Content-Based Routing: Different Plans for Different Data

Pedro Bizarro, Shivnath Babu, David DeWitt, Jennifer Widom VLDB 2005

CS 632 Seminar Presentation Saju Dominic

Feb 7, 2006

Introduction

- Different parts of the same data may have different statistical properties.
- Different query plans may be optimal for the different parts of the data for the same query.
- Concurrently run different optimal query plans on different parts of the data for the same query

Overview of CBR

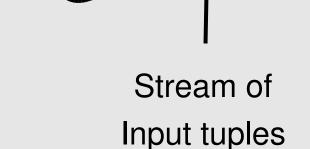
- Eliminates single plan assumption
- Identifies tuple classes
- Uses multiple plans, each customized for a different tuple class
- Adaptive and low overhead algorithm
- CBR applies to any streaming data:
 - stream systems
 - regular DBMS operators using iterators
 - and acquisitional systems.
- Implemented in TelegraphCQ as an extension to Eddies

Overview of Eddies

 Eddy routes tuples in a particular order through a pool of operators

Routing decisions based on operator characteristics:

- Selectivity
- Cost
- Queue size



*O*₁

Output tuples

Eddy

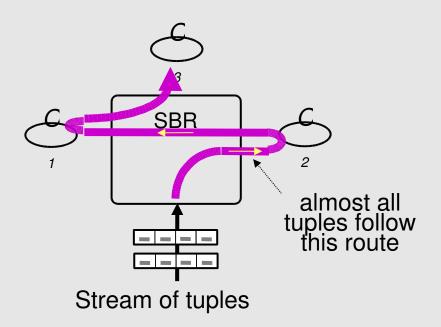
Routing decisions not based on tuple content

Intrusion Detection Query

- "Track packets with destination address matching a prefix in table T, and containing the 100-byte and 256-byte sequences "0xa...8" and "0x7...b" respectively as subsequence"

Intrusion Detection Query

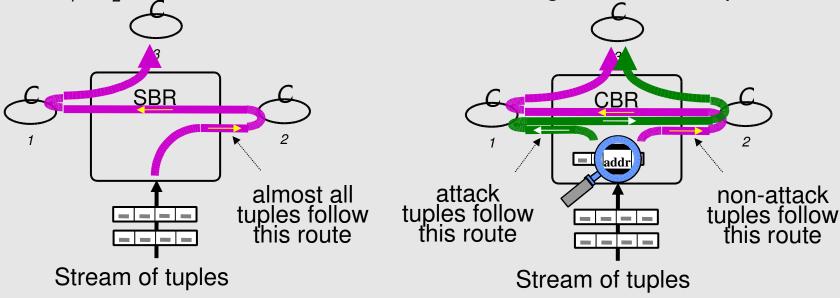
- Assume:
 - costs are: $C_3 > C_1 > C_2$
 - selectivities are: $\sigma_3 > \sigma_1 > \sigma_2$
- SBR routing converges to O₂, O₁, O₃



Intrusion Detection Query

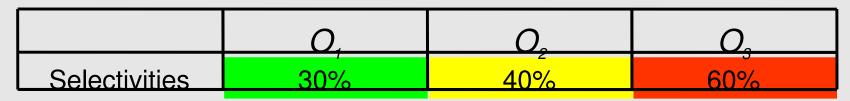
- Suppose an attack (O_2 and O_3) on a network whose prefix is not in $T(O_1)$ is underway:
 - $-O_{2}$ and O_{3} will be very high, O_{1} will be very low

 $-O_1$, O_2 , O_3 will be the most efficient ordering for "attack" tuples



Content-Based Routing Example

Consider stream S processed by O₁, O₂, O₃



Overall Operator Selectivities

• Best routing order is O_1 , then O_2 , then O_3

Content-Based Routing Example

Let A be an attribute with domain {a,b,c}

Value of A	O,	O_2	O_{2}
A=a	32%	10%	55%
A=b	31%	20%	65%
A=c	27%	90%	60%
Overall	30%	40%	60%

Content-Specific Selectivities

- Best routing order for A=a: O₂, O₁, O₃
- Best routing order for A=b: O₂, O₁, O₃
- Best routing order for A=c: O₁, O₃, O₂

Classifier Attributes

- Goal: identify tuple classes
 - Each with a different optimal operator ordering
- CBR considers:
 - Tuple classes distinguished by content, i.e., attribute values
- Classifier attribute (informal definition):
 - Attribute A is classifier attribute for operator O if the value of A is correlated with selectivity of O.

Best Classifier Attribute Example:

- Attribute A with domain {a, b, c}
- Attribute B with domain {x, y, z}
- Which is the best to use for routing decisions?
- Similar to AI problem: classifier attributes for decision trees
- Al solution: Use GainRatio to pick best classifier attribute

		ŀ			ŀ
A=a	10%	90%	B=x	43%	57%
A=b	20%	80%	B=y	38%	62%
A=c	90%	10%	B=z	39%	61%
Overall	40%	60%	Overall	40%	60%

GainRatio to Measure Correlation

		ŀ			ŀ
A=a	10%	90%	B=x	43%	57%
A=b	20%	80%	B=y	38%	62%
A=c	90%	10%	B=z	39%	61%
Overall	40%	60%	Overall	40%	60%

GainRatio(R, A) = 0.87 GainRatio(R, B) = 0.002

R: random sample of tuples processed by operator O

Entropy
$$(R) = -\sum_{i=1}^{c} p_{i} \ln \left(p_{i}\right)$$

InfoGain $(R,A) = Entropy(R) - \sum_{i=1}^{d} \frac{|R_{i}|}{|R|} Entropy(R_{i})$

SplitInformation
$$(A) = -\sum_{i=1}^{d} \frac{|R_i|}{|R|} * \log_2 \frac{|R_i|}{|R|}$$

$$GainRatio(R,A) = \frac{InfoGain(R,A)}{SplitInformation(A)}$$

Classifier Attributes: Definition

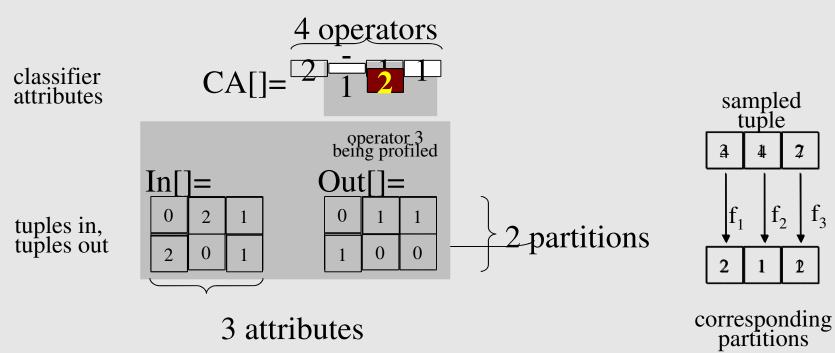
An attribute A is a classifier attribute for operator O, if for any large random sample R of tuples processed by O, GainRatio $(R,A)>\tau$, for some threshold τ

Content-Learns Algorithm: Learning Routes Automatically

- Content-Learns consists of two continuous, concurrent steps:
 - **Optimization**: For each $O_1 \in O_1, ..., O_n$ find:
 - that O_I does not have a classifier attribute or
 - find the best classifier attribute, C_{l} , of O_{l} .
 - Routing: Route tuples according to the:
 - selectivities of O_I if O_I does not have a classifier attribute or
 - according to the content-specific selectivities of the pair $< O_1$, $C_1 >$ if C_1 is the best classifier attribute of O_1

