
Relational Joins on Graphics Processors
Bingsheng He, Ke Yang#, Rui Fang$, Mian Lu,

Naga K. Govindaraju*, Qiong Luo, and Pedro V. Sander

Hong Kong University of Science and Technology, China

{saven, lumian, luo, psander}@cse.ust.hk
$
Highbridge Capital Management LLC, USA

rui.fang@highbridge.com

#
Zhejiang University, China

yk.cadcg@gmail.com

*Microsoft Corporation, USA

nagag@microsoft.com

ABSTRACT

We present a novel design and implementation of relational join

algorithms for new-generation graphics processing units (GPUs).

The most recent GPU features include support for writing to

random memory locations, efficient inter-processor

communication, and a programming model for general-purpose

computing. Taking advantage of these new features, we design a

set of data-parallel primitives such as split and sort, and use these

primitives to implement indexed or non-indexed nested-loop, sort-

merge and hash joins. Our algorithms utilize the high parallelism

as well as the high memory bandwidth of the GPU, and use

parallel computation and memory optimizations to effectively

reduce memory stalls. We have implemented our algorithms on a

PC with an NVIDIA G80 GPU and an Intel quad-core CPU. Our

GPU-based join algorithms are able to achieve a performance

improvement of 2-7X over their optimized CPU-based

counterparts.

Categories and Subject Descriptors: H.2.4 Systems,

Query processing; Relational databases

General Terms: Algorithms, Measurement, Performance.

Keywords: relational database, join, sort, primitive, parallel

processing, graphics processors

1. INTRODUCTION
Graphics processing units (GPUs) are specialized architectures

traditionally designed for gaming applications. Recent research

has shown that they can significantly speed up database query

processing [5][14][15][16][36]. Moreover, new generation

GPUs, such as AMD R600 and NVIDIA G80, have transformed

into powerful co-processors for general-purpose computing

(GPGPU). In particular, they provide general parallel processing

capabilities, including support for scatter operations and inter-

processor communication, as well as general-purpose

programming languages such as NVIDIA CUDA [27]. In this

paper, we investigate the design and implementation of common

relational join algorithms on such GPUs.

Joins are the cornerstone operator in relational database systems

and CPU-based join algorithms have been studied extensively in

the literature. Basic join algorithms include non-indexed and

indexed nested-loop joins (NINLJ and INLJ respectively), the

sort-merge join (SMJ) and the hash join (HJ). Many variants have

been designed for in-memory databases [10][31][34] and for

parallel databases [13][24][32]. These studies have shown that the

implementation techniques, as well as the design, have a great

impact on the join performance on CPU-based architectures. In

general, memory stalls are a major performance factor for CPU-

based relational joins [10][34].

Similar to CPUs, in particular multi-core CPUs, GPUs are

commodity hardware consisting of multiple processors. However,

these two types of processors differ significantly in their hardware

architecture. Specifically, GPUs provide parallel lower-clocked

execution capabilities on over a hundred SIMD (Single

Instruction Multiple Data) processors whereas current multi-core

CPUs typically offer out-of-order execution capabilities on a

much smaller number of cores. Moreover, the majority of GPU

transistors are devoted to computation units rather than caches,

and GPU cache sizes are 10X smaller than CPU cache sizes.

These GPU hardware design choices provide higher

computational capabilities, better latency tolerance and higher

memory bandwidth.

We explore how relational joins can utilize hardware features of

the GPU. In particular, the SIMD design and the massively

multithreaded capability in GPUs require our algorithms to

achieve good load balancing across processors to hide the latency

effectively. Moreover, most GPUs lack hardware support for

handling read/write conflicts among concurrent threads. On one

hand, this design choice reduces the hardware complexity. On the

other hand, high-level abstractions and carefully designed patterns

in the software are necessary for correctness and efficiency.

Considering the characteristics of GPUs and individual join

algorithms, we design a set of data-parallel primitives that are

used as building blocks for our join algorithms. Most of these

primitives can find their functionally-equivalent CPU-based

counterparts in traditional databases, but our design and

implementation are highly optimized for the GPU. In particular,

our algorithms for these primitives take advantage of three

advanced features of current GPUs: (1) the massive thread

parallelism, (2) the fast inter-processor communication through

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

SIGMOD’08, June 9-12, 2008, Vancouver, BC, Canada.

Copyright 2008 ACM 978-1-60558-102-6/08/06...$5.00.

511

local memory, and (3) the coalesced access. Specifically, our map

primitive employs the coalesced accesses among GPU threads to

fully utilize the video memory bandwidth; our split operation

avoids the read/write conflicts by aligning histograms to the GPU

threading architecture efficiently; our scatter and gather

operations work in multiple passes for improved spatial locality in

the memory access; and our sort algorithm uses the map primitive

to implement a sorting network, or uses the split primitive to

implement a quick sort.

Utilizing this small set of data-parallel primitives, we have

designed and implemented GPU-based algorithms for NINLJ,

INLJ, SMJ, and HJ. Specifically, our NINLJ is block-nested

loops, with a data block mapped to a group of threads within a

processor; our INLJ constructs a GPU-based variant of the CSS-

Tree (Cache-Sensitive Search Trees) [31] and performs a massive

number of concurrent index searches in the join; our SMJ utilizes

quantiles for balanced range-partitioning and merges sorted

partitions in parallel; and our HJ recursively splits the relation

into multiple partitions and performs joins on the matching

partitions in parallel. We have implemented all of our GPU-based

primitives and join algorithms using CUDA [27], NVIDIA’s

GPGPU language, and DirectX 10 [6], a graphics API for

programmable GPUs. We evaluated our GPU-based algorithms in

comparison with their optimized parallel counterparts on an Intel

quad-core CPU. All join algorithms operate on memory-resident

data organized in the column-based model [10][35].

In summary, this paper makes the following three contributions.

First, we identify the technical challenges in performing parallel

query processing on GPUs and provide general solutions to

address these challenges. Our GPU-based data-parallel primitives

are applicable to not only joins but also other query operators.

Second, we design and implement several representative join

algorithms on the new-generation GPUs and empirically evaluate

these algorithms in comparison with the optimized CPU-based

join algorithms. To the best of our knowledge, this is the first

attempt to develop relational joins on graphics processors. Third,

we discuss the lessons we have learned from experience and

provide insights and suggestions on GPU programming for the

GPGPU and database communities.

The remainder of this paper is organized as follows. In Section 2,

we briefly introduce the GPU architecture and review GPU- and

CPU-based query processing techniques and parallel join

algorithms. In Section 3, we describe the technical challenges of

performing parallel query processing on GPUs, and present our

solutions. These solutions are then used as building blocks for our

join algorithms, which are described in Section 4. We

experimentally evaluate our algorithms in Section 5. We discuss

the lessons learned from our experience in Section 6, and

conclude in Section 7.

2. PRELIMINARY AND RELATED WORK
In this section, we introduce the GPU architecture and discuss

related work.

2.1 Graphics Processors (GPUs)
GPUs are widely available as commodity components in modern

machines. They are used as co-processors for the CPU [1]. GPU

programming languages include graphics APIs such as OpenGL

[28] and DirectX [6], and GPGPU languages such as NVIDIA

CUDA [27], AMD CTM [2], Brook [8] and Accelerator [37].

With these APIs, programmers write two kinds of code, the kernel

code and the host code. The host code runs on the CPU to control

the data transfer between the GPU and the main memory, and to

start kernels on the GPU. The kernel code is executed in parallel

on the GPU. A general flow for a computation task on the GPU

consists of three steps. First, the host code allocates GPU memory

for input and output data, and copies input data from the main

memory to the GPU memory. Second, the host code starts the

kernel on the GPU. The kernel performs the task on the GPU.

Third, when the kernel execution is done, the host code copies

results from the GPU memory to the main memory.

The GPU architecture model is illustrated in Figure 1. Such

architecture is a common design for both AMD [2][7] and

NVIDIA GPUs [27]. At a high level, the GPU consists of many

SIMD multi-processors. At any given clock cycle, each processor

of a multiprocessor executes the same instruction, but operates on

different data. The GPU has a large amount of device memory,

which has high bandwidth and high access latency. For example,

the G80 GPU has an access latency of 200 cycles and the memory

bandwidth of 86 GB/second. Additionally, each multiprocessor

usually has a fast on-chip local memory, which is shared by all the

processors in a multi-processor. The size of this local memory is

small and the access latency is low.

Device memory

P1 P2 Pn

Multiprocessor 1

GPU

CPU

Main
memory

P1 P2 Pn

Multiprocessor N

Figure 1. The GPU architecture model. The GPU is a co-

processor to the CPU. It consists of multiple SIMD

multiprocessors, and has a large amount of device memory.

This model is applicable to both AMD’s CTM [2][7] and

NVIDIA’s CUDA [27].

GPU threads are different from CPU threads in that they have low

context-switch and low creation time as compared to their CPU

counterparts. On the GPU, threads on each multiprocessor are

organized into thread groups. These thread groups are

dynamically scheduled on the multiprocessors. Threads within a

thread group share computation resources such as registers on a

multiprocessor. Moreover, when multiple threads in a thread

group access consecutive memory addresses, these memory

accesses are grouped into one access. This hardware feature is

called coalesced access.

2.2 Query Processing on GPUs
Recently, GPUs have been used to accelerate scientific,

geometric, database and imaging applications. For an overview on

the state-of-the-art GPGPU techniques, we refer the reader to the

recent survey by Owens et al. [30]. We now briefly survey the

techniques that use GPUs to improve the performance of database

operations.

Sun et al. [36] used the rendering and search capabilities of GPUs

for spatial selection and join operations. Bandi et al. [5]

implemented GPU-based spatial operations as external procedures

to a commercial DBMS. Govindaraju et al. presented novel GPU-

based algorithms for relational operators including selections,

aggregations [15] as well as sorting [14], and for data mining

operations such as computing frequencies and quantiles for data

512

streams [16]. The existing work mainly develops

OpenGL/DirectX programs to exploit the specialized hardware

features of GPUs. In contrast, we focus on GPU-based algorithms

for the join operation, which is a core operator in relational

databases. Moreover, our algorithms are based on a many-core

SIMD architecture model of the GPU, and thus can be applied to

CPUs of a similar architecture. Based on a similar model,

Sengupta et al. [33] implemented the segmented scan using the

scatter. He et al. [19] proposed a multi-pass scheme to improve

the scatter and the gather operations on the GPU. Our algorithms

utilize these operations as primitives to compose join algorithms.

Most recently, Lieberman et al. [23] implemented a similarity join

using CUDA.

2.3 In-Memory Query Processing on CPUs
Memory stalls are an important factor for the overall performance

of relational query processing [10][34]. Cache-conscious

techniques have been the leading approach to improve the

memory performance of the CPU joins.

Shatdal et al. [34] proposed the blocked NINLJ algorithm by

applying cache blocking on the nested-loop join. In comparison,

we determine the block size in NINLJ by the size of the local

memory. Rao et al. [31] proposed a cache-optimized B+-tree

index, namely the CSS-tree. A CSS-tree has a node size equal to

the cache block size. Each node is fully packed with keys.

Pointers are eliminated by laying out nodes contiguously, level by

level. Index search is done through address arithmetic. We adopt

this tree index to the GPU and optimize its performance by fitting

the top levels of the tree index into the local memory. Lamarca et

al. [22] studied the cache performance for the quick sort and

showed that cache optimizations can significantly improve the

overall performance. In comparison, we implement the quick sort

on the GPU and use bitonic sort to sort partitions that fit into the

local memory. Boncz et al. [10] proposed the radix hash join with

a multi-pass partitioning method in order to optimize the cache

performance. Our GPU-based hash join is a parallel version of the

radix hash join with optimizations for the local memory.

With the same goal of reducing memory stalls, our local memory

optimization aims at improving the spatial locality and temporal

locality of the data accesses. In contrast with the hardware-

managed cache on the CPU, our techniques are specifically

designed for the local memory on GPUs, which is manipulated by

the programmer and is shared by multiple threads.

2.4 Parallel Joins
Parallel algorithms greatly improve the performance of the

relational join in shared-nothing systems [24][32] or shared-

memory systems [11][25].

Liu et al. [24] investigated the pipelined parallelism for multi-join

queries. In comparison, we focus on exploiting the parallelism

within a single join operation. For a single join, Lu et al. [25]

studied four hash-based join algorithms on a shared-memory

multiprocessor system. Schneider et al. [32] evaluated one sort-

merge and three hash-based join algorithms in a shared-nothing

system. In the presence of data skews, techniques such as bucket

tuning [32] and partition tuning [21] are used to balance loads

among processor nodes. Azadegan et al. [3][4] used machine-

specific communication primitives to develop parallel join

algorithms on the SIMD Connection Machine (CM-2). Recently,

Cieslewicz et al. [11] implemented a multi-threaded hash join

using the atomic operations supported in the Cray MTA-2

architecture.

In comparison with previous parallel join algorithms, our GPU-

based parallel join algorithms take into account the GPU

architectural characteristics and provide general, yet efficient

solutions. Specifically, in contrast with using machine-specific

primitives [3][4], we develop software primitives that are general

and highly scalable for GPUs. Additionally, our thread parallelism

does not require hardware-supported atomic operations.

3. PRIMITIVES
Based on the GPU architectural model, we have identified three

technical challenges in join processing on GPUs:

• How to efficiently utilize both the computation resource and

the memory bandwidth of the GPU, and to use parallel

computation to hide memory latency. This challenge is

critical in that joins are both computation and data intensive.

Even though the GPU has massive thread parallelism and

high memory bandwidth, its memory latency is also high.

Therefore, we need to examine individual join algorithms

and develop common building blocks that improve data

parallelism.

• How to handle read/write conflicts efficiently. Since we do

not have hardware-supported atomic operations for conflict

handling, we need to develop an efficient conflict handling

mechanism that is suitable for GPUs.

• How to handle data skews on GPUs. As on any parallel

architecture, data skews must be handled effectively to

balance the workload among processors so as to improve the

overall performance.

We address these challenges in primitives, a small set of common

operations that we design for join processing on the GPU. These

primitives exploit the hardware features of the GPU and can be

used for database query processing, including joins.

Notation. In this paper, we consider a join on two relations R and

S with a single join attribute. We assume the join attribute to be

an integer for simplicity. R[i] represents the ith tuple of R. The

notations used throughout this paper are summarized in Table 1.

Table 1. Notations used in this paper

Parameter Description

Bp Total number of thread groups on the GPU

T Number of threads per thread group

M The size of local memory per thread group

R, S Outer and inner relations of the join

r, s Tuple sizes of R and S (bytes)

|R|, |S| Cardinalities of R and S

||R||, ||S|| Sizes of R and S (bytes)

3.1 Baseline Design
We aim at designing and implementing a complete set of parallel

primitives for relational query processing. In this section, we

describe our primitives, namely map, scatter, gather, prefix scan,

split and sort. These primitives are used as constructs for our join

algorithms and have the following features:

1) They have low synchronization overhead, thus achieving

close to peak performances on GPUs.

2) They are scalable to hundreds of processors.

3) They are applicable not only to joins but also to other

relational query operators.

513

3.1.1 Map
A map is similar to a database scan. We define the map primitive

as follows:

We use multiple thread groups to implement the map. Each thread

group is responsible for a segment of the relation.

3.1.2 Scatter and Gather
We adopt the definitions of scatter and gather used by He et al.

[19]. A scatter performs indexed writes to a relation, for example,

hashing. Its definition is as follows, where the array L defines the

distinct write location for each Rin tuple.

The gather primitive performs indexed reads from a relation. It

can be used, for instance, when fetching a tuple given a record id,

and probing hash tables. Its definition is as follows, where the

array L defines the read location for each Rin tuple.

In general, tuples in the output relation can be a superset or a

subset of the input relation in gather and scatter. For simplicity,

our definitions assume the tuples in the output relation are the

same set as those in the input relation.

We implemented the scatter and the gather using the multi-pass

optimization scheme proposed by He et al. [19].

3.1.3 Prefix scan
A prefix scan applies a binary operator to the input relation of size

n and generates an output relation of size n [30]. We present the

definition of a prefix scan that applies the binary operator ⊕ to

the input relation as follows:

An example of prefix scan is the prefix sum, which is an

important operation in parallel databases [9]: Given an input

relation (or array) Rin, the value of each output array element Rout[i]

(||2
in

Ri ≤≤) is obtained from the sum of Rin[1],..., and Rin[i-1]

(Rout[1]=0).

We use the prefix sum implementation from the CUDA library

[27]. The prefix sum has two stages, reduce and down-sweep. The

reduce stage has |
in

R|
2

log steps. In step i (|in|Ri 2log0 <≤), thread j

computes the partial sum of Rin[j*2i] and Rin[(j+1)*2i]. The down-

sweep stage also takes |
in

R|
2

log steps. In step i (|in|Ri 2log0 <≤),

the partial sum is applied to Rin[j*2i] and Rin[(j+1)*2i]. Both

stages are highly parallel on the GPU.

3.1.4 Split
A split primitive divides a relation into a number of disjoint

partitions according to a given partitioning function. The result

partitions are stored in the output relation. Splits are used in hash

partitioning or range partitioning. Given the partitioning fanout

F, the definition of the split is as follows:

A basic implementation is that each thread processes a portion of

the input relation and inserts tuples to their target partitions. A

major issue is the write conflicts among threads. They occur when

multiple threads try to insert tuples into a partition concurrently.

Unfortunately, there are no atomic operations such as locks for

handling such conflicts on most GPUs. Thus, we propose a

software approach to implement a lock-free split algorithm. The

basic idea is that, prior to writing the output, we use histograms to

compute the write locations of each thread. Since each thread

knows its target position to write, the write conflicts among

threads are avoided.

Our histogram-based algorithm is partially inspired by the parallel

radix sort proposed by Zagha [39], which uses histograms to

perform the radix sort. The major difference is that our histogram

scheme is embedded in our primitives on the GPU. In particular,

our split algorithm uses the histogram to compute the write

location for each tuple (stored in the array L) and scatters Rin to

Rout according to the array L.

Algorithm 1: split (Rin, fcn, Rout)

Parameters:

#thread, the total number of threads (#thread=Bp*T).

F, the partitioning fanout.

tHist, the thread-level histogram. tHist[t][p] is the number of tuples

processed by thread t and belonging to partition p F)p(1 ≤≤ .

tOffset, the thread-level offset array. tOffset[t][p] contains the start

position to output the tuples of thread t that belong to partition p.

L, the array storing start positions to output the tuples of each partition for

each thread. The start position of partition p for thread t is L[(p-

1)*#thread+t].

(1) Each thread constructs its tHist histogram from Rin.

(2) Each thread writes its histogram to L so that L[(p-1)*#thread+t]=

tHist[t][p].

(3) Perform a prefix sum on L. The result is stored in L.

(4) Each thread updates its offset so that tOffset[t][p]=L[(p-

1)*#thread+t].

(5) Each thread scatters its tuples to Rout based on its offset.

Each thread group is responsible for a similar-sized portion of Rin.

Each thread maintains a thread-level histogram (tHist[1…F]). It

records the number of tuples of each partition for the thread. We

use the thread-level histogram to compute the thread-level offset

array (tOffset[1…F]), which contains the start position for

outputting the tuples belonging to the partition for the thread.

Primitive: Gather

Input: Rin [1, …, n], L [1, …, n].

Output: Rout [1, …, n].

Function: Rout[i]=Rin[L[i]], i=1, …, n.

Primitive: Scatter

Input: Rin [1, …, n], L [1, …, n].

Output: Rout [1, …, n].

Function: Rout[L[i]]=Rin[i], i=1, …, n.

Primitive: Map

Input: Rin [1, …, n], a map function fcn.

Output: Rout[1,…,n].

Function: Rout[i]=fcn(Rin[i]).

Primitive: Split

Input: Rin [1, …, n], F][1,...,[i])
in

func(R ∈ , i=1, …, n.

Output: Rout [1, …, n].

Function: {Rout[i], i=1,…, n}={Rin[i], i=1, …, n}

and ji n],[1,..,ji, [j]),
out

func(R[i])
out

func(R ≤∈∀≤ .

Primitive: Prefix Scan

Input: Rin [1, …, n], binary operator⊕ .

Output: Rout[1,…,n].

Function: Rout[i]=⊕ j<iRin[j].

514

Our split works in five steps, as illustrated in Algorithm 1. The

five steps are implemented using our other primitives. The first

step is implemented using a map primitive; the third one uses

prefix scan; the forth one uses a gather; and the other two use

scatter.

Figure 2 shows an example of our split operation, where we

divide Rin into two partitions. The arrows represent how the data

is loaded and stored. In this example, there are two thread groups,

one containing T1 and T2 and the other containing T3 and T4.

The portions of Rin processed by different threads are in different

shades. In the first step, there are four thread-level histograms.

Step (2) creates the histograms and outputs them to L. Step (3)

uses prefix sum to compute the offset array of each thread. For

example, the start positions for writing the tuples belonging to the

first and the second partitions are 0 and 4 respectively for thread

T1. With these offsets, the write locations of the four threads are

deterministic, and tuples can be output in parallel.

2 1 2 2 1 1 1 2

T1 T2 T3 T4

Step (1), count 1

1

0

2

2

0

1

1

tHist

Step (3), prefix

sum

Step (4), load

counts

Rin

Rout

1 1 1 1 2 2 2 2

Thread group 1 Thread group 2

L

1 0 2 1 1 2 0 1

0 1 1 3 4 5 7 7

L

0

4

1

5

1

7

3

7

2 1 2 2 1 1 1 2

Rin

tOffset

Step (2), output

counts

Step (5), scatter

For partition 1

For partition 2

For partition 1

For partition 2

Figure 2. An example of the split primitive.

3.1.5 Sort
The sort primitive is used in a number of operators such as

aggregation and join operators.

We have implemented two comparison-based sorting algorithms

including the bitonic sort and the quick sort. The bitonic sort uses

the GPU-based bitonic sorting network [14], because independent

swaps between the elements in this sorting algorithm map well to

the massively threaded architecture of GPU. However, the

complexity of the bitonic sort is N)log 2
O(N , where N is the

number of tuples to be sorted. In contrast, the complexity of the

quick sort is O(NlogN) , which is lower than the bitonic sort. With

the split primitive, the quick sort can be implemented on the GPU.

Bitonic sort. The bitonic sort merges bitonic sequences in

multiple stages. A bitonic sequence is of a monotonic ascending

or descending order. Given a relation Rin, the bitonic sorting

algorithm has |
in

R|
2

log stages. Stage x has x steps

(|inR|2logx1 ≤≤). In Step i, it constructs bitonic sequences

each of size i2 . Thus, Stage x generates the bitonic sequences

each of size x2 . After |R|
2

log stages, R is sorted. Each step of the

bitonic sort performs a map on the input relation and a scatter to

output the results.

Quick sort. The quick sort has a lower complexity than the

bitonic sort. Moreover, it uses the efficient split primitive. The

quick sort has two steps. First, given a set of pivots, we use the

split primitive to divide the relation into multiple chunks. The

pivots are chosen randomly [12]. The split process goes

recursively until each chunk is smaller than a preset threshold for

the chunk size. (We discuss this preset threshold in Section 3.2.2.)

After the split process, we use the bitonic sort on each chunk. We

choose the bitonic sort other than the insertion sort, because the

bitonic sort can work entirely in the local memory and its

computation maps well to the parallel execution of the GPU. We

present the local memory optimization in Section 3.2.

3.2 Memory Optimizations
Our primitives are developed based on the many-core architecture

model. The thread-level parallelism reduces the memory stalls in

these primitives. However, thread-level parallelism may not

completely hide the memory stalls for database workloads [17].

Thus, we utilize two memory optimization techniques on the GPU

to further reduce the memory stalls: coalesced access to improve

spatial locality and local memory optimization to improve

temporal locality. Frequently accessed data are stored in the local

memory to reduce the accesses to the device memory.

3.2.1 Coalesced Access
We use the map primitive to illustrate how we take advantage of

the coalesced access.

The coalesced access improves the memory bandwidth utilization.

Figure 3 illustrates two map schemes with and without coalesced

accesses. Suppose a thread group consists of three threads. In

Figure 3 (a), due to the SIMD nature of GPUs, the accesses to the

device memory among the threads are consecutive during the

execution. Every three concurrent accesses are coalesced into a

single read. In Figure 3 (b), the accesses among threads are not

consecutive. Each thread issues a distinct memory request. This

results in low utilization of the memory bandwidth. Suppose every

k memory requests are merged into a single request, the number of

memory requests with the coalesced access is (k-1) times less than

that without the coalesced access.

R

(a) Coalesced accesses (b) Non-coalesced accesses

Thread group 1

1 2 3 4 5 6

T1 T2 T3 T1 T2 T3

Device memory

1 2 3 4 5 6

T1 T1 T2 T2 T3 T3

Device memory

i+1 i+2 i+3 i+4 i+5 i+6

T’1 T’1 T’2 T’2 T’3 T’3

Device memory

i+1 i+2 i+3 i+4 i+5 i+6

T’1 T’2 T’3 T’1 T’2 T’3

Device memory

R

Thread group n Thread group 1 Thread group n

Figure 3. Maps with and without coalesced accesses.

With this optimized map primitive, the memory performance of

the bitonic sort is greatly improved. Similarly, the memory

accesses in steps (2) and (4) of the split primitive are also

designed as coalesced ones.

Primitive: Sort

Input: Rin [1, …, n].

Output: Rout [1, …, n].

Function: {Rout[i], i=1,…, n}={Rin[i], i=1, …, n} and

ji andn] [1,..,ji, [j],
out

R[i]
out

R ≤∈∀≤ .

515

3.2.2 Local Memory Optimization

We use the split and the sort algorithms including the bitonic sort

and the quick sort as examples to illustrate the local memory

optimization.

In the split, each tuple accesses the histogram and the offset array.

We store these arrays in the local memory. Due to the limited size

of the local memory, we determine the maximum partitioning

fanout for the split. Suppose the number of partitions is f and

each element in the array is encoded in z bytes. We determine F to

be the maximum f such that MzfT ≤⋅⋅ . To divide a relation into

an arbitrary number of partitions, x, we apply the split operation

recursively. The number of levels in the recursion is  xF
log , and

we uniformly set the number of partitions generated in each level

of recursion.

The bitonic sort has repetitive fetches on the device memory. We

propose two optimization techniques on the local memory to

improve its temporal locality. These two optimizations are

illustrated in Figure 4. The first optimization is applied to the first

c stages (
r

M
logc

2
=) of the bitonic sort, which are independently

performed on individual chunks of size M. We use local memory

to store this chunk of data and process Stages 1 to c in the local

memory. This saves 11)(cc
2

1
c...21OPT −+⋅=++= fetches from

the relation in the device memory. The second optimization is

applied to Steps c, c-1, …, and 1 of Stage i (ci > ,
r

M
logc

2
=).

These steps sort a bitonic sequence of size M. We store this

bitonic sequence into the local memory at the (i-c)th step so that

Steps c, c-1, …, and 1 process the data in the local memory. This

saves (c-1) fetches in Stage i (ci >). In total, it saves

c)|inR|2(log1)-(c2OPT −⋅= fetches for the entire bitonic sort.

Note, without the local memory optimization, the total number of

times fetching the relation is)|in|R(|in|R 12log2log
2

1
+⋅ . Suppose

the relation has 16 million tuples and the local memory can hold

1024 tuples, the local memory optimization reduces the total

number of times fetching the relation from originally 300 to 120.

Bitonic sort
on local memory

Stage 1 Stage (c+1) Stage i (i>c)Stage c
(i-c) maps

Accesses to the
device memory

Accesses to the
local memory

Figure 4. Data accesses in the bitonic sort on the GPU with

local memory optimization.

In the quick sort, since we use the bitonic sort to sort each chunk

after the partitioning step, the preset threshold for the chunk size

is the local memory size. Since each chunk is smaller than the

local memory, the bitonic sort performs completely within the

local memory.

4. JOIN ALGORITHMS
We now briefly describe our join algorithms, including the non-

indexed and indexed nested-loop join (NINLJ and INLJ

respectively), the sort-merge join (SMJ) and the hash join (HJ).

Since the GPU-based algorithms are similar to their CPU-based

counterparts, we focus on the differences in our GPU-based

implementations, especially their usage of our primitives.

Specifically, NINLJ uses the map primitive on both relations;

INLJ uses the map primitive on the outer relation; SMJ uses the

sort on both relations and then maps the sorted relation for

merging; HJ uses the split primitive on both relations. The result

output of each join algorithm uses the prefix scan and the scatter

primitives.

4.1 Join Processing
We describe the join processing of each join algorithm. Since the

scheme for outputting the join result is the same for the four join

algorithms, we present the result output in Section 4.2.

Non-indexed NLJs (NINLJ). Our algorithm is blocked nested-

loops. The nested-loop join can be naturally mapped to our GPU

model, as shown in Figure 5. The circles represent tuples

generated by the join, some of which may be eliminated by the

join predicate.

Each thread group computes the join on a portion of R and S,

denoted as R' and S’, respectively. Within a thread group, each

thread processes the join on one tuple from R’ and all tuples from

S’. The joins of the tuple from R’ and other tuples from S are

computed in other thread groups. Thus, the number of threads in

each thread group is equal to the number of tuples in R’ (T|R'| =).

Within the join of R’ and S’, we store S’ into the local memory to

avoid reading S’ repeatedly from the device memory. Due to the

limited size of the local memory, the size of S’ is set to the local

memory size. Since each thread group requires to access R’ and S’

only once from the device memory, the total volume of data

transfer between the GPU and the device memory

is s)Msr(T
MT

|S||R|
||)S'||||R'(||

|S'||R'|

|S||R|
⋅+⋅⋅

⋅

⋅
=+

⋅

⋅
.

Thread
group 1

Thread
group i

Thread
group j

Thread
group BpS

R

S’

R’

Thread1 Thread T

Figure 5. The non-indexed NLJ algorithm on the GPU.

Indexed NLJs (INLJ). We implement the indexed join algorithm

through adapting the cache-optimized search tree, CSS-Tree [31],

to the GPU. Different from traditional B+-Trees that use discrete

memory pointers for tree traversal, CSS-trees store the entire tree

in an array and tree traversal is performed via address arithmetic.

This effectively trades off more computation for less memory

access, which makes it a suitable index structure to utilize the

GPU’s computational power.

A CSS-Tree can be efficiently constructed on the GPU taking a

sorted relation as input. In the presence of the tree index, the

indexed join consists of two major steps, searching for the first

occurrence of matching tuples in the indexed relation, and then

accessing the indexed relation for join results. While searching for

a single key in such a tree offers little opportunity for parallel

processing, multiple searches, however, fit extremely well into the

516

parallel programming model. Therefore, multiple keys are

searched in parallel on the tree. Given a relation R, the search

starts at the root node and steps one level down the tree in each

iteration until reaching the data nodes on the bottom. A binary

search or a sequential search is used to locate the index of the

node to go. The binary search has fewer comparisons but has

more branch divergence among the threads than the sequential

search. We empirically evaluated these two search methods in

Section 5.4.

Since the upper levels of the tree index are frequently accessed,

we replicate the upper levels of the tree index to the local

memory. Given the tree fanout f, and tree node size z, the total

size of tree nodes in the upper l levels is
1f

1lf
z

−

−
⋅ . We compute the

number of levels that can be replicated into the local memory as

the maximum l such that M
1f

1lf
z ≤

−

−
⋅ .

Sort-Merge Joins (SMJ). Similar to the traditional sort-merge

joins, we first sort the two relations and then perform a merge step

on these two sorted relations.

The merge step is done in parallel to fully utilize the computation

resources. The basic idea is to perform the merge on a chunk of S

and its matching chunk of R independently. The merge is

performed in three steps. First, we divide the smaller relation S to

be Q chunks (
M

||S||
Q =). The size of each chunk (except the last

chunk) is M so that each chunk fits into the local memory.

Second, we use the key values of the first and the last tuples of

each chunk in S to identify the start and the end positions of its

matching chunks in R. Third, we merge each pair of the chunk in

S and its matching chunk in R in parallel. Each thread group is

responsible for a pair. In the merge process, the S chunk is first

loaded into the local memory. Next, the R tuples are used to find

the matching results. Each thread reads a tuple from R and

performs a search on the S chunk for matching. Either a sequential

search or a binary search can be used.

Hash joins (HJ). We develop a parallel version of the radix hash

join [10]. The radix partitioning is implemented using our split

primitive. Our algorithm has two phases.

Phase 1) Partitioning. We split R and S into the same number of

partitions using)/||(||2log MS radix bits so that most S

partitions fit into the local memory. The join on R and S is

decomposed into multiple small joins on an R partition and

its corresponding S partition.

Phase 2) Matching. We choose the smaller one of the R and S

partitions as the inner partition to be loaded into the local

memory, and the other one as the outer partition. Each tuple

from the outer partition uses a sequential search or a binary

search on the inner partition for matching. If the binary

search is used, we use the bitonic sort to sort the inner

partition prior to probing.

4.2 A Lock-Free Scheme for Result Output
Since the GPU lacks incremental memory allocation on the device

memory during the kernel execution, the result output has two

major problems. The first one is the unknown join result size. One

may consider estimating the (maximum) number of results for

each thread. However, since the maximum number of results for

the join of m by n tuples is nm× , this upper bound usually exceeds

the size of the device memory. The second one is that write

conflicts occur when multiple threads write results to the shared

output region in the device memory. We propose a three-phase

scheme to solve these two problems.

First, each thread counts the number of join results for the

partitioned join it is responsible for. A counter is maintained

locally. There is no conflict in this step, because no threads write

the actual join result.

Second, we compute a prefix sum on the counters to get an array

of write locations, each of which is the start location in the device

memory for the corresponding thread to write. Through the prefix

sum, we also know the total number of results generated by the

join.

Third, the host code allocates a memory area of the exact size of

the join result and each thread outputs the join results to the

device memory according to its start write location. Since each

thread has its deterministic positions to write to, any write

conflicts are avoided. If the size of the join result is larger than the

device memory, we output the join results in multiple passes. In

each pass, we output the join results from a portion of the threads.

This three-phase scheme does not require the hardware support of

atomic functions. However, it requires evaluating the join

predicates twice. Fortunately, with the GPU's high computation

power, the extra join predicate evaluation poses little overhead.

4.3 Skew Handling
In the partitioning-based algorithms such as SMJ and HJ, the

skew in the data results in an imbalanced partition size. The

processing of an inner partition that is larger than the local

memory requires accesses to the device memory. Consequently, it

may suffer from the memory stall and hurt the overall

performance.

The first problem is to identify the partitions that do not fit into

the local memory. Taking the input array of partition sizes (i.e.,

the element i in the array is the size of the ith partition), we use

the split primitive to divide the partitions into two groups, one for

the partitions larger than the local memory and the other for those

not larger than the local memory.

Once we identify the partitions that are larger than M, we further

decompose each of these partitions into multiple chunks each of

size M, and process these generated small chunks in the local

memory. For the SMJ, we perform a merge step on all possible

matching pairs of chunks. For the HJ, we use the NINLJ on each

matching pair of chunks.

5. EXPERIMENTS
In this section, we evaluate the performance of our proposed GPU

primitives and join algorithms in comparison with the algorithms

on the CPU.

5.1 Experimental Setup
We have implemented and tested our algorithms on a PC with a

NVIDIA 8800 GTX GPU and a recently-released Intel Core2 Duo

Quad-Core processor. The hardware configuration of the PC is

shown in Table 2. The GPU uses a PCI-EXPRESS bus to transfer

data between the main memory and the device memory with a

theoretical bandwidth of 4 GB/s.

517

We compute the theoretical bandwidth to be the bus width

multiplied by the memory clock rate. Thus, GPU and CPU have a

theoretical bandwidth of 86.4 GB/s and 10.4 GB/s, respectively.

Based on our measurements, the G80 achieves a memory

bandwidth of around 69.2 GB/s whereas the quad-core CPU has

5.6 GB/s.

Table 2. Hardware configuration

 GPU CPU(Quad-core)
Processors 1350MHz × 8 × 16 2.4 GHz × 4

Data cache (local

memory)

16KB × 16 L1: 32KB × 4, L2:

4096KB × 2

Cache latency (cycle) 2 L1: 2 , L2: 8

DRAM (MB) 768 2048

DRAM latency (cycle) 200 300

Bus width (bit) 384 64

Memory clock (GHz) 1.8 1.3

We used synthetic data sets and workloads for detailed studies on

our join algorithms. Our homegrown workload contains two join

queries on relations R and S. Relations R and S are binary tables

each consisting of two four-byte integer attributes, the record ID

(rid) and the key value (key). We used both uniform and non-

uniform key values. We generated our non-uniform key values by

setting a certain percentage of tuples to be a constant key value

(e.g., one in our experiments). Other tuples are randomly

distributed. When this percentage is zero, key values in the

relation are uniformly distributed; when it is 100%, all tuples have

the same key value. We varied this percentage to simulate

different degrees of skewness.

The join queries in our own workloads are “SELECT R.rid, S.rid

FROM R, S WHERE <predicate>”. We used an equijoin and a

non-equijoin query. The equi-join takes S.keyR.key = as the

predicate and the non-equijoin δR.key S.key R.key +≤≤ (δ is a constant

integer).

Considering different parameters in our workload, we performed

three sets of experiments on the equijoin query. First, we fixed the

size of R and varied the size of S. The key values of R and S are

uniformly distributed. For NINLJ, we fixed |R| to be 1 million;

while for the other three joins, we fixed |R| to be 16 million.

Second, we examined the performance impact of varying the join

selectivity. Third, we investigated our algorithms on the non-

uniform data sets. In the later two sets of experiments, we fixed

both |R| and |S| to be one million for NINLJ. For the other three

joins, we fixed both |R| and |S| to be 16 million. This is our default

experimental setting for data sizes unless specified otherwise.

These settings were chosen to be similar to the previous studies on

in-memory join algorithms [10]. Finally, we varied the δ value in

the non-equijoin predicate and examined the performance of non-

equijoins.

In addition to supporting the regular data types such as integers,

our primitives and join algorithms support more complex data

types such as strings. We support more complex data types

through indirection by storing offsets and lengths in our record.

Specifically, the values of the field of all tuples are consecutively

stored into an array named data array. We represent the field of

each tuple using a pair (offset, length), where offset is the start

position of the value in the data array and length is the length of

the value (in bytes). The value is fetched according to the offset

and the length. If two tuples need to be swapped, we swap them

without modifying the data array.

We run each experiment ten times and report the average value.

Implementation details on CPU. For comparison, we have

implemented highly optimized CPU-based primitives and join

algorithms. The primitives are designed to be parallel and run on

the quad-core machine. We use cache optimization techniques

[34] to fine tune the performance of the parallel implementation.

With these optimized primitives, we implement four join

algorithms including the blocked NINLJ [34], the INLJ with the

CSS-tree index [31], the SMJ with the optimized quick sort [22]

and the radix HJ [10]. We compiled our algorithms using MSVC

8.0 with full optimizations. Moreover, we used OpenMP [29] to

implement the threading mechanism on the CPU. In general, the

parallel CPU-based primitives and join algorithms are 2-6X faster

than the sequential ones on the quad-core CPU. To check whether

our CPU-based implementation has a comparable performance

with state-of-the-art main memory databases, we also performed a

performance comparison between our algorithms and MonetDB

[26]. The comparison was done on the core query processing

algorithms, excluding the other components such as query parsing

and plan generation.

Implementation details on GPU. We implemented our

primitives and join algorithms using CUDA [27] and DirectX10

[6]. DirectX is a common graphics API runnable on most GPUs

including AMD’s and NVIDIA’s. In contrast, CUDA is a GPGPU

programming framework for recent NVIDIA GPUs. In the CUDA

programming API, the developer can program the GPUs without

any knowledge of graphics rendering APIs. Similar abstractions

are also available on AMD GPUs using their compute abstraction

layer (CAL) API. Both of these APIs expose a general-purpose,

massively multi-threaded parallel computing architecture and

provide a programming environment similar to multi-threaded

C/C++. Since the performance results of the DirectX

implementation are similar to those of CUDA, we discuss our

implementation and results of CUDA in detail and briefly present

the results for DirectX.

Our GPU-based joins can be easily mapped to the CUDA

framework. To implement an efficient algorithm using CUDA, we

need to determine the following parameters with respect to the

target operation: the number of threads for each thread group (T)

and the number of thread groups (Bp). Issuing more threads to the

GPU can potentially improve the overall performance by hiding

memory latency at the cost increasing register pressure. Moreover,

due to the limited local memory space on the multiprocessors, Bp

and T cannot be arbitrarily large. Through experiments, we find

that Bp=128 and T=64 are a good tradeoff value, where the

memory latency is sufficiently masked, and each block receives

adequate computation resources. Taking the search performance

and data transfer into account, we set the number of keys in a

node of the GPU CSS-tree to be 32.

The DirectX10 programmable pipeline contains multiple stages

including the Vertex Shader (VS), Geometry Shader (GS) and

Pixel Shader (PS). For each algorithm, we draw a set of points

corresponding to a tuple processing. The map, the gather and the

scatter are implemented as vertex texture fetches and positioning

in the VS. These APIs have inherent thread parallelism and

achieve a similar performance to the CUDA implementation. The

prefix scan is adopted from Horn's algorithm [20] and our sorting

518

algorithm is the bitonic sort [14]. We implement the split

primitive as two steps, first sorting the tuples according to their

partition identifiers, and next scattering these tuples with Min and

Max blending to obtain the start and the end positions of each

partition. The matching process is performed by drawing points

from the outer relation, each point probing the inner relation.

Since the local memory is not exposed to DirectX, NINLJ stores

the inner block in the constant buffer, a fast on-chip cache

exposed to DirectX. INLJ probes the texture storing the CSS-tree

using the search keys of the outer relation. The fanout of the CSS-

tree is set to four, which is the number of color channels on the

GPU for parallel comparison. SMJ sorts the texture of the inner

relation and performs binary search for matching results. HJ

builds the hash table for the inner relation in the texture using the

split and renders the outer relation to probe the textures of the

hash table. Unlike the three-phase result output scheme in the

CUDA implementation, the DirectX implementation utilizes the

stream-out feature of the GS to output the join results in parallel.

5.2 Data Transfer between Device Memory

and Main Memory

Figure 6 shows the memory copy time from the main memory to

the device memory. Similar results are obtained for data transfer

from the device memory to the main memory. Given a certain

block size, we transfer the data block by block. Due to the

overhead associated with each transfer, the copy time increases as

the block size decreases. When the block size is larger than 4MB,

the copy time remains almost constant. That means when the

relation size is larger than 4MB, the bandwidth is fully utilized.

These results suggest that the programmer could batch small data

transfers to reduce the time of data transfer between the GPU and

the CPU.

0

20

40

60

80

100

120

140

160

64KB 128KB 256KB 512KB 1MB 2MB 4MB 8MB

Block size

E
la

p
se

d
 t

im
e

(m
s)

Figure 6. Data transfer time from the main memory to the

device memory (||R||=256MB). When the block size is larger

than 4MB, the peak bandwidth is 3.1 GB/sec.

5.3 Results on Primitives

Since GPU-based primitives are usually used as intermediate

components in the GPU-based join algorithms, their input data are

already in the device memory and their output data are stored in

the device memory as input to other primitives. Thus, we exclude

the time of data transfer between the GPU and the CPU in the

results for the primitives on the GPU.

Table 3 shows the elapsed time of optimized primitives when |R|

is fixed to be 16 million. The locations in the scatter and the

gather are random. For the prefix scan, we compute the prefix sum

on 16 million integers. The split function for the split is fcn(x) = x

mod 64. That means the split divides the relation into 64

partitions.

We define the speedup to be the ratio of the execution time on the

CPU to that on the GPU. Overall, the GPU-based primitives

achieve a performance speedup of 2-27X over the CPU-based

primitives. We obtained similar performance speedup with the

data size varied. This speedup is due to the high parallelism and

the two memory optimizations.

Table 3. Elapsed time for primitives (|R| is 16 million). The

speedup of the GPU-based primitives is 2-27X over the CPU-

based primitives.

Primitive CPU (ms) GPU (ms) Speedup
Map 109 4 27.3

Scatter 1312 104 12.6

Gather 1000 103 9.7

Prefix scan 141 14 10.1

Split 813 125 6.5

Sort(qsort) 2313 945 2.4

We have the following four observations. First, the average

bandwidth of the optimized map primitive is 2.4GB/sec and

64GB/sec on the CPU and the GPU, respectively. The speedup of

the optimized GPU map is 27X over the CPU-based map.

Additionally, it has a high bus utilization of 75%, given the

theoretical bandwidth of 86GB/sec. Second, the scatter and the

gather have a much lower bandwidth than the map due to their

random access nature. Third, in the split on both the GPU and the

CPU, the scatter takes over 70% of the total execution time. Forth,

the speedup of the GPU-based quick sort algorithm is 2X over the

optimized quick-sort on the quad-core CPU. Comparing the two

GPU-based sorting algorithms, we find that the quick sort is

around 30% faster than the bitonic sort (the results is not shown in

the table). This result is consistent with the fact that the quick sort

has lower complexity than the bitonic sort. We used the quick sort

as our sorting primitive in the CUDA implementation.

The speedups on the scatter, gather and prefix scan primitives are

similar to those in the previous work [19][33]. Thus, we discuss

the map, split and sort primitives in more detail. Specifically, we

studied the performance impact of the three optimizations on the

GPU.

0

10

20

30

40

50

60

70

64MB 128MB 192MB 256MB

||R||

E
la
p
s
e
d
 t
im
e
 (
m
s
)

GPU (non-coalesced)

GPU(coalesced)

Figure 7. The map performance with and without the

coalesced access. The coalesced access improves the map

bandwidth on the GPU by around twice.

Coalesced access. Figure 7 shows the performance of the map

primitive with the relation size varied. To isolate the performance

impact of the coalesced access from the thread parallelism, we set

Bp=16 and T=32, which is equal to the number of multiprocessors

and the number of threads in a schedule unit of G80, respectively.

The coalesced access improves the map bandwidth on the GPU by

519

a factor of about two. Note, the bandwidth of the coalesced map is

4.5GB/sec, which is far lower than the theoretical bandwidth due

to the absence of high parallelism and the local memory

optimization.

Thread parallelism. Figure 8 shows the elapsed time with a

varying number of thread groups for the map and the split

primitives. The number of threads in each thread group is fixed to

be 32. Since the results for the bitonic sort are similar to those of

the map, and the results for the quick sort are similar to the split,

the results for the sort are omitted. The map primitive is

implemented with coalesced accesses. As Bp is smaller than a

threshold value, the elapsed time of both algorithms greatly

decreases as the Bp value increases. This is because the memory

stalls of accessing the device memory are better hidden by

computation and the increase in bandwidth utilization. Since the

map is cheaper than the split, the performance impact of

increasing the number of thread groups is more significant on the

map than on the split. When Bp is larger than the threshold value,

the elapsed time slightly increases as Bp increases. The suitable

numbers of thread groups are 128 and 64 for the map and the split,

respectively.

After obtaining the suitable number of thread groups, we further

varied the number of threads per thread group. The results are

shown in Figure 9. When T is smaller than a threshold value, the

elapsed time decreases as T increases. This indicates memory

stalls can be further hidden by increasing the number of threads

per thread groups. When T is larger than the threshold value, the

performance degrades due to the computation resource contention

on the multiprocessor. The suitable numbers of threads per thread

group for the map and the split are 64 and 32, respectively. Note,

with the optimization of the coalesced access and the thread

parallelism, the map primitive achieves a bandwidth of 64 GB/sec.

Figure 8. The elapsed time with the number of thread groups

varied. The number of threads in each thread group is fixed to

32. The best numbers of thread groups in the map and the split

are 128 and 64, respectively.

Figure 9. The elapsed time with the number of threads per

thread group varied. The number of thread groups is set to be

the best one shown in Figure 8. The suitable numbers of

threads per thread group for the map and the split are 64 and

32, respectively.

Local memory optimization. Figure 10 compares the GPU-based

primitives with and without the local memory optimization. The

local memory optimization improves the overall performance of

the split and the sort primitives by 1.5-2X. This indicates that the

thread parallelism may not fully eliminate the memory stalls when

accessing the device memory. With the local memory

optimization, the efficiency of the GPU-based primitives is greatly

improved.

0

500

1000

1500

2000

2500

Split Sort (Bitonic) Sort (qsort)

E
la
p
se
d
 t
im
e
 (
m
s
)

GPU (no-opt)

GPU(opt)

Figure 10. The performance impact of the local memory

optimization. The shared memory optimization improves the

overall performance by 1.5-2X.

5.4 Results on Joins
Since searching the data in the local memory is a core operation in

the join step, we first studied the binary search and the sequential

search. Figure 11 compares the performance of our joins with

binary search and with sequential search. The result for NINLJ is

not shown, because binary search is not used in NINLJ. The result

for INLJ does not include the time for constructing the tree index.

The tree construction time is so small that it can be ignorable on

the GPU. Additionally, we observed that the local memory

optimization achieved a performance improvement of around 10%

on INLJ.

Although the sequential search takes fewer branches than the

binary search, the binary search has fewer data accesses than the

sequential search. The binary search improves the performance by

2.5X and 1.5X on INLJ and SMJ, respectively. The binary search

has a relatively high speedup in the INLJ, because the search on

the tree node is the major operation of INLJ. In contrast, the

binary search degrades the performance of HJ due to the overhead

of the extra sorting on the local memory.

0

0.5

1

1.5

2

2.5

3

3.5

INLJ SMJ HJ

E
la

p
as

ed
 t

im
e

(s
ec

)

w/ sequential search

w/ binary search

Figure 11. Elapsed time of join algorithms with binary search

and sequential search.

Table 4. Elapsed time of the four relational joins on the GPU

and the CPU for the uniform data sets. The speedup of the

GPU-based primitives is 2-7X over the CPU-based primitives.

Joins CPU (sec) GPU (sec) Speedup
NINLJ 528.0 75.0 7.0

INLJ 4.2 0.7 6.1

SMJ 5.0 2.0 2.4

HJ 2.5 1.3 1.9

0

1

2

3

4

5

6

16 32 64 128 256 512

Number of threads in each group (T)

E
la
p
s
e
d
 t
im
e
 (
m
s
)

Map (Bp=512)

160

170

180

190

200

210

220

16 32 64 128 256 512

Number of threads in each group (T)

E
la
p
s
e
d
 t
im
e
 (
m
s
)

Split (Bp=64)

0

2

4

6

8

10

12

14

16

18

16 32 64 128 256 512 1024

Number of thread groups (Bp)

E
la
p
s
e
d
 t
im
e
 (
m
s
)

Map

0

50

100

150

200

250

300

16 32 64 128 256 512 1024

Number of thread groups (Bp)

E
la
p
s
e
d
 t
im
e
 (
m
s
)

Split

520

Table 4 shows an end-to-end comparison on the elapsed time of

the four relational joins on the GPU and the CPU. The elapsed

time on the GPU includes the data transfer time between the

device memory and the main memory. Overall, the GPU-based

joins have a 2-7X speedup over the CPU-based joins. The high

performance speedup is due to the efficient primitives as well as

the efficient matching on the data in the local memory.

Figure 12 shows the time breakdown of the four join algorithms

on the GPU. We divide the total execution time of a GPU-based

join into three components including the time for copying input

data into the device memory, join processing and result output to

the main memory. For all join algorithms, the join processing

time is dominant. The total time of copying data between the main

memory and the GPU memory (one time cost for each join) was

around 0.1%, 13%, 4% and 6% of the total execution time of

NINLJ, INLJ, SMJ and HJ, respectively. Copying the input

relations and outputting the join results are bulk transfers with a

block size larger than 4MB. Thus, the bandwidth between the

main memory and the device memory is fully utilized.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

NINLJ INLJ SMJ HJ

T
im

e
b

re
ak

d
o

w
n

 (
%

)

Copy to device memory
Join processing
Output results to main memory

Figure 12. Join processing time and data transfer time

between the main memory and the device memory.

We studied the join performance with varying workload

characteristics. Figure 13 shows the speedup of the GPU-based

joins over the CPU-based joins with varying join selectivity and

percentage of duplicates in R. The larger the join selectivity is, the

larger the join output. The speedup is stable when the join

selectivity varies. This result indicates that the data transfer time

between the device memory and the main memory has little

performance impact on GPU-based joins. As the percentage of

duplicates increases, the relation becomes more skewed. The

speedup of the SMJ and HJ is stable. This indicates the

effectiveness of our skew handling.

Figure 13. The speedup of the GPU-based joins over the CPU-

based joins: (left) the join selectivity is varied; (right) the

percentage of duplicates in R is varied and S is uniform.

Figure 14. Performance comparison between our algorithms

and MonetDB: (left) sort, (right) hash joins.

5.5 Comparison with MonetDB
Figure 14 compares the performance of the sort and the hash join.

We varied |R| from 4M to 16M for the sort. For the hash join, we

kept |R| = |S|, and varied both |R| and |S| from 4M to 16M. As the

data size increases, both our CPU- and GPU-based

implementations outperform MonetDB. This figure indicates that

the efficiency of our implementation is comparable to MonetDB.

5.6 Results on DirectX Implementation
Table 5 shows the elapsed time of the four relational joins

implemented with CUDA and DirectX. For each implementation,

we show its total execution time and the time for the join

processing only, i.e., the texture copy in/out and

encoding/decoding time is not included for the DirectX

measurement and the data copy in/out is not included for the

CUDA measurement. The DirectX-based NINLJ and INLJ

achieve a similar performance to their CUDA-based counterparts.

The GPU pipelines in these DirectX implementations are short

and simple. In contrast, the DirectX-based SMJ and HJ are about

twice as slow as their CUDA-based counterparts. These DirectX

implementations contain more graphics related overhead such as

texture coding/decoding.

Table 5. Elapsed time in seconds of the four relational joins

implemented with CUDA and DirectX (DX).

 DX (join) DX (total) CUDA (join) CUDA (total)

NINLJ 72.3 74.1 75.0 75.0

INLJ 0.7 0.9 0.6 0.7

SMJ 3.8 4.7 1.9 2.0

HJ 2.3 2.7 1.2 1.3

5.7 Handling Other Data Types
Figure 15 shows the performance of our sort primitive on the

strings. Each tuple contains two fields, the record ID and the

string field. The number of tuples is fixed to be four million, and

we varied the average string length. As the string length increases,

the variance of the string lengths increases. The performance

speedup of our GPU-based sort over the CPU-based sort slightly

decreases. One possible reason is the increasing branches in the

string matching. Nevertheless, the speedup of the GPU-based

quick sort is around 2X over its CPU-based counterpart.

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

0 8 16 24 32

Percentage of tuples having matches

(%)

S
p
e
e
d
u
p NINLJ

INLJ

SMJ

HJ

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

0 2 4 6 8

Percentage of duplicates in R (%)

S
p
e
e
d
u
p NINLJ

INLJ

SMJ

HJ

0

1

2

3

4

5

6

7

8

9

4 8 12 16

|R| (M)

E
la

p
as

ed
 t

im
e

(s
ec

)

MonetDB (CPU)
CPU
GPU

0

2

4

6

8

10

12

14

16

18

4 8 12 16

|R| (M)

E
la

p
as

ed
 t

im
e

(s
ec

)

MonetDB
CPU
GPU

521

0

2

4

6

8

10

12

4 8 12 16 20 24 28 32

Average string length (bytes)

E
la

p
se

d
 t

im
e

(s
ec

)

CPU GPU

Figure 15. Sorting strings on the CPU and the GPU. The

GPU-based quick sort achieves a speedup of around 2X over

its CPU-based counterpart.

5.8 Summary
In summary, our GPU-based primitives and join algorithms

achieve a speedup of 2-27X over their optimized CPU-based

counterparts. We evaluated our join algorithms for both equijoins

and non-equijoins, different data sizes, join selectivities and data

distributions. Generally, INLJ is the suitable join algorithm in the

presence of the index, and NINLJ for non-equijoins and HJ for

equi-joins otherwise. The performance speedup for the non-

indexed NLJ, the indexed NLJ, the sort-merge join and the hash

join is over 7.0X, 6.1X, 2.4X and 1.9X, respectively.

6. DISCUSSION
We first discuss the performance speedups, and next the

opportunities and the limitations of query processing on the GPU.

The performance speedup of our GPU-based join algorithms over

quad-core CPU-based join algorithms is resulted from the

differences in the architectures as well as the algorithm design.

First, the G80 has 18X more total clock cycles and over 12X

higher memory bandwidth than the quad-core CPU. The speedups

of our join algorithms are smaller than both ratios, mainly due to

the inter-thread communication on the GPU. Second, the L2

cache of the quad-core CPU is 32X larger than the local memory

on the GPU. Since memory stalls are a significant performance

factor, memory optimizations are important in the algorithm

design. On the GPU, we utilize the coalesced access to improve

the bandwidth utilization, and the local memory optimization for

the temporal locality. In comparison, our CPU-based algorithms

have only cache optimization for temporal locality. It would be

interesting to quantitatively study the performance impact of each

individual hardware feature.

Through designing and implementing relational join algorithms

on GPUs, we have identified a number of opportunities and

limitations of new-generation GPUs as a database query co-

processor.

The following are four major opportunities:

First, GPUs have a highly parallel hardware architecture that fits

extremely well with data-parallel query processing. The massive

thread parallelism of the GPU hides the memory latency more

efficiently than traditional von Neumann architectures. Moreover,

the high memory bandwidth and the fast inter-processor

communication can significantly accelerate the performance of

many database operations.

Second, the GPU programmability for general-purpose computing

has been improving greatly. The AMD CTM and NVIDIA CUDA

APIs extend the functionality of GPUs for the high-performance

computing market in addition to the traditional gaming market.

Third, with the new architectural features and the improved

general-purpose programmability, new-generation GPUs allow us

to utilize traditional wisdom from both the GPU programming

model and the CPU-based query processing techniques.

Specifically, we adapt CPU-based optimization techniques to the

GPU hardware features in order to reduce memory stalls of the

primitives and the join algorithms on the GPU.

Fourth, our primitive-based methodology has a high flexibility for

the computation on many-core architectures including GPUs and

multi-core CPUs. We proposed to break the four basic join

algorithms into a set of simple primitives. The algorithms of these

primitives are scalable to hundreds of processors. Moreover, these

primitives can be used to develop higher-level primitives and

other applications. Additionally, we can easily replace the existing

implementation of a certain primitive with a more efficient one

whenever applicable. For instance, GPGPU researchers recently

released CUDPP [18], a CUDA library of data parallel primitives.

We plan to compare it with our own primitives, and choose the

more efficient ones to implement the join algorithms.

We also identified a few limitations of GPUs for performing

relational query processing:

First, query processing in general and join processing in specific

is a complex task in its runtime logic in addition to its data-

intensiveness. Mapping such a task onto the SIMD processors in

the GPU requires a significant amount of design and

implementation effort. In particular, the SIMD architecture by

design trades functional simplicity for high efficiency and

concurrency. For instance, branches frequently appear in query

processing algorithms, e.g., index searches, and need special care

on the GPU. Existing techniques [40] for rewriting the branches

on the CPU can also be applied to the GPU. This rewrite is

especially useful for common and expensive operations. We

acknowledge that this kind of rewriting in general is a difficult

task for the run-time environment.

Another example is that the synchronization mechanism for

handling read/write conflicts, which happen constantly in query

processing, is limited in the GPU. As a result, our primitives and

join algorithms take extra computation such as computing the

writing offsets to avoid the conflicts. This extra computation

increases the work complexity of our algorithms by a constant

factor.

Second, with the exposure of the massively multi-threaded

hardware architecture on the GPU, it also makes GPGPU

programming trickier to ensure correctness and to fully utilize the

essential GPU features such as data parallelism than the previous

GPUs. In our work, we have developed a small set of primitives

that are carefully designed and highly tuned for GPU join

processing. Similarly, GPGPU programmers could produce better

and faster programs using a set of well-defined primitives as

building blocks to address this issue.

Third, even though the latest GPU frameworks, such as CTM and

CUDA, are a significant leap from the traditional GPUs in

providing great details about the hardware architecture, they are

still far behind the CPU vendors' tradition of giving sufficient

details about the hardware specification, e.g., the memory

hierarchy. Currently, we mainly rely on empirical experiments to

522

estimate the hardware parameters and to identify the suitable

settings for our algorithms.

Fourth, the power consumption of the GPU is higher than that of

the CPU. In our experiments, the GPU requires a power supply of

450 Watts, whereas the CPU requires 95 Watts only. It is

desirable to develop software or hardware techniques to reduce

the power consumption of the GPU.

Finally, as a co-processor, the GPU requires advanced software

techniques to support complex workloads. For example, lacking

hardware support for complex data types is an inherent weakness

of the GPU. Currently, we can use software solutions for

supporting more complex data types such as high precision

numbers on the GPU [38]. Fortunately, GPU vendors plan to

support high precision numbers such as double in the near future.

7. CONCLUSION
Graphics processors have become an attractive alternative for

general-purpose high performance computing on commodity

hardware. The continuing advances in hardware and the recent

improvements on programmability make GPUs even more

suitable for database query processing than before. In this study,

we have designed a small set of data-parallel primitives for

relational join processing on GPUs. These primitives provide

high-level abstractions for data-centric operations and are highly

tuned to fully utilize the architectural features of graphics

processors. We have implemented four representative relational

join algorithms using these primitives and have compared the join

performance with optimized CPU-based in-memory join

algorithms. We find that our GPU joins achieve a speedup of 2-

7X over their optimized CPU-based counterparts.

This paper focuses on GPU join processing in the video memory.

We believe this is an important but initial step towards building a

high-performance, general-purpose database query processor

using the GPU. One interesting future direction is to evaluate our

join algorithms with more complex workloads. Additionally, we

are interested in how to schedule the execution of relational query

processing between the GPU and the CPU so that their

computation power is fully exploited.

8. Experiment Repeatability
The repeatability committee has not been able to repeat the

experiments of this paper due to the lack of appropriate hardware.

Code and data used in the paper are available at

http://www.sigmod.org/codearchive/sigmod2008/.

9. Acknowledgement
The work of Ke Yang was done while he was visiting HKUST,

and the work of Rui Fang was done when he was an

undergraduate student at HKUST. This work was supported by

grant 617206 from the Hong Kong Research Grants Council.

10. REFERENCES
[1] A. Ailamaki, N. Govindaraju, S. Harizopoulos and D.

Manocha. Query co-processing on commodity processors.

VLDB, 2006.

[2] AMD CTM, http://ati.amd.com/products/streamprocessor/.

[3] S. Azadegan, A. R. Tripathi. Parallel join algorithms for

SIMD models. ICPP (3) 1991: 125-133.

[4] S. Azadegan, A. R. Tripathi. A parallel join algorithm for

SIMD architectures. Journal of Systems and Software 39(3),

1997.

[5] N. Bandi, C. Sun, D. Agrawal and A. El Abbadi. Hardware

acceleration in commercial databases: A case study of spatial

operations. VLDB, 2004.

[6] D. Blythe. The Direct3D 10 system. SIGGRAPH 2006.

[7] C. Boyd. Mass market applications of massively parallel

computing. ACM SIGGRAPH/EUROGRAPHICS

conference on Graphics hardware, 2007.

[8] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M.

Houston and P. Hanrahan. Brook for GPUs: stream

computing on graphics hardware. SIGGRAPH 2004.

[9] G. E. Blelloch. Prefix sums and their applications. Technical

report, CMU-CS-90-190, Nov 1990.

[10] P. Boncz, S. Manegold and M. Kersten. Database

architecture optimized for the new bottleneck: memory

access. VLDB, 1999.

[11] J. Cieslewicz, J. Berry, B. Hendrickson and K. A. Ross.

Realizing parallelism in database operations: insights from a

massively multithreaded architecture. DaMoN, 2006.

[12] T. Cormen, C. Leiserson, R. Rivest and C. Stein.

Introduction to Algorithms, Second Edition. 2001.

[13] D. DeWitt and J. Gray. Parallel database systems: The future

of high performance database systems. In Communications

of the ACM, Vol. 35, No. 6, June 1992.

[14] N. Govindaraju, J. Gray, R. Kumar and D. Manocha.

GPUTeraSort: high performance graphics coprocessor

sorting for large database management. SIGMOD, 2006.

[15] N. Govindaraju, B. Lloyd, W. Wang, M. Lin, and D.

Manocha. Fast computation of database operations using

graphics processors. SIGMOD, 2004.

[16] N. Govindaraju, N. Raghuvanshi and D. Manocha. Fast and

approximate stream mining of quantiles and frequencies

using graphics processors. SIGMOD, 2005.

[17] N. Hardavellas, I. Pandis, R. Johnson, N. Mancheril, A.

Ailamaki, and B. Falsafi. Database servers on chip

multiprocessors: limitations and opportunities. CIDR, 2007.

[18] M. Harris, J. Owens, S. Sengupta, Y. Zhang and A.

Davidson. CUDPP: CUDA Data Parallel Primitives Library.

http://www.gpgpu.org/developer/cudpp/, 2007.

[19] B. He, N. Govindaraju, Q. Luo and B. Smith. Efficient gather

and scatter operations on graphics processors. ACM/IEEE

Supercomputing, 2007.

[20] D. Horn. Stream reduction operations for GPGPU

applications. In GPU Gems 2, Ed. Addison Wesley, 2005.

[21] K. A. Hua and C. Lee. Handling data skew in multiprocessor

database computers using partition tuning. VLDB, 1991.

[22] A. Lamarca and R. Ladner. The influence of caches on the

performance of sorting. SODA, 1997.

[23] M. D. Lieberman, J. Sankaranarayanan, H. Samet. A fast

similarity join algorithm using graphics processing units.

ICDE, 2008.

[24] B. Liu and E. Rundensteiner. Revisiting pipelined

parallelism in multi-join query processing. VLDB, 2005.

[25] H. Lu, K. Tan and M. Shan. Hash-based join algorithms for

multiprocessor computers with shared memory. VLDB,

1990.

[26] MonetDB. http://monetdb.cwi.nl/.

523

[27] NVIDIA CUDA (Compute Unified Device Architecture),

http://developer.nvidia.com/object/cuda.html.

[28] OpenGL, http://www.opengl.org/.

[29] OpenMP, http://www.openmp.org/.

[30] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J.

Krüger, A. E. Lefohn and T. J. Purcell. A survey of general-

purpose computation on graphics hardware. Computer

Graphics Forum (26), 2007.

[31] J. Rao and K. A. Ross. Cache conscious indexing for

decision-support in main memory. VLDB, 1999.

[32] D. A. Schneider and D. DeWitt. A performance evaluation of

four parallel join algorithms in a shared-nothing

multiprocessor environment. SIGMOD, 1989.

[33] S. Sengupta, M. Harris, Y. Zhang, J. D. Owens. Scan

primitives for GPU computing. ACM

SIGGRAPH/EUROGRAPHICS conference on Graphics

hardware, 2007.

[34] A. Shatdal, C. Kant and J. F. Naughton. Cache conscious

algorithms for relational query processing. VLDB, 1994.

[35] M. Stonebraker, D. Abadi, A. Batkin, X. Chen, M.

Cherniack, M. Ferreira, E. Lau, A. Lin, S. Madden, E.

O'Neil, P. O'Neil, A. Rasin, N. Tran and S. Zdonik. C-Store:

A column-oriented DBMS. VLDB, 2005.

[36] C. Sun, D. Agrawal and A. El Abbadi. Hardware acceleration

for spatial selections and joins. SIGMOD, 2003.

[37] D. Tarditi, S. Puri and J. Oglesby. Accelerator: using data

parallelism to program GPUs for general-purpose uses.

ASPLOS, 2006.

[38] A. Thall. Extended-precision floating-point numbers for

GPU computation. SIGGRAPH, 2006.

[39] M. Zagha and G. E. Blelloch. Radix sort for vector

multiprocessors. ACM/IEEE Supercomputing, 1991.

[40] M. Zukowski, S. Heman, