatively (and equivalently)

described in terms of the cumulative distribution function (cdf) for
query execution cost. (The cdf for a probability distribution with
densityf(Y ) is defined ascdf(Y ) =

∫ Y

0
f(z)dz.) If the confi-

dence threshold isT%, then the single-value cost estimatec for a
given query plan isc = cdf−1(T%). In other words, the cost es-
timate is derived by inverting the cdf for query execution cost, as
illustrated graphically in Figure 3. The horizontal dashed lines in
Figure 3 indicate the effect of confidence thresholds of50% and
80%, and the points at which the cdf curve for each query plan
crosses the dashed lines indicate the cost estimates that would be
used for each query plan at each confidence threshold. As can be
seen from Figure 3, Plan 1 would be preferred at confidence thresh-
olds less than65% whereas Plan 2 would be preferred at confidence
thresholds greater than65%.

3.1.1 Derivation of Execution Cost Distribution
The probability density function for the execution cost of a query

plan can be derived from the following two pieces of information:
(1) the probability density functionf(s) for the query selectivity
s, which quantifies the imprecision inherent in selectivity estima-
tion; and (2) the execution costc = g(s) for each potential query
plan, expressed as a function of the selectivitys. From these, we
can easily derive a probability density functionf∗(c) for the execu-
tion cost of each query plan, through a simple change of variable:
f∗(c) = f(g−1(c)).

Our technique for generating a probability density function for
selectivity uses precomputed random samples and is the topic of
Section 3.3. The selectivity distribution used in deriving Figure 2
was generated assuming that selectivity estimation was performed
with the aid of a random sample of 200 tuples, out of which 50
tuples satisfied the query predicates.

The execution cost functions for each query plan are available in
implicit form through the cost estimation module. However, usu-
ally the cost estimation module does not expose its cost functions
in explicit, invertible functional form. Therefore, performing the
change of variable to derive a probability distribution for execu-
tion cost from the probability distribution for selectivity could be
an expensive task. Fortunately, under the assumption that query
execution cost is a monotonically increasing function of selectivity,
there is no need to actually derive the probability distribution for
the execution cost of each query plan.2 Instead, given a confidence

2The assumption that query execution cost goes up as selectivity

threshold ofT%, it suffices to invert the cdf for selectivity to de-
termine the selectivity values′ such thatcdf(s′) = T%, and then
invoke the cost estimation module once to computec′ = g(s′).
This is how our selectivity estimation procedure is implemented.
It can be shown that the resulting costc′ is the same as would be
calculated by the more roundabout procedure of explicitly deriving
the cdf for execution cost and then inverting it.

As a consequence, the changes necessary to incorporate our car-
dinality estimation procedure into a conventional database system
can be entirely isolated within the cardinality estimation module.
Other aspects of the query optimizer, such as plan enumeration,
cost estimation, and search via dynamic programming, remain un-
changed and need not be aware of probability distributions at all.

3.2 Selectivity Estimation via Sampling
The selectivity estimation technique discussed in this paper per-

forms estimation using uniform random samples of the relations in
the database. In contrast to previous sampling-based approaches,
which estimate selectivity based on samples that are constructed
on the flyat query execution time ([14, 15, 22]), the technique we
describe usesprecomputedrandom samples of a fixed size (a few
hundred tuples). The main innovation in our work is a novel tech-
nique for interpretinga random sample that improves the robust-
ness of the query optimization process.

Random sampling has four characteristics that set it apart from
most selectivity estimation techniques:

1. It does not use the AVI assumption, and therefore it avoids
degradation in estimation quality due to the propagation of es-
timation errors.

2. It avoids the “curse of dimensionality”: the dimensionality of
the data does not affect the accuracy of random sampling, and
the space required to store the sample grows linearly with the
number of attributes.

3. It is not restricted to equality and range predicates, but rather
works for almost any type of query predicate, including arith-
metic expressions, substring matches, etc.

4. It is simple to implement.

The random sampling procedure that we use has two phases, an
offline precomputation phase and an estimation phase. The pre-
computation phase is analogous to histogram construction; it can
be triggered manually through anUPDATE STATISTICS com-
mand in SQL or performed periodically whenever a sufficient num-
ber of database modifications have occured. The estimation phase
takes place during query optimization: as the query optimizer ex-
plores the space of query plans via a series of transformations, the
cardinality estimation module is invoked for each relational subex-
pression that is considered by the optimizer. In this paper, we dis-
cuss cardinality estimation for select-project-join (SPJ) expressions
where all joins are foreign-key joins. Extending our techniques to
work with the full generality of SQL is a direction for future work.