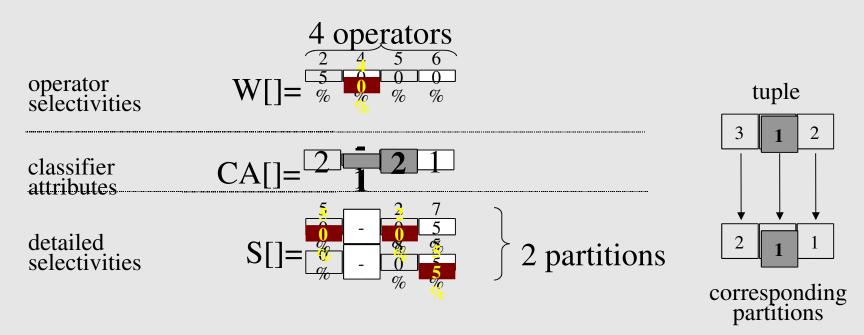
Content-Learns: Optimization Step

- Find C₁ by profiling O₁:
 - Route a fraction of input tuples to O_I
 - For each sampled tuple
 - For each attribute
 - map attribute values to d partitions
 - update pass/fail counters
 - When all sample tuples seen, compute C_1



Content-Learns: Routing Step

- SBR routes to O_I with probability inversely proportional to O_I's selectivity, W[I]
- CBR routes to operator with minimum σ:
 - If O_{I} does not have a classifier attribute, its σ =W[I]
 - If O_I has a classifier attribute, its σ =S[I,i], j=CA[I], i=f_i(t. C_i)



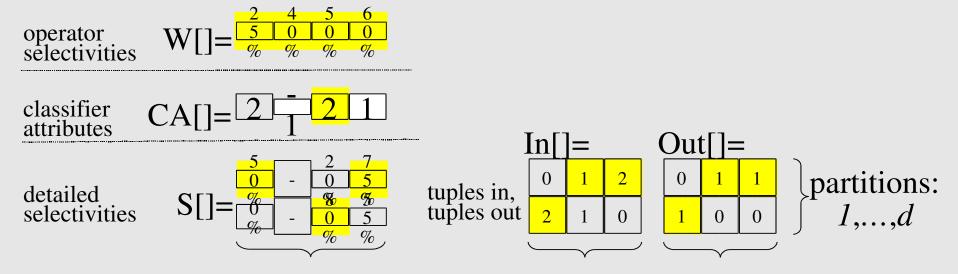
Adaptivity and Overhead

- CBR introduces new routing and learning overheads
 - Overheads at odds with adaptivity

 Adaptivity: ability to find efficient plan quickly when data or system characteristics change

CBR Update Overheads

- Once per tuple:
 - selectivities as fresh as possible
- Once per sampled tuple:
 - correlations between operators and content
- Once per sample (~2500 tuples)
 - Computing GainRatio and updating one entry in array CA

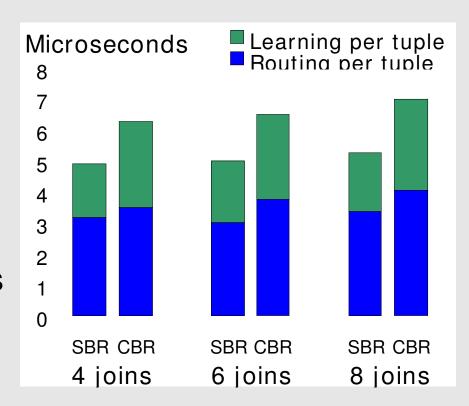


operators: $1, \dots, n$

attributes: 1,...,k

Experimental Results: Run-time Overheads

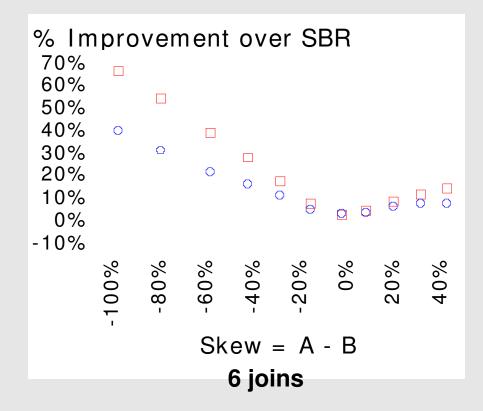
- Routing overhead
 - time to perform routing decisions (SBR, CBR)
- Learning overhead:
 - Time to update data structures (SBR, CBR) plus
 - Time to compute gain ratio (CBR only).



Overhead increase: 30%-45%

Experimental Results:Varying Skew

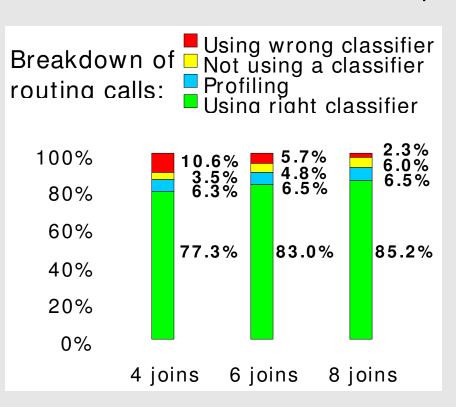
- One operator with selectivity A, all others with selectivity B
- Skew is A-B. A varied from 5% to 95%.
- Overall selectivity: 5%

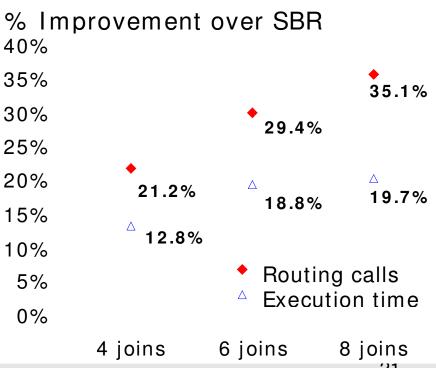


```
    Routing Calls (Knows)
    Routing calls (Learns)
    Execution time (Learns)
```

Experimental Results: Random Selectivities

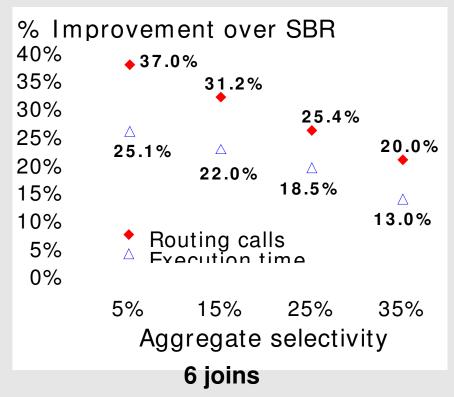
- Attribute attrC correlated with the selectivities of the operators
- Other attributes in stream tuples not correlated with selectivities
- Random selectivities in each operator





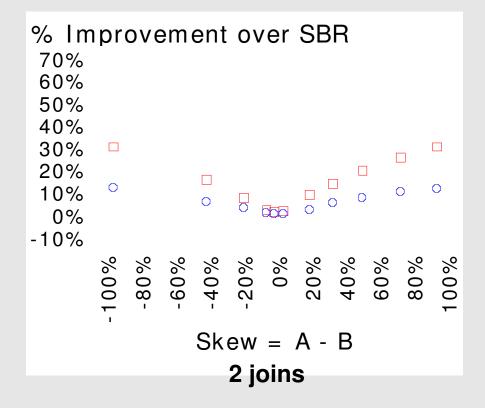
Experimental Results: Varying Aggregate Selectivity

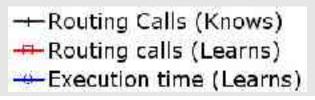
- Aggregate selectivity in previous experiments was 5% or ~8%
- Here we vary aggregate selectivity between 5% to 35%
- Random selectivities within these bounds

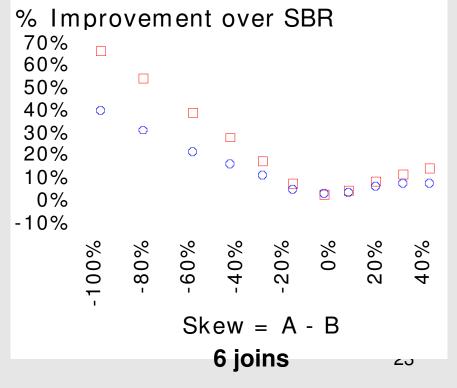


Experimental Results:Varying Skew

- One operator with selectivity A, all others with selectivity B
- Skew is A-B. A varied from 5% to 95%
- Overall selectivity: 5%







Conclusions

- CBR eliminates single plan assumption
- Explores correlation between tuple content and operator selectivities
- Adaptive learner of correlations with negligible overhead
- Performance improvements over non-CBR routing