
Efficient Computation of Diverse Query Results
Erik Vee, Utkarsh Srivastava, Jayavel Shanmugasundaram, Prashant Bhat, Sihem Amer Yahia

Yahoo! Research
Sunnyvale, CA, USA

{erikvee,utkarsh,jaishan,pbhat,sihem}@yahoo-inc.com

Abstract— We study the problem of efficiently computing
diverse query results in online shopping applications, where users
specify queries through a form interface that allows a mix of
structured and content-based selection conditions. Intuitively, the
goal of diverse query answering is to return a representative set
of top-k answers from all the tuples that satisfy the user selection
condition. For example, if a user is searching for Honda cars and
we can only display five results, we wish to return cars from five
different Honda models, as opposed to returning cars from only
one or two Honda models. A key contribution of this paper is to
formally define the notion of diversity, and to show that existing
score based techniques commonly used in web applications are
not sufficient to guarantee diversity. Another contribution of
this paper is to develop novel and efficient query processing
techniques that guarantee diversity. Our experimental results
using Yahoo! Autos data show that our proposed techniques are
scalable and efficient.

I. INTRODUCTION

Online shopping is increasing in popularity due to the large
inventory of listings available on the Web.1 Users can issue
a search query through a combination of fielded forms and
keywords, and only the most relevant search results are shown
due to the limited “real-estate” on a Web page. An important
but lesser-known concern in such applications is the ability to
return a diverse set of results which best reflects the inventory
of available listings. As an illustration, consider a Yahoo!
Autos user searching for used 2007 Honda cars. If we only
have space to show five results, we would rather show five
different Honda models (e.g., Honda Civic, Honda Accord,
Honda Odyssey, Honda Ridgeline and Honda S2000) instead
of showing cars from just one or two models. Similarly, if
the user searches for 2007 Honda Civic cars, we would rather
show 2007 Honda Civic cars in different colors rather than
simply showing cars of the same color. Other applications such
as online auction sites and electronic stores also have similar
requirements (e.g., showing diverse auction listings, cameras,
etc.).

While there are several existing solutions to this problem,
they are either inefficient or do not work in all situations. For
instance, the simplest solution is to obtain all the query results
and then pick a diverse subset from these results. However, this
method does not scale to large data sets, where a query can
return a large number of results. A variant of this method is
commonly used in web search engines: in order to show k
results to the user, first retrieve c× k results (for some c > 1)
and then pick a diverse subset from these results [3], [11],

1E.g., shopping.yahoo.com, amazon.com, ebay.com

[12]. Usually, c × k is much smaller than the total number
of results, so it is more efficient than the previous method.
However, while this method works well in web search where
there are few duplicate or near-duplicate documents, it does
not work as well for structured listings since there are many
more duplicates. For instance, it is not uncommon to have
hundreds of cars of a given model in a regional dealership,
or thousands of cameras of a given model in a large online
store. Thus, f would have to be of the order of 1000s or
10000s, which is clearly inefficient and furthermore, does not
guarantee diverse results.

Another commonly used method is to issue multiple queries
to obtain diverse results. For instance, if a user searches
for Honda “convertible”s (where “convertible” is a keyword
search query), this method would issue a query to see if there
are any Honda Civic convertibles, issue another query to see
if there are any Honda Accord convertibles, issue another
query to see if there are any Honda Ridgeline convertibles,
and so on. While this method guarantees diverse results, it is
inefficient for two reasons: it issues multiple queries, which
hurts performance, and many of these queries may return
empty results (e.g., there are no Honda Civic, Honda Accord,
or Honda Ridgeline convertibles).

A final method that is sometimes used is to retrieve only a
sample of the query results (e.g., using techniques proposed
in [9]) and then pick a diverse subset from the sample.
However, this method often misses rare but important listings
that are missed in the sample. As an illustration, there are only
a few Honda S2000 cars, but we wish to include them in the
results to show the full range of choices.

To address the above limitations, we initiate a formal study
of the diversity problem in search of methods that are scalable,
efficient and guaranteed to produce diverse results. Towards
this goal, we first present a formal definition of diversity,
including both unscored and scored variants, that can be
used to evaluate the correctness of various methods. We then
explore whether we can use “off-the-shelf” technology to
implement diversity efficiently and correctly. Specifically, we
explore whether we can use optimized Information Retrieval
(IR) engines with score-based pruning to implement diversity,
by viewing diversity as a form of score. Unfortunately, it
turns out that the answer is no — we prove that no possible
assignment of static or query-dependent scores to items can
be used to implement diversity in an off-the-shelf IR engine
(although there is an open conjecture as to whether we can
implement diversity using a combination of static and query-

dependent scores).
We thus devise evaluation algorithms that implement di-

versity inside the database/IR engine. Our algorithms use an
inverted list index that contains item ids encoded using Dewey
identifiers [6]. The Dewey encoding captures the notion of
distinct values from which we need a representative subset in
the final query result. We first develop a one-pass algorithm
that produces k diverse answers with a single scan over the
inverted lists. The key idea of our algorithm is to explore a
bounded number of answers within the same distinct value
and use B+-trees to skip over similar answers. Although this
algorithm is optimal when we are allowed only a single pass
over the data, it can be improved when we are allowed to
make a small number of probes into the data. We present an
improved algorithm that is allowed to probe the set of answers
within the same distinct value iteratively. The algorithm uses
just a small number of probes — at most 2k. Our algorithms
are provably correct, they can support both unscored and
score versions of diversity, and they can also support query
relaxation Our experiments show that they are scalable and
efficient.

In summary, the main contributions of this paper are:
• A formal definition of diversity and a proof that “off-the-

shelf” IR engines cannot be used to implement diversity
(Section II)

• Efficient one-pass (Section III) and probing (Section IV)
algorithms for implementing diversity

• Experimental evaluation using Yahoo! Autos data (Sec-
tion V)

II. DIVERSITY DEFINITION AND IMPOSSIBILITY RESULTS

We formally define the notion of diversity and present some
impossibility results for providing diversity using off-the-shelf
IR systems.

A. Data and Query Model
We assume that the queried items are stored as tuples in

a relation R. A query Q on a relation R is defined as a
conjunction or disjunction of two kinds of predicates: scalar
predicates of the form att = value and keyword predicates
of the form att C keywords where att is an attribute of
R and C stands for keyword containment. Given a relation
R and a query Q, we use the notation RES(R,Q) to denote
the set of tuples in R that satisfy Q.

As an illustration, consider the Cars relation shown in
Figure 1(a). The query Make = ’Honda’ would return
all the cars whose make is Honda. Similarly, the query
Description contains ’Low Mileage’ would re-
turn all the cars whose description contains the keywords ’Low
miles’, the query Make = ’Honda’ and Description
contains ’Low miles’ would return all the cars that
satisfy both the conditions, and the query Make = ’Honda’
or Description contains ’Low miles’ would re-
turn cars that satisfy at least one of the conditions.

In many online applications, it is also often useful to allow
tuples to have scores. One natural case is in the presence of

keyword search queries, e.g., using scoring techniques such
as TF-IDF [10]. Another case is in the context of disjunctive
queries such as Make = ’Honda’ and Description
contains ’Low miles’, where a tuple may not satisfy
all the predicates. Here, a weight can be assigned to each dis-
junct, and the score of a tuple can be defined to be a monotonic
combination function of the weights of the predicates satisfied
by the tuple [2]. We use the notation score(t,Q) to denote the
score of a tuple t that is produced as a result of evaluating a
query Q. When the query is clear from the context, we simply
refer to the score of a tuple t as score(t).

B. Diversity Definition

Consider the database shown in Figure 1(a). If the user
issues a query for all cars and we can only display three results,
then clearly we wish to show one Honda and two Toyotas
(or vice-versa). Similarly, if the user issues a query Make
= ’Honda’, we wish to show different models of Hondas,
e.g., the top relation in Figure 1(b) is more diverse than
the bottom relation because it shows three different models
of Hondas. However, if the user query is Description
contains ’Low miles’, then the bottom relation is a
good result because only Honda Civics satisfy the keyword
search condition and this relation shows different colors of
Honda Civics.

The key take-away from the above examples is that there
is a priority ordering of attributes when it comes to defining
diversity, whereby we wish to vary the values of higher priority
attributes before varying the values of lower priority attributes.
In our example, Make has a higher priority than Model,
which has a higher priority than Color, which in turn has a
higher priority than Year. Note that this ordering is domain-
specific and can be defined by a domain expert (for instance,
Year can be defined to have a higher priority than Color,
if desired). This notion is captured below.

Definition 1: Diversity Ordering. A diversity ordering of a
relation R with attributes A, denoted by ≺R, is a total ordering
of the attributes in A.

In our example, Make ≺ Model ≺ Color ≺ Year ≺
Description ≺ Id (we ignore the suffix in ≺R when it is
clear from the context).

Given a diversity ordering, we can define a similarity
measure between pairs of items, denoted SIM(x, y), with the
goal of finding a result set S whose items are least similar to
each other (and hence most diverse); i.e., we wish to find a
result set that minimizes

∑
x,y∈S SIM(x, y).

With an eye toward our ultimate goal, let us take a very
simple similarity function: SIM(x, y) = 1 if x and y agree on
the highest priority attribute, and 0 otherwise. It is not hard
to see that by using this similarity measure, minimizing the
all-pairs sum of similarities in our running example guarantees
that we have equal numbers of Hondas and Toyotas (within
one), so long as there are enough Hondas and Toyotas to
display.