While using a uniform random sample to estimate the result car-
dinality of a single-table selection query is quite straightforward,
the case of SPJ expressions involving joins is somewhat more com-
plicated. The natural approach of creating independent samples of
each relation and then evaluating the SPJ expression on the samples

goes up may seem to be violated by certain negating operators such
as set difference or antisemijoin. However, we really only require
the weaker assumption that for each query operator, the estimated
execution cost of the operator increases monotonically as the car-
dinality of its inputs increases (i.e. bigger inputs take longer to pro-
cess, all other things being equal), which is a reasonable assump-
tion for all standard relational operators.
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does not work well (see [1]). Instead, we need to use the technique
introduced in [1] of creatingjoin synopsesfor each relation that
has one or more foreign keys to other relations. Briefly, the join
synopsis for relationR is constructed as follows:

1. Construct a uniform random sample ofR using any of the known
methods for sampling from databases [26].

2. For every relationS such thatR has a foreign key toS, join the
sample ofR with the full relationS.

3. Repeat Step 2 recursively, i.e., for each relationS from Step 2,
follow all its foreign keys, and so on.

We will assume acyclic join graphs, and therefore the join resulting
from the above procedure is well-defined. The join synopsis forR
consists of the the result of the join query thus defined. For any
foreign-key join rooted atR, one can construct a uniform random
sample of the join result by simply taking the appropriate projection
of the join synopsis forR.

To summarize: In the precomputation phase, we construct join
synopses for each relation in the database. During query optimiza-
tion, the optimizer will request estimates for the cardinality of var-
ious relational expressions, which we assume are SPJ expressions
with only foreign-key joins. For each such expression, we deter-
mine the root relationR (the one whose primary key is not involved
in a join), and evaluate the expression on the join synopsis forR,
counting how many tuples satisfy the expression. The number of
satisfying tuples, and the overall number of tuples in the sample,
give rise to a probability distribution for selectivity, as described in
Section 3.3.

A major benefit of cardinality estimation using sampling is that
the cardinality of each query expression can be directly estimated
from a single sample, rather than by combining uncertain cardi-
nality estimates for subexpressions. An example will illustrate this
point. Consider the queryA1B1C, possibly with some selection
conditions on each of the relationsA, B, andC. To optimize this
query, the optimizer needs to estimate the selectivities of seven log-
ical expressions:A, B, C, A1B, A1C, B 1C, andA1B 1C.
When using histograms for cardinality estimation, estimates for the
single-table expressionsA, B, andC are computed directly, and es-
timates for the multi-table expressions are built up from the single-
table estimates using the AVI assumption. When using sampling,
the cardinality estimates for all seven expressions are computed di-
rectly from samples. AssumeA has a foreign key toB which has
a foreign key toC. Then the sample forA is used to estimate the
selectivity of expressionsA, A 1 B, A 1 C, andA 1 B 1 C; the
sample forB is used for expressionsB andB1C; and the sample
for C is used for the expressionC. When using histogram-based
techniques, the errors introduced by the AVI assumption are expo-
nentially magnified as they are propagated across subresults [17].
When using random sampling, by contrast,no build-up of estima-
tion errors occurs, because the cardinality estimates for different
subresults are computed independently from one another.

Our use of sampling as an estimation technique in this paper is
due to the advantages mentioned above, and also because a proba-
bility distribution can be derived from a random sample in a prin-
cipled manner using Bayes’s rule, as discussed in the next subsec-
tion. We emphasize, however, that our decision to use sampling
is orthogonal to the main contribution of this paper, which is our
procedure for interpreting a probability distribution for selectivity
in light of user preferences about performance vs. predictability, as
described in Section 3.1. In principle, the same robust estimation
procedure could be applied to a probability distribution generated
using any cardinality estimation technique.

3.3 Deriving the Probability Distribution
Consider a database consisting ofN tuples and a sampleS =

s1, s2, . . . , sn consisting ofn tuples chosen uniformly at random,
with replacement, from the database. Suppose thatP is a query
predicate that is satisfied bypN tuples, i.e. a fractionp of the
database. Letxi denote the indicator variable that is equal to1
if the ith sample tuplesi satisfies the predicateP and 0 other-
wise, and defineX as the vector〈x1, x2, . . . , xn〉. In the process
of selectivity estimation, we observeX and attempt to infer the
value ofp, which is unknown to us. We will treat the unknown
quantity p as a random variable and seek to determine the con-
ditional probability distribution forp, given the observed dataX.
In other words, we seek theconditional density functionf(z|X),
which we can integrate to determine the probability that the query
selectivity falls in a particular range, given the observed dataX:
Pr[(a ≤ p ≤ b)|X] =

∫ b

a
f(z|X)dz. To calculate the conditional

density, we can use Bayes’s rule:

f(z|X) =
Pr[X|p = z]f(z)

∫

1

0
Pr[X|p = y]f(y)dy

(1)

Notice that to calculatef(z|X) using Bayes’s rule, we need to
know f(z) (sometimes called theprior probability). If we have
some prior knowledge about the query workload, we may be able
to use that knowledge to estimatef(z). When prior knowledge
of the workload is lacking, as is often the case for database sys-
tems, a reasonable approach is to assume that all query selectivities
are equally likelya priori and adopt the uniform prior distribution
f(z) = 1 for 0 ≤ z ≤ 1.

An alternative technique that can be applied in the absence of
knowledge about the actual distribution of query selectivities is to
choose a non-informative prior distribution based on Jeffreys’s rule
[19]. In the context of selectivity estimation from a random sam-
ple, the Jeffreys prior is the beta distribution with shape parameters
( 1

2
, 1

2
), i.e.f(z) ∝ z−1/2(1−z)−1/2 (see [3], page 315). Because

the Jeffreys prior is the most widely accepted non-informative prior
among statisticians [3, 21], for the rest of this paper, we will use the
Jeffreys prior unless otherwise stated. In any case, the exact prior
distribution chosen has little impact on selectivity estimation, as
discussed in Section 3.4.

The terms from Equation (1) other than the prior probabilityf(z)
are straightforward to compute. Suppose that thatk tuples from
the sample satisfy the predicateP , i.e.

∑n
i=1

xi = k. Because
the sample tuples are selected independently and uniformly at ran-
dom from a population of tuples in which a fractionp satisfy the
query predicate and a fraction1 − p do not, the variablesxi are
independent identically distributed Bernoulli random variables and
thereforePr[X|p = z] = zk(1 − z)n−k. The quantity in the de-
nominator of (1),

∫

1

0
Pr[X|p = y]f(y)dy, is independent ofz, so

it can be treated as a normalizing constant.
Combining the expression forf(z) with the expression forPr[X|p =

z] and normalizing yields the following formula for the probability
density ofp conditioned onX:

f(z|X) =
zk−1/2(1 − z)n−k−1/2

∫

1

0
yk−1/2(y − z)n−k−1/2dy

(2)

This is just the beta distribution with shape parameters(k + 1

2
, n−

k + 1

2
).

3.4 Summary of the Estimation Procedure
In the course of query optimization, the optimizer searches through

many possible query plans in search of the optimal plan. During
this search, the optimizer makes a number of subroutine calls to
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Figure 4: Sample Size Matters, Prior Doesn’t

the cardinality estimation module to estimate the size of various
intermediate query results. We modify the cardinality estimation
module to estimate the selectivity of each query predicate using the
following procedure:

1. Determine the appropriate precomputed random sample of the
data to use, based on the relations involved in the query expres-
sion.

2. Evaluate the predicate on the sample and use Bayes’s rule to
infer a probability distribution for the actual selectivity given
the selectivity observed for the sample.

3. Choose the proper confidence thresholdT% based on user pref-
erences and compute the selectivitys = cdf−1(T%) using the
inferred probability distribution.

4. Returns as the estimated selectivity of the predicate.

The following example illustrates the above estimation proce-
dure and sheds light on the impact of the sample size and the choice
of prior distribution on selectivity estimation. Suppose that 10 tu-
ples from a 100-tuple sample satisfy the query predicate for some
queryQ. Equation (2) tells us that the probability density function
for the query selectivityf(z|X) is proportional toz9.5(1− z)89.5.
If we had elected to use the uniform distribution as our prior distri-
bution instead of the Jeffreys prior, the resulting probability density
would be slightly different.

Figure 4 shows the density functions for the probability distribu-
tions resulting from the two different priors in this scenario. The
same figure also illustrates the probability distributions that would
result from using the uniform or Jeffreys prior to interpret a sam-
ple of 500 tuples, of which 50 satisfy the query predicate. As can
be seen from Figure 4, the uniform and Jeffreys priors produce al-
most identical results. The size of the sample, however, does have
a noticable impact on the probability distribution produced.

The selectivity estimate that is produced will depend on the choice
of confidence threshold. If a confidence threshold of 20% is used,
then the result of selectivity estimation will be 7.8%, because there
is a 20% chance that the query selectivity is 7.8% or less. Confi-
dence thresholds of 50% or 80% result in selectivity estimates of
10.1% and 12.8%, respectively. Note that while varying the con-
fidence threshold changes the selectivity estimate that is produced,
this does not necessarily translate into a different query plan being
selected by the query optimizer. Whether a difference in estimated
selectivity translates into a different choice of query plan depends
on the location of the crossover points between different potentially
optimal query plans.

3.5 Extensions to the Query Model
As mentioned earlier, in this paper, we assume queries are SPJ

expressions with foreign-key joins, and we further assume that join
synopses are available for all tables referenced in the queries. In
this section, we briefly discuss how our techniques can be adjusted
to allow these assumptions to be relaxed. A more detailed study of
these extensions is deferred to future work.

No statistics available.In some cases, it is possible that full
join synopses will not be constructed for all relations in a query.
This could be because only a limited set of join synopses are con-
structed due to concerns about storage or maintenance overheads,
or it could be due to queries involving non-foreign-key joins. There
are several possibilities for handling queries for which the neces-
sary samples are not available. First, it may be that a particular
join synopsis is not available, but separate single-table samples are
available for each of the tables being joined. In this case, traditional
estimation techniques can be used: the selectivity of the predicates
on each table can be estimated separately using the sample for that
table, and the combined selectivity of all predicates can be esti-
mated using the attribute value independence assumption and the
containment assumption [30]. (Of course, to the extent that these
assumptions are violated, this approach may lead to inaccurate esti-
mates.) Second, it may be that no statistics whatsoever are available
for a particular table or column referenced by a query predicate. In
this case, many DBMSs use an arbitrary constant, or “magic num-
ber”, as the selectivity estimate [30]. This same approach can be
used with our technique, with the following possible extension: in-
stead a single “magic number”, a “magic distribution” can be used,
which has the effect of varying the magic number depending on the
confidence threshold.

In either case, estimation errors caused by questionable opti-
mizer assumptions may occur, but the error will be confined to
cardinality estimates for those subexpressions for which adequate
samples are not available. Cardinality estimates for other subex-
pressions in the same query can continue to use our regular estima-
tion technique.

Incorporating other operators.The result size for certain
SQL operators, such as aggregation withGROUP BY, depends on
the number of distinct combinations of attribute values for some set
of grouping attributes. Estimating the number of distinct values in
a relation from a random sample of that relation is a well-studied
problem. Our cardinality estimation procedure can be extended
to perform distinct value estimation by adapting known distinct-
values estimation techniques (e.g. [13]).

4. RELATED WORK
In this section, we compare our approach with the most closely

related prior research. (A broader overview of related work is found
in Section 2.) Among previous research that we are aware of, the
work by Chu, Halpern, and Gehrke [6] is most similar in spirit to
this paper. Like this paper, the work of Chu et al. argues for taking
a probabilistic view of uncertain cost parameters and also makes
the point that optimizing solely for expected cost, without consid-
ering predictability, may not meet the needs of system users. The
approach suggested in [6] is to optimize for a non-standard utility
function (such as a linear combination of expected cost and esti-
mated variance) that has a non-linear relation to query execution
cost. However, as is pointed out in [6], standard dynamic program-
ming search strategies break down when the utility of a query plan
is not a linear function of the utility of subplans. Thus, in contrast
to our approach, implementing the proposal of [6] would likely re-
quire significant changes to existing query optimizer technology.
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Another difference between our work and [6] is that the discus-
sion in [6] is at a rather high level, so many practical implemen-
tation details are not addressed. For example, [6] does not discuss
how a probability distribution for selectivity can be obtained; it pro-
vides no guidance about how an appropriate utility function should
be selected or specified by the user; and it provides no experimen-
tal evidence for the effectiveness of its proposed approach. In that
sense, this paper can be viewed as a concrete and practical applica-
tion of the philosophy espoused in [6].

The use of join synopses as data summaries was first proposed
by Acharya, Gibbons, Poosala, and Ramaswamy [1] in the con-
text of approximate query processing. Our work differs from [1] in
several ways: our focus is query optimization rather than approxi-
mate answering of aggregate queries; we make predictions using a
Bayesian approach rather than using the standard maximum likeli-
hood estimator; and we aim to balance the twin objectives of mini-
mizing the expected value and the variance of query execution time,
instead of of trying to minimize relative error in estimation.

Seppi, Barnes, and Morris [31] take a Bayesian approach to pa-
rameter estimation from a random sample which is similar to our
proposal in Section 3.3. However, the focus of [31] is the applica-
tion of preposterior analysis to determine whether on-the-fly sam-
pling to gather additional statistics is cost-effective. In contrast to
[31], our work considers the trade-off between predictability and
performance; we use precomputed samples rather than sampling
on the fly;we do not assume a specific execution cost function; and
we discuss how our techniques can be practically implemented and
provide an experimental evaluation of their effectiveness.

5. ANALYSIS
In this section, we undertake an analytical exploration of our car-

dinality estimation procedure with the goal of understanding the
effects that certain parameters of the estimation procedure have on
query planning outcomes.

Our experiments with an actual database system, described in
Section 6, consider queries of varying complexity; however, in this
section, to keep the analysis simple, we focus on a simple single-
table query based on the example query from Section 2.1. This
query has two different optimal plans—index intersection or se-
quential scan—in two different selectivity ranges.

5.1 Analytical Model
Consider a single-table queryQ running against a table withN

rows. Suppose that either of two execution plans,P1 andP2, might
be optimal forQ, depending on the query selectivityp. Assume
a simple linear cost model, so that the execution time for query
plan Pi has the formvix + fi, wherex = pN is the number of
tuples satisfying the query predicate,vi is the incremental cost per
tuple for planPi, andfi is the fixed overhead, independent of query
selectivity, for planPi. We will chooseN = 6, 000, 000, f1 = 35,
v1 = 3.5 × 10−6, f2 = 5, andv2 = 3.5 × 10−3. These values
are chosen empirically to make plansP1 andP2 roughly resemble
a sequential scan plan and an index intersection plan, respectively.
The crossover point where planP1 becomes better than planP2 is
at a selectivity ofpc = f1−f2

v2N−v1N
≈ 0.14%.

Suppose selectivity estimation is performed using the technique
described in Section 3, using a uniform random sample ofn tu-
ples, interpreted with a confidence threshold ofT%. Whether plan
P1 or P2 will be selected depends on the composition of the ran-
dom sample—specifically, it depends on how many of the tuples
in the sample satisfy the query predicate. Suppose that queryQ
has selectivityp. This means that each tuple in the sample will
satisfy the predicate with probabilityp and fail to satisfy the pred-
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Figure 5: Effect of the Confidence Threshold

icate with probability1 − p. Therefore, the number of tuples that
satisfy the query predicate will be binomially distributed: the prob-
ability thatk of then tuples in the sample satisfy the predicate is
B(n, k) =

(

n
k

)

kp(1 − k)n−p.
Whenk of n tuples satisfy the predicate, the cdf of the inferred

probability distribution for selectivity is the cumulative beta distri-
bution with shape parameters(k + 1/2, n − k + 1/2). Evaluating
the inverse of this function at the valueT% gives the selectivity
estimate that will be returned whenk out ofn sample tuples satisfy
the query predicate and the confidence threshold isT%. If this se-
lectivity estimate is greater thanpc, then the optimizer will choose
plan P1, and otherwise it will choose planP2. In this way, for a
fixed sample sizen and confidence thresholdT%, we can deter-
mine which values ofk correspond to planP1 and which to plan
P2. We know the probability that each value ofk will occur, given
the actual query selectivityp, so we can compute the chance that
planPi will be selected by summing the probabilities of the values
corresponding to planPi.

5.2 Analytical Results
Through our analysis, we seek to understand how varying the

confidence threshold, sample size, and query selectivity impacts
the query optimizer.

The most commonly used metric for evaluating cardinality esti-
mation techniques in the research literature is relative error (i.e. the
percentage difference between the actual and estimated cardinal-
ity). Although the relative error in cardinality estimates is a natural
choice as an error metric, within the context of query optmization,
a more appropriate metric exists. The best way to evaluate the ef-
fectiveness of various estimation techniques is to directly measure
query optimization performance by comparing the running times of
the query plans that are produced using each technique.

Since our goal is a robust query optimizer, we are interested not
just in raw performance but also in the consistency and predictabil-
ity of the database system. A reasonable metric for the predictabil-
ity of the query execution engine is the variance in query execution
times over a set of similar queries. For this reason, in evaluating
cardinality estimation performance, we report not only the average
query execution time, but also the variance in query execution time
across the queries making up each experiment.

5.2.1 Confidence Threshold
Figure 5 shows the expected value of the query execution time

for queries of different selectivities when the query plan is chosen
using a random sample of 1000 tuples and the technique described
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Figure 6: Performance vs. Predictability Trade-off

in Section 3. Each of the curves plotted in Figure 5 is a mixture of
the curves for planP1 and planP2. If the query optimizer knew
the actual query selectivity exactly, it would always choose plan
P2 whenever the selectivityp is less than the crossover pointpc

and planP1 whenp > pc ≈ 0.14%. Since cardinality estimation
must be done very quickly and cannot be exact, two kinds of errors
can result: overestimating the selectivity can cause the optimizer to
chooseP1 whenP2 would be better, and conversely underestimat-
ing the selectivity can cause the optimizer to chooseP2 whenP1

would be better.
As can be seen from Figure 5, higher values of the confidence

thresholdT% make the query optimizer more prone to overestima-
tion, while lower values of the confidence threshold make the op-
timizer more prone to underestimation. The confidence threshold
T = 95% is an extreme case: even when zero tuples out of a sam-
ple of 1000 satisfy the predicate, there is still at least a 5% chance
that the query selectivity exceeds the crossover pointpc. Therefore,
for the cost model we are using, the optimizer will never select the
riskier planp1 whenT = 95%, because it can never be95% sure
thatp1 is better.

The query selectivities plotted in Figure 5 range from 0% to 1%
at multiples of0.05%. Figure 6 summarizes the performance of
each setting of the confidence threshold by comparing the stan-
dard deviation of the query execution time with the average query
execution time, under the assumption that any of the selectivities
from Figure 5 is equally likely to occur. This figure gives us a con-
densed way to visualize the various performance vs. predictability
tradeoffs that can be achieved by picking a particular confidence
threshold and using it to optimize a set of queries with varying se-
lectivities. As the figure shows, the higher the confidence threshold
is set, the less variability occurs in the query execution time. This
is because higher confidence thresholds favor plans whose running
times are relatively independent of selectivity. A second observa-
tion suggested by Figure 6 is that moderate settings of the confi-
dence threshold are better than extremely high or low settings at
producing low expected execution times. Interestingly, the lowest
average execution time occurs not when the confidence threshold is
at the unbiased setting of 50%, but rather at the higher 80% level.

5.2.2 Sample Size
Figure 7, like Figure 5, shows the expected value of the query

execution time for queries of different selectivities. In Figure 7, the
confidence threshold is held constant at 50% while the sample size
is varied. As one would expect, larger sample sizes lead to more
precise cardinality estimates, and consequently lower query execu-
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Figure 7: Effect of Sample Size
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tion time. On the other hand, because the overhead of cardinality
estimation is dependent on the size of the sample that is used, it is
desirable for the sample size to be as small as possible. Figure 7
suggests that, at least for queries with crossover selectivities similar
to the one in our analytical model, a sample size of 500 achieves
a good tradeoff between these competing objectives. If the sample
size is much smaller than 500 tuples, there is a significant decrease
in query performance, while little additional benefit is gained by
increasing the sample size beyond 500 tuples.

5.2.3 Crossover Selectivity
The analytical results reported thus far have all used the same

cost model with a single crossover point at a rather low selectivity,
pc ≈ 0.14%. Figure 8 shows what happens if the cost model is
perturbed so that the crossover point occurs at a significantly higher
selectivity,p′

c ≈ 5.2%.
Figure 8 suggests that when the selectivity at which a crossover

occurs is large enough, sampling-based estimation techniques work
very well, regardless of the setting of the confidence thresholdT%.
There are two reasons for this strong performance: first, when the
crossover point occurs at a relatively large selectivity, there is less
difference in the slope of the plots for query plansp1 andp2, mean-
ing that the impact of making an incorrect choice is less. Second,
larger selectivities are easier to estimate accurately, so the relative
estimation error is less when the selectivity is higher. The combina-
tion of more accurate estimates and less penalty for mistakes causes
cardinality estimation to be a fairly easy problem when query selec-
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Figure 9: Two-Predicatelineitem Query

tivity is high. Therefore, in our experimental evaluation, we con-
centrate on low-selectivity queries, since it is much more difficult
to achieve good estimation performance on low-selectivity queries.

6. EXPERIMENTS
In order to try out the ideas proposed in this paper in an actual

system, we modified the query optimizer of a commercial DBMS,
Microsoft SQL Server, replacing the existing histogram-based car-
dinality estimation module with our proposed sample-based tech-
nique. We sought to answer several empirical questions:

• How does the estimation overhead of our proposed robust esti-
mation procedure compare with traditional cardinality estima-
tion techniques?

• Is the estimation procedure effective for complex queries that
have many possible query plans?

• What guidelines are available to assist in the choice of the con-
fidence thresholdT%?

6.1 Estimation Overhead
We chose to use 500-tuple samples for our experiments. This

choice of sample size was motivated by two considerations: (1) the
analysis from Section 5.2.2, and (2) the desire to achieve approxi-
mate parity with pre-existing histogram-based estimation modules,
in terms of storage space for summary data and time spent during
cardinality estimation. (We conducted one experiment in which we
varied the sample size. See Section 6.2.4 for details.)

The unmodified version of the commercial database system that
we used for our experiments normally uses histograms of approx-
imately 250 buckets in size. Each histogram bucket stores an at-
tribute value, along with counts of the number of records and dis-
tinct values in the bucket. In a random sample, only attribute val-
ues are stored—no counters are necessary. Therefore, if we assume
4-byte counters and 8-byte attribute values, then a 500-tuple of a
relation uses the same amount of space as 250-bucket histograms
on each attribute of the relation. In practice, it is often the case
that histograms are built on only some of attributes of a relation
[4]. (For example, attributes that are rarely used in selection predi-
cates may not need histograms.) However, there is an analogous
space-saving opportunity available to sampling-based estimation
techniques: rarely-queried columns can be omitted from the ran-
dom sample.

We found that the time spent in query optimization was about

30%–40% (on the order of tens of milliseconds) more when using
our cardinality estimation technique than when using standard his-
tograms. Because our implementation is a rough research prototype—
it lacks even basic optimizations such as memoizing, and it retains
all of the histogram bookkeeping code, even though the histograms
are not used during cardinality estimation—we expect that an opti-
mized implementation would have significantly less overhead.

6.2 Experimental Results
We applied our cardinality estimation technique to three differ-

ent query scenarios: a single-table aggregation query with two se-
lection predicates; a three-way join query; and a four-way “star
join” between a fact table and three dimension tables, with selec-
tion predicates on each dimension table. The first two query sce-
narios used the data set from the TPC-H benchmark dataset [32]
at scale factor 1 (approximately 1 GB of data), while the third sce-
nario used a synthetic data set consisting of a star schema with a 10
million row fact table and three small dimension tables, each with
1000 rows. For query scenario #2, we modified thepart table of
TPC-H to introduce a correlated data distribution. Each query sce-
nario used a fixed query template with one free parameter that could
be varied to control the query selectivity by changing the degree of
correlation between individual query predicates. The marginal se-
lectivity of each individual predicate (i.e. the information tracked
by histograms) remained constant regardless of the setting of the
free parameter. In each scenario, we tried out five different settings
for the confidence threshold (5%, 20%, 50%, 80%, and 95%). Be-
cause cardinality estimation performance can vary depending on
the particular random choice of tuples for the samples, all of our
experimental results are averaged over 12–20 different samples.

6.2.1 Experiment 1: Single-Table Query
The template used for the first query scenario is as follows:

SELECT SUM(l extendedprice)
FROM lineitem
WHERE l shipdate BETWEEN
’07/01/97’ AND ’09/30/97’
AND l receiptdate BETWEEN
(’07/01/97’+?) AND (’09/30/97’+?)

The value of “?” controls the degree of overlap between the set of
rows satisfying the condition onl shipdate and those satisfying
the condition onl receiptdate. We varied the degree of over-
lap so that the overall query selectivity was between0% and0.6%
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(b) Performance vs. Predictability

Figure 10: Three-Table Join Query

of the 6 million rows from thelineitem table. Thelineitem
table was clustered by on its primary key, and prior to executing the
queries for this scenario, we constructed two nonclustered indexes,
one onl shipdate and the other onl receiptdate. Based
on this physical design, the best query plan was either scanning
thelineitem table, or else intersecting the two nonclustered in-
dexes and then locating the qualifying records based on their RIDs,
depending on the value of “?”.

Figure 9(a) shows the average query execution time at each se-
lectivity, where each data point is the average of 20 query execu-
tions, each based on a different 500-tuple random sample. The
marked similarity between Figure 9(a) and Figure 5 can be ex-
plained by the fact that the cost model parameters used in the anal-
ysis underlying Figure 5 were based on the empirically observed
performance of two of the possible query plans for this query sce-
nario. The discontinuities in the higher selectivities for some of the
lines plotted in Figure 9(a) is due to the fact that the experiments we
averaged over a limited number of random samples. For compar-
ison, the query performance when using the commercial DBMS’s
standard histogram-based estimation module is also plotted. The
standard estimation module always selected the index intersection
plan, which performed poorly at higher selectivities.

Figure 9(b) summarizes the performance of each setting of the
confidence threshold by averaging across all the queries in this sce-
nario. Each confidence threshold is represented by a point in a
two-dimensional tradeoff space: average query execution time is
measured on the horizontal axis, while standard deviation of query
execution time is measured on the vertical axis. Figure 9(b) is quite
similar to Figure 6, which is unsurprising given the close corre-
spondence between the available plans in this query scenario and
the query plans being modeled from Section 5. In Figure 9(b), just
as in Figure 6, the variance in execution time decreases steadily as
the confidence threshold increases. The lowest average execution
time occurs at a confidence threshold ofT = 80%, closely fol-
lowed byT = 50%. Because of the close correlation between ship
date and receipt date in TPC-H, standard histograms were signifi-
cantly worse than our technique, both in terms of performance and
predictability.

6.2.2 Experiment 2: Three-Table Join
The second query scenario we explored also involved the TPC-

H data set. In this query scenario, the query template consists of a
natural join between thelineitem table, theorders table, and
thepart table. Besides the join predicates, there is an additional

selection condition on thepart table. The selectivity of this addi-
tional condition is the free parameter that is varied in this scenario.
The physical design we selected had all relations clustered on their
primary keys, with additional indexes on the foreign key columns.

In this query scenario, the optimal query plan has one of three
different structures, depending on the number of rows from the
part table that satisfy the predicate. At low selectivities, the best
plan is to first joinpart tolineitem using indexed nested loops
join, with lineitem as the inner relation, leveraging the index on
thel partkey column oflineitem, and then hash join with
orders. When the selectivity gets a little higher, the best plan is
a sequence of hash joins, first betweenlineitem andpart and
then withorders. When the query selectivity goes higher than
approximately 10%, the optimal plan is to first merge join the two
larger relations,lineitem andorders, and then hash join with
part.

Although this query has two crossover points, due to space con-
straints, we will focus on the one that occurs at lower selectiv-
ity. (The results for the higher-selectivity crossover point are rel-
atively uninteresting, because as was the case in Figure 8, query
performance was more or less the same regardless of the confi-
dence threshold that is chosen.) The first crossover point occurs at
a selectivity between0.1% and0.2%. Figure 10 shows query ex-
ecution performance in the general vicinity of this crossover point.
Average execution time for each selectivity and confidence thresh-
old is shown in Figure 10(a), and Figure 10(b) summarizes query
performance for each setting of the confidence threshold. Each of
subfigures is similar to its counterpart from the first experimental
scenario, despite the fact that the types of queries involved in two
scenarios are quite different. This suggests that the properties of
our cardinality estimation procedure that were predicted analyti-
cally, and observed experimentally, for single-table queries have
the potential to be applicable for a broader class of queries.

6.2.3 Experiment 3: Four-Table Star Join
The third and final query scenario used in our experiments mod-

els a typical data warehousing “star schema” query. We constructed
a synthetic data set consisting of a 10-million-row fact table with
some measure columns plus foreign keys to a number of dimension
tables. We built nonclustered indexes on each foreign key column
in the fact table. The query template consists of a four-way join
between the fact table and three dimension tables, with aggregates
computed on the measure columns of the fact table and filters ap-
plied to non-key columns in each of the dimension tables. Each
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(b) Performance vs. Predictability

Figure 11: Four-Table Star Join Query

filter selected 10% of the rows of its dimension table. The distri-
bution for the fact table rows was handcrafted so that by varying
which rows were selected from each dimension table, any desired
percentage of the fact rows between 0% and 10% could be made
to join successfully. The standard histogram-based optimizer al-
ways estimated that0.1% of the rows joined successfully because
it relied on the independence assumption.

Depending on the number of fact rows participating in the join,
one of two query plans was optimal in this scenario. When the
number of fact rows was large, the best plan was a cascading series
of hash joins. When the number of fact rows was small enough,
then a sophisticated execution strategy involving semijoins was op-
timal: first, compute the semijoin of the fact table with each dimen-
sion table (relying on the indexed foreign key columns to retrieve
the RIDs for the appropriate fact rows that join with each individ-
ual dimension table), then intersect the semijoin results, retrieve
the qualifying records, and compute the aggregates. In addition to
these two plans, we found that when using our cardinality estima-
tion technique, the optimizer would sometimes select a third plan
that was a hybrid of the other two. The hybrid plan used the semi-
join strategy with two of the three dimension tables and a hash join
to the third dimension table.

Figure 11 shows the impact that the choice of confidence thresh-
old had when optimizing star join queries. Similar trends to the
ones that were present in Figures 9 and 10 can again be spotted
in Figure 11: low values of the confidence threshold give slightly
better performance for queries with very low selectivity, but this
achievement comes at the cost of weak performance on queries
with higher selectivities. High values of the confidence threshold
result in very consistent query performance across all selectivities,
with the best average performance arising from thresholds of50%–
80%. The standard histogram-based estimation module failed to
adjust to correlations in the data set and thus was not competitive
with our approach.

6.2.4 Experiment 4: Effect of Sample Size
We conducted one experiment in which we used sample sizes

other than the default size of 500 tuples. In this experiment, we
used the single-table query scenario described in Section 6.2.1 with
a fixed confidence threshold of50% and varied the sample size
from 50 to 2500 tuples, with the goal of understanding how query
optimization performance degrades as the sample size is decreased.
Figure 12 shows the effect of sample size on query performance.
As can be seen from the figure, larger sample sizes resulted in both
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Figure 12: Effect of Sample Size

better average execution time and less variability in execution time.
The data point for 50-tuple samples represents an exception to

the general trend. The probability distribution for query selectiv-
ity becomes more and more “spread out” as the sample size gets
smaller, because the evidential value of a small sample is less and
the uncertainty is larger. For a 50-tuple sample and a 50% confi-
dence threshold, the uncertainty is sufficiently great that the pre-
dicted query selectivity isalwaysgreater than the crossover point
at which sequential scan becomes optimal, even when zero tuples
from the sample satisfy the query predicates. Thus the query op-
timizer always chooses a sequential scan plan when using a 50-
tuple sample, resulting in very consistent query execution times,
although the plan chosen is suboptimal when the actual selectivity
is very low. This demonstrates a desirable “self-adjusting” feature
of our estimation procedure: when a particularly risky query plan
is only useful for a very limited range of selectivities, and the avail-
able statistics have insufficient resolution to adequately determine
whether the query selectivity falls within that range, our estimation
procedure will avoid that query plan in favor of safer alternatives.

6.2.5 Experimental Conclusions
The following recommendations summarize our conclusions from

these experiments:

• A confidence threshold of80% appears to be a good baseline
level for general-purpose use. It achieves both good perfor-
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mance (low average execution time) and good predictability
(little variability in execution time).

• A confidence threshold of95% leads to very stable query plans
and few surprises. It is good for situations where predictability
is the paramount concern.

• Confidence thresholds below50% are rather speculative and
are likely to be of limited applicability.

As future work, we plan to further refine and validate these conclu-
sions through additional experimentation.

We envision the confidence threshold being set by database users
and administrators in two ways: a system configuration parameter
for robustness can be set to “conservative”, “moderate”, or “ag-
gressive”, corresponding to confidence thresholds of 95%, 80%,
and 50% respectively. This setting will be used by default for all
queries, except for queries that override the setting using aquery
hint—a special comment embedded in the SQL statement. Query
hints are already used in commercial systems, e.g. to override the
optimizer and force the use of a particular join method or access
method.

7. CONCLUSION
The research results presented in this paper grew out of the ques-

tion, “How can we increase the robustness of query optimizers?”
By one definition, a robust query optimizer is one that generates
plans that work reasonably well even when optimizer assumptions
fail to hold. We have developed a novel cardinality estimation pro-
cedure that manages uncertainty in a principled way by reasoning
probabilistically about selectivity. Because robustness sometimes
comes at the cost of performance, users should be allowed to prior-
itize these competing objectives. To this end, our estimation tech-
nique incorporates into the query planning process user or applica-
tion preferences about the predictability vs. performance tradeoff,
explicity and succinctly expressed through the setting of a single
parameter.
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