However, as mentioned above, we wish to diversify on not
just the first attribute in the diversity ordering. For instance, if

DescriptionYearColorModelMakeId

Low miles2007BlueCamryToyota15

Low miles2007BlueTercelToyota14

Low miles2007BlackCorollaToyota13

Low miles2007TanPriusToyota12

Good miles2006OrangeCRVHonda11

Fun car2007RedCRVHonda10

Good miles2006GreenOdysseyHonda9

Rare2007GreenOdysseyHonda8

Good miles2006RedAccordHonda7

Best price2007BlueAccordHonda6

Low price2006BlackCivicHonda5

Low miles2007BlackCivicHonda4

Low miles2007RedCivicHonda3

Low miles2007BlueCivicHonda2

Low miles2007GreenCivicHonda1

(a)

DescriptionYearColorModelMakeId

DescriptionYearColorModelMakeId

Low miles2007RedCivicHonda3

Low miles2007BlueCivicHonda2

Low miles2007GreenCivicHonda1

Rare2007GreenOdysseyHonda8

Best price2007BlueAccordHonda6

Low miles2007GreenCivicHonda1

(b)

Fig. 1. Example Database and Query Results

we show more than one Honda Civic in a result set, we wish
to diversify their color. Thus, we define a prefix with respect
to ≺ to be a sequence of attribute values, in order given by ≺,
moving from highest to lower priority. For example, Honda
Odyssey is a prefix for items 8 and 9 in Figure 1(a). On the
other hand, neither Blue 2007 nor Toyota Green are,
since all prefixes must start with the Make attribute, and all
attributes must follow in contiguous order.

We now capture the notion of diversifying at lower levels.
If ρ is a prefix and S is a set, then denote Sρ = {x ∈ S :
ρ is a prefix of x }. Then, if ρ is a prefix of length `, define

SIMρ(x, y) = 1 if x, y agree on their (`+1)st attribute, and 0
otherwise. Again thinking of our example database, notice that
if ρ = Honda Civic, then minimizing

∑
x,y∈Sρ

SIMρ(x, y)
guarantees that we will not display two Black Honda Civics
before displaying the Green,Blue and Red ones, so long as
they all satisfy a given query.

We are now almost ready for our main definition. Let
Rk(R, Q) denote the set of all subsets of RES(R, Q) of size
k. For convenience, we will suppress the R, Q when it is clear
from context.

Definition 2: Diversity. Given a relation R, a diversity
ordering ≺R, and a query Q, let Rk be defined as above.
Let ρ be a prefix consistent with ≺R. We say set S ∈ Rk is
diverse with respect to ρ if

∑
x,y∈Sρ

SIMρ(x, y) is minimized,
over all sets T ∈ Rk such that |Tρ| = |Sρ|.

We say set S ∈ Rk is a diverse result set (for ≺R) if S is
diverse with respect to every prefix (for ≺R).

It can be shown that a diverse set of size k always exists.
We now generalize the above definition to the case where

tuples can have scores. Intuitively, scored diversity always

picks tuples with higher scores over tuples with lower scores
(in the top-k results). However, if many tuples are tied for
the lowest score (in the top-k results), then the lowest score
tuples are picked in a diversity preserving way. Note that this
approach generalizes both score-based ranking and unscored
diversity: if every item has a unique score, it reduces to score-
based ranking, while if every item has the same score, it
reduces to unscored diversity. We can also achieve greater
diversity by choosing a coarse scoring function (i.e., one that
assigns the same score to many tuples).

In order to formally define scored diversity, we need one
further concept. Given relation R and query Q, let maxval =
maxT∈Rk

score(T), where score(T) is the sum of the scores
of tuples in T . Then define Rscore

k to be the set of sets in
Rk whose total score is maxval. Then we can define scored
diversity analogously to unscored diversity by replacing Rk

with Rscore
k in Definition 2.

C. Impossibility Results

We now show that we cannot use traditional IR scoring to
produce (unscored or scored) diverse results. The intuition here
is that the IR score of an item depends only on the item and
possibly statistics from the the entire item corpus, but diversity
depends on the other items in the query result set.

The class of IR systems that we consider are those based
on inverted lists: each unique attribute value/keyword contains
the list of items that contain that attribute value/keyword. Each
item in a list also has a score, which can either be a global
score (e.g., PageRank) or a value/keyword -dependent score
(e.g., TF-IDF). The items in each list are usually ordered by
their score so that top-k queries can be handled efficiently.

Given a query Q, we find the lists corresponding to the
attributes values/keywords in Q, and aggregate the lists to find
a set of k top-scored results. The score of an item that appears
in multiple list is usually aggregated from the per-list scores,
and efficient algorithms such as the Threshold Algorithm [5]
assume that the aggregation function is monotone.

Without loss of generality, we only consider systems with
value/keyword -dependent score (global scores can be sim-
ulated by assigning the same score to an item for every
value/keyword). For any attribute/keyword A, denote its scor-
ing function by SCOREA(·). Let f be a monotonic aggregating
function, which takes a set of scores and outputs an aggre-
gated score. Given a query Q that uses attributes/keywords
A1, ..., A`, we may choose weights wA1

, ..., wA`
based on Q

(and k). The aggregated score of item i from the database
is then f(wA1

SCOREA1(i), ..., wA`
SCOREA`

(i)). The top-k
algorithm outputs the k items with the highest aggregated
score. We call such systems Inverted-List Based IR Systems,
and we should that such systems cannot be used to output an
unscored diverse result set.

Theorem 1: There is a database such that no Inverted-List
Based IR System always produces an unscored diverse result
set, even if we only consider non-null queries.

Proof: Consider the database shown in Figure 1(a),
and suppose there is an Inverted-List Based IR System that
produces diverse result for this data. First, consider the top-8
results for the query Year = 2007. Since it must be diverse,
this list must include every Toyota. On the other hand, diversity
implies that exactly one of the Honda Civics can be in that top-
8 list. Let h1 be that Honda Civic. Hence, the inverted list for
2007 must rank the Toyotas and h1 in its top 8. Also notice
that no other tuple in that top 8 can satisfy Description
contains ’mileage’.

Likewise, we see that the inverted list for ’mileage’ must
also place every Toyota somewhere in its top 8, and exactly
one Honda Civic can be in those top 8 spots; call this Honda
Civic h2. Further, no other tuple in that top 8 can satisfy Year
= 2007.

Now, consider the top-6 list produced by the query Year =
2007 AND Description contains ’mileage’. By
the monotonicity condition on f , the tuples for Toyota can
be beaten by at most h1 and h2. Hence, the top-6 list must
contain all of these 4 Toyotas and at most 2 Hondas, violating
diversity, a contradiction.

The above result seems to indicate that traditional IR
systems will have difficulty in producing diverse result sets,
even in the unscored setting. However, they do not rule out the
possibility completely. If we allow f to consider both static
and value/keyword -dependent scores, then for every database,
there is a set of scores and a monotonic function f such that
the top-k list for every query is a diverse result set. However,
the construction produces an f that essentially acts as a look-
up table into the database, clearly an inefficient and infeasible
solution (it takes O(n2) space, where n is the number of items,
to just write down this f). We leave open the question of
whether there is a “reasonable” aggregation function f that

produces diverse result sets.

III. ONE-PASS ALGORITHMS

We first introduce our data structures and discuss an un-
scored and a scored version of our one-pass algorithm.

A. Data Structures

Each tuple is uniquely identified by the concatenation
of the values of its attributes. By making sure that those
values are concatenated in the order specified in the diver-
sity ordering, each tuple would reflect the diversity order-
ing. For example, the tuple with Id value 2 in the Cars
relation in Figure 1 is uniquely represented by the value
Honda.Civic.Blue.2007.‘Low miles’. By assigning a distinct
integer identifier to each value in an attribute, this repre-
sentation becomes more compact. The Index column of
Figure 2(b) shows how this is done for the Cars relation.
This value assignment reminds us of the Dewey encoding as
done in XML query processing [6] and can be represented
in a Dewey tree as illustrated in Figure 2(a). Each leaf value
is obtained by traversing the tree top down and assigning a
distinct integer to siblings. Since we only need to distinguish
between siblings in the tree, we can re-initialize the numbering
to 0 at each level.

B. Basic operations

We will often need to iterate over a set of inverted lists. Con-
ceptually, we can think of these lists are being merged into one
list, mergedList, and making calls to mergedList.next(id),
which simply returns the smallest dewey ID in mergedList
that is greater than or equal to id.

We also define mergedList.next(id, RIGHT), which is
needed to move backwards in mergedList (only used in
Section IV). This call returns the largest dewey ID that is
less than or equal to id. Calls to mergedList.next(id, LEFT)
behave as in the ordinary next. We also need to extend our
results to handle scored items. For a given score θ, calls to
mergedList.next(id, θ) return the smallest dewey ID greater
than or equal to id that has score at least θ (and that also
appears in the merged list). Calls using RIGHT are defined
similarly.

Our implementation of next(·) uses the same techniques
as the WAND algorithm of [1]. WAND is an efficient method
for obtaining top-K lists of scored results, without explicitly
merging the full inverted lists. We use it as a starting point in
our algorithms.

We will also be iterating through branches of the dewey
tree. As such, we need the key operator, nextId. The value
nextId(id, level, LEFT) is id with its level-th entry in-
creased by 1 and all entries beyond the level-th set to 0.
So, for example, nextId(0.3.1.0.0, 2, LEFT) returns 0.4.0.0.0,
even though it is not actually in the tree. For convenience, we
assume that no dewey entry is greater than 9. Then the value
of nextId(id, level, RIGHT) is id with its level-th entry
decreased by 1 and all entries beyond the level-th set to 9.

Low
miles

Low
miles

Low
miles

Low
miles

Low
miles

Low
miles

Low
miles

Low
miles

Low
price

Best
price

Good
miles

Rare Good
miles

Fun
Car

Good
miles

07 07 07 07 07 07 0707 06 07 06 07 06 07 06

Red Tan Black Blue BlueBlue Black Blue Red Green Red OrangeGreen

Prius Corolla Tercel CamryCivic Accord Odyssey CRV

Honda Toyota

Car

0

0 0

0

0

0

000

0

0000 00 00

0

0

0

00

00010

1

000 00

0 0 0 0 0 0

101

112

2

1

2

3

3 3

1

(a)

Index…Id

1.3.0.0.0…15

1.2.0.0.0…14

1.1.0.0.0…13

1.0.0.0.0…12

0.3.1.0.0…11

0.3.0.0.0…10

0.2.1.1.0…9

0.2.1.0.0…8

0.1.1.0.0…7

0.1.0.0.0…6

0.0.3.1.0…5

0.0.3.0.0…4

0.0.2.0.0…3

0.0.1.0.0…2

0.0.0.0.0…1

(b)
Fig. 2. Indexing the Cars Relation

Low
miles

Low
miles

Low
miles

Low
miles

Low
miles

Low
miles

Low
miles

Low
miles

Low
price

07 07 07 07 07 07 0707 06

Red Tan Black Blue BlueBlue BlackGreen

Prius Corolla Tercel CamryCivic

Honda Toyota

Car

0 1 2 3

0 0 0 10

0 0000

10 2 3

00 0 0

00 0 0

00 0 0

0

0 1

Fig. 3. Tree of nodes satisfying query Q

C. One-Pass Unscored Algorithm

The pseudocode is given in Algorithm 1. The core idea
of this algorithm is to explore buckets of distinct values
sequentially and ensure each time that k answers are found.
For example, given query Q which looks for descriptions with
‘Low’, we are left with the tree in Figure 3. Assuming k = 3,
a balanced result would return (at least) one car of each make
from the database. This corresponds to a Honda and a Toyota.
In order to produce that output, Algorithm 1 uses an inverted
list to retrieve all cars matching the query and scans them
in the order in which they appear (left-to-right) in Figure 3.
It first selects the first two Civics, then it determines that it
only needs to pick one from the next level, so, it picks one

Accord. Note that if there were no more cars, this set would
constitute a diverse set. However, since there are more cars that
satisfy the query, the algorithm decides that it should pick at
most one entry from the next set to make the previous set
diverse, in which case, it chooses the first-appearing Odyssey.
At this stage, the algorithm has to decide which entry to prune
from the partial result set and prunes one of the Civics since
this will make the set diverse (one Civic, one Accord and
one Odyssey). It then decides how many entries in the next
level (i.e., Toyota), it needs to retrieve and decides to select
one entry. In this case, it picks the next Toyota it sees and it
skips over all other Toyotas since none of them will make the
result set diverse. Finally, it stops and returns the Toyota and
two of the already-selected Hondas(after pruning one of the
three Hondas). Note that if there had been another car make
(say, Chevrolet), the algorithm would decide to pick one entry
there and would finally return one Honda, one Toyota and one
Chevrolet.

The key savings in this algorithm come from knowing when
it is acceptable to skip ahead (i.e. jumping to a new branch in
the Dewey tree). In the worst case, at most k lnd(3k) calls to
next are made to compute a top-K list with a Dewey tree of
depth d. When mergedList is large, this can be a significant
saving over the naive algorithm.

D. One-pass Scored Algorithm

The main difference with the unscored algorithm lies is what
parts of the tree we can skip over. In the former algorithm,
it was easy to determine the smallest ID that would not be
removed on the next call to remove(). In the scored case,
we must add any item whose score is strictly greater than the
current minScore (i.e. the smallest score in our result set).

Algorithm 1 Unscored one-pass Algorithm
Driver Routine:

1: id = mergedList.next(0)
2: root = new Node(id, 0)
3: id = mergedList.next(id)
4: while (root.numItems() < k && id 6= NULL)
5: root.add(id)
6: id = mergedList.next(id+1)
7: while (id 6= NULL)
8: root.add(id)
9: root.remove()

10: skipId = root.getSkipId()
11: id = mergedList.next(skipId)

12: return root.returnResults()

However, we can find the smallest ID that would immediately
be removed, given that its score is no greater than minScore.
Hence, we replace line 11 of the unscored one-pass algorithm
with the line

id = mergedList.next(id+1, skipId, root.minScore)

The semantics of the above line is to return the smallest id
greater than or equal to id+1 such that either (1) score(id)
>root.minScore, or (2) score(id)≥root.minScore, and
the return id is greater than skipId. With the above exception,
the algorithm proceeds as before.

IV. PROBING ALGORITHMS

A. Unscored Probing Algorithm

The main idea of the probing algorithm is to traverse the
available levels many times by picking one item at a time until
K answers are found. Again, consider query Q which looks
for cars with ‘Low’ in the description (shown in Figure 3).
Assuming k = 3, the algorithm would first pick the first Honda
Civic, then the last Toyota. (We use a bidirectional probing
algorithm, which searches both left and right through the tree.)
It then looks for a car make “between” Honda and Toyota.
(See Figure 3.) Since there are not any, it continues to pick
the next car which guarantees diversity, in this case, the first
Toyota Prius. At this stage, the algorithm is done.

We first walk through several steps of the probing algorithm
in the unscored case. The main routine (Algorithm 2) simply
makes repeated calls to getProbeId(), which returns potential
IDs to add. The driver then calls next on the mergedList,
and adds the result to our diversity data structure (given in
Algorithm 3.) It repeats this until we have a top-K list, or
there are no more results.

For convenience, we will say that an ID, id belongs to a
node, node, written id ∈ node, if the node corresponding to
id lies in the subtree rooted at node. For example, 1.2.0.0.0
belongs to the node labeled “Toyota” in Figure 3.

In its initialization step, the algorithm first calls
id = mergedList.next(0, LEFT). This simply returns the
first id ≥ 0 (moving from left to right) that appears
in mergedList. In our case, id is 0.0.0.0.0. We ini-
tialize root = new Node(id, 0, LEFT). and pick 5 nodes,

Algorithm 2 Driver for Unscored Probing Algorithm
1: id = mergedList.next(0, LEFT)
2: root = new Node(id, 0, LEFT)
3: (probeID, dir) = root.getProbeId()
4: while (root.numItems()<k && probeId 6= NULL)
5: id = mergedList.next(probeId, dir)
6: root.add(id, dir)
7: (probeID, dir) = root.getProbeId()

8: return root.getItems()

Algorithm 3 Data Structure for Unscored Probing
Initializer: (new Node(nid, lev, dir))

1: Initialize id = nid, level = lev and children to empty.
2: if (isLeaf(level)) then mark as DONE
3: else
4: edge[dir] = nextId(id, level+1, dir)
5: nextDir = toggle(dir)
6: edge[nextDir] = nextId(id, level+1, nextDir)

7: children.add(newNode(id, level+1, dir))

Get probeId: (getProbeId())
1: if (edge[LEFT] ≤ edge[RIGHT]) then
2: return (edge[nextDir], nextDir)
3: while (there are children that are not marked DONE)
4: minChild = child with the minimum number of items,

ignoring children that are marked DONE;
5: return minChild.getProbeId() if it is not NULL
6: mark as DONE

7: return NULL

Adding a result: (add(id, dir))
1: if (marked as DONE) then return
2: child = child in children corresponding to id
3: if (child 6= NULL) child.add(id, dir)
4: else children.add(new Node(id, level+1, dir))
5: if (edge[LEFT] ≤ edge[RIGHT])
6: edge[dir] = nextId(id, level+1, dir)

7: nextDir = toggle(dir)

one for each level of the Dewey tree. Each of these
nodes also initializes edge[LEFT]. For instance, the root
node initializes edge[LEFT] = 1.0.0.0.0, while its child ini-
tializes edge[LEFT] = 0.1.0.0.0. Each node also initializes
edge[RIGHT] to some large Dewey ID, which is conceptually
the largest possible ID belonging to that node (line 6 of
the initializer). Suppose we know that no Dewey ID has
an entry greater than 9. Then we set root.edge[RIGHT] =
9.9.9.9.9, we set edge[RIGHT] = 0.9.9.9.9 for its child, we set
edge[RIGHT]=0.0.9.9.9 for its grandchild, and so on. Think
of these edge values as left and right boundaries, where all
unexplored branches of a node lie between the values. In fact,
we have the following invariant:

• Whenever id ∈ node, either id belongs to some child
of node in our data structure, or node.edge[LEFT]≤id≤
node.edge[RIGHT].

Next, the call to root.getProbeId() will return (9.9.9.9.9,
RIGHT) (line 3 of the driver). Hence, the call to mergedList.

next(9.9.9.9.9, RIGHT) returns the largest id ≤ 9.9.9.9.9
(moving from right to left) that appears in mergedList.
In our example, id is 1.3.0.0.0. When this result is added
to the potential answers, the values edge[RIGHT] are set to
the largest IDs possibly belonging to each node, while the
values of edge[LEFT] are set to be the smallest IDs possible
(unless the value has already been set). So, root.edge[RIGHT]
= 0.9.9.9.9, while its right child (labeled “Toyota”) sets
edge[RIGHT] = 1.2.9.9.9 and edge[LEFT] = 1.0.0.0.0.

For the third probe (and the second call to getProbeId(),
line 7 of Algorithm 2), we return (1.0.0.0.0,LEFT). Hence,
id is subsequently set to 1.0.0.0.0. When we add this result,
root.edge[LEFT] is set to 2.0.0.0.0. For the first time, we
have root.edge[LEFT] > root.edge[RIGHT], indicating that
every child of root has at least one result added to it. Notice
that we have added two results to the node labeled “Toyota,”
and only one to the node labeled “Honda.” However, it is not
hard to see that such an imbalance cannot be greater than one
item, since the next iteration will necessarily add to the child
with the fewest results.

On our next call to root.getProbeId() does not simply
return edge[·], since root.edge[LEFT] > root.edge[RIGHT].
(We think of this as root being in the second phase of
exploration.) Instead, it sets minChild to be the child with
the fewest results (in this case, the child labeled “Honda”) and
calls getProbeId() on minChild (line 5 of getProbeId()).
Notice that minChild will explore from the RIGHT (since the
last real result added to it came from the LEFT). The next
result added to the data structure will thus be 0.2.1.0.0.

The advantages of bidirectional exploration. At this point,
we begin to see the advantages of calling next moving in
both directions, rather than just left to right. Notice that in the
full Dewey tree of possible answers, the node “Honda” has
just a single child. In our calls using LEFT and RIGHT, we
found this automatically. However, an algorithm using only
calls to next(·, LEFT) would need to check whether “Honda”
had additional children, wasting a call to next. In extreme
cases, (say, if “Civic” had only one child), such an algorithm
would waste even more calls to next.

On the other hand, we guarantee that calls to next always
result in an id that “stays in the final subtree.” A little more
formally, we maintain the following invariant:

• Let node be some node in our data structure, and sup-
pose during the execution of the algorithm, we call
node.getProbeId(), returning (probeId,dir). Then we
have mergedList.next(probeId, dir)∈ node.

Unlike the one-pass algorithm, every time a call to next is
made, it results in an id that is part of our diverse set, unless it
has already been added to the structure. It is never necessary to
remove a result we have added. In fact, we have the following
stronger result, whose proof appears in the full paper.

Theorem 2: The unscored probing algorithm given in Al-
gorithms 2, 3 makes at most 2k calls to next.

B. Scored Probing Algorithm

The first stage of the algorithm (pseudocode in Algorithm 4)
is to call WAND (or any scoring algorithm) to obtain an initial
top-K list. Let θ be the score of the lowest-scoring item in the
top-K list returned. Diversity is only guaranteed among items
whose score is θ. The difficulty comes from not knowing the
exact value of θ.

Algorithm 4 Driver for Scored Probing
Driver Routine:

1: Run WAND to obtain a top-K list, List.
2: Let θ be the lowest score in that list.
3: Let maxid be the item in List with the highest score.
4: root = new Node(maxid, 0, MIDDLE)
5: Foreach item ∈ List such that score(item) > θ:
6: root.add(item, MIDDLE)
7: (probeID, dir) = root.getProbeID()
8: while (root.numItems() < k && probeID 6= NULL)
9: currID = mergedList.next(probeID, dir, θ)

10: root.add(currID, dir)
11: (probeID, dir) = root.getProbeID()

12: return root.returnResults()

It is the initial insertions that make the algorithm more
complicated. As we can see on line 6, each of the items
inserted initially is marked MIDDLE, indicating that it does
not give any information about edge[LEFT] or edge[RIGHT].
In the unscored case, we knew that every id we obtained was
a useful result to add (unless it had already been added).

However, in the scored case, we may potentially obtain an
id that is not useful, in the following way. Many items with
scores higher than θ have been added already, in a non-regular
fashion. Thus, when we first encounter an item with score
exactly θ, adding it may make our result set less diverse;
unfortunately, since we do not know how many items have
score θ, we cannot know immediately whether adding a given
item helps or hurts diversity. Thus, many items we encounter
are first cached as a tentative ID. (If the item is known to be
useful, it is added normally.) When the algorithm later calls
getProbeId(), it checks whether any cached IDs would be
helpful; since we know more about the distribution of items
with score θ, we slowly move tentative items into the ‘useful
pile.’ If an item is helpful, it is returned (along with direction
MIDDLE, indicating that the call to next(probeId, MIDDLE)
should simply return probeId with no additional work).

It is possible to show that the number of tentative items is
never more than 2k′, where k′ is the number of items with
score strictly greater than θ. In fact, Theorem 2 applies even
to the scored algorithm, guaranteeing that we make at most
2k calls to next (ignoring calls with MIDDLE).

The asymptotic running time of this algorithm is not im-
pacted by maintaining these tentative values. However, in order
to find the child with the fewest results (corresponding to line 4
of getProbeId() in the unscored version), we must maintain
a heap. Hence, the worst-case running time for each operation
is O(d lg k).

Parameter Values (default in bold)

Number of cars [10K − 100K] - 50K
Queries Number of predicates: [1− 5] - None

Predicate selectivity [0− 1] - 0.5
Number of results (k): [1− 100] - 10

Fig. 4. Experimental Parameters

V. EXPERIMENTS

We compared the performance of five algorithms in the
unscored and the scored cases. MultQ is based on rewriting
the input query to multiple queries and merging their result to
produce a diverse set. Naive evaluates a query and returns all
its results. We do not include the time this algorithm takes to
choose a diverse set of size k from its result. Basic returns
the k first answers it finds without guaranteeing diversity.
OnePass performs a single scan over the inverted lists (Sec-
tion III). Finally, Probe is the probing version (Section IV).
We prefix each algorithm with a ”U” for the unscored case. and
with an ”S” for their scored counterparts. Scoring is achieved
with additional keyword predicates in the query.

Recall that all of our diversity algorithms are exact. Hence,
all results they return are maximally diverse.

A. Experimental Setup

We ran our experiments on an Intel machine with 2GB
RAM. We used a real dataset containing car listings from
Yahoo! Autos. The size of the original cars relation was varied
from 100K to 1M rows with a default value set to 100K.
Queries were synthetically generated by using the parameters
in Figure 4 (the default value for each parameter is shown in
bold). Query predicates are on car attributes and are picked
at random. We report the total time for running a workload
of 5000 different queries. In our implementation, the cars
listings were stored in a main-memory table. We built an index
generation module which generates an in-memory Dewey tree
which stores the Dewey of each tuple in the base table. Index
generation is done offline and is very fast (less than 5 minutes
for 100K listings).
Varying Data Size: Figure 5 reports the response time of
UNaive, UBasic, UOnePass and UProbe. UOnePass and
UProbe have similar performance and are insensitive to in-
creasing number of listings.
Varying Query Parameters: Figure 6 reports the response
time of our unscored algorithms. Once again, UOnePass and
UProbe have similar performance. The main two observations
here are: (i) all our algorithms outperforms the naive case
which evaluates the full query and (ii) diversity incurs negligi-
ble overhead (over non-diverse UBasic) even for large values
of k.

Figure 7 shows the response time of our unscored algo-
rithms for different query selectivities. We grouped queries
according to selectivity and measured the average response
time in each group. UOnePass and UProbe remain stable with
increasing selectivity while UNaive is very sensitive to the
selectivity since it retrieves all query results.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 20 40 60 80 100 120

T
im

e
 (

se
c
)

Number of Items

"UBasic"
"UProbe"

"UOnePass"
"UNaive"

"UMultQ"

Fig. 5. Varying Data Size (Unscored)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 10 20 30 40 50 60 70 80 90 100

T
im

e
 (

se
c
)

k

"UBasic"
"UProbe"

"UOnePass"
"UNaive"

"UMultQ"

Fig. 6. Varying k (Unscored)

Varying Query Parameters (scored): Figure 8 shows the
response time of the scored algorithms as the number of results
requested is varied. With increasing k, more listings have to
be examined to return the k best ones. Thus, the response
time of both SOnePass and SProbe increases linearly with k
but as observed in the unscored case, the naive approach is
outperformed. We note that varying query selectivity and data
size is similar to the unscored case.
Experiments Summary: The naive approaches, MultQ,
UNaive, SNaive are orders of magnitude slower than the
other approaches. The most important finding is that returning
diverse results using probing algorithms does not incur any
overhead (in the unscored case) and incurs very little over-
head (in the scored case). Specifically, UProbe matches the
performance of UBasic and SProbe comes very close to the
performance of SBasic.

VI. RELATED WORK

The notion of diversity has been considered in many dif-
ferent contexts. Web search engines often enforce diversity
over (unstructured) data results as a post-processing step [3],
[11], [12]. Chen and Li [4] propose a notion of diversity over
structured results which are post-processed and organized in a
decision tree to help users navigate them. In [8], the authors
define the Précis of a query as a generalization of traditional
query results. For example, if the query is “Jim Gray”, its

Fig. 7. Varying Q’s Selectivity (Unscored)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 10 20 30 40 50 60 70 80 90 100

T
im

e
 (

se
c
)

k

"SBasic"
"SProbe"

"SOnePass"
"SNaive"

Fig. 8. Varying k (Scored)

précis would be not just tuples containing these words, but
also additional information related to it, such as publications,
and colleagues. The précis is diverse enough to represent all
information related to the query keywords. In this paper, we
study a variant of diversity on structured data and combine it
with top-k processing and efficient response times (no post-
processing.)

In some online aggregation [7], aggregated group are dis-
played as they are computed and are updated at the same rate
by index striding on different grouping column values. This
idea is similar to our notion of equal representation for dif-
ferent values. However, in addition to considering scoring and
top-k processing, we have a hierarchical notion of diversity,
e.g., we first want diversity on Make, then on Model. In
contrast, Index Striding is more “flat” in that it will simply
consider (Make, Model) as a composite key, and list all
possible (make, model) pairs, instead of showing only a few
cars for each make.

VII. CONCLUSION

We formalized diversity in structured search and proposed
inverted-list algorithms. Our experiments showed that the al-
gorithms are scalable and efficient. In particular, diversity can
be implemented with little additional overhead when compared
to traditional approaches.

A natural extension to our definition of diversity is produc-
ing weighted results by assigning weights to different attribute
values. For instance, we may assign higher weights to Hondas
and Toyotas when compared to Teslas, so that the diverse
results have more Hondas and Toyotas. Another extension is
exploring an alternative definition of diversity that provides
a more symmetric treatment of diversity and score thereby
ensuring diversity across different scores.

REFERENCES
[1] A. Z. Broder, D. Carmel, M. Herscovici, A. Soffer, J. Y. Zien. Efficient

Query Evaluation Using a Two-Level Retrieval Process. CIKM 2003.
[2] N. Bruno, S. Chaudhuri, L. Gravano. Top-K Selection Queries Over

Relational Databases: Mapping Strategies and Performance Evaluation.
ACM Transactions on Database Systems (TODS), 27(2), 2002.

[3] J. Carbonell and J. Goldstein. The use of MMR, diversity-based
reranking for reordering documents and producing summaries. SIGIR
98.

[4] Z. Chen, T. Li. Addressing Diverse User Preferences in SQL-Query-
Result Navigation. SIGMOD 2007.

[5] R. Fagin. Combining Fuzzy Information from Multiple Systems. PODS
1996.

[6] L. Guo, F. Shao, C. Botev, J. Shanmugasundaram. XRANK: Ranked
Keyword Search over XML Documents. SIGMOD 2003.

[7] J. M. Hellerstein, P. J. Haas, H. J. Wang. Online Aggregation. SIGMOD
1997.

[8] G. Koutrika, A. Simitsis, Y. Ioannidis. Précis: The Essence of a Query
Answer. ICDE 2006.

[9] F. Olken. Random Sampling from Databases. PhD thesis, UC Berkely,
1993.

[10] G. Salton and M. McGill. Introduction to Modern Information Retrieval.
McGraw-Hill, 1983.

[11] D. Xin, H. Cheng, X. Yan, J. Han. Extracting Redundancy-Aware Top-k
Patterns. KDD 2006.

[12] C-N Ziegler, S.M. McNee, J.A. Konstan, and G. Lausen. Improving
Recommendation Lists Through Topic Diversification. WWW 2005.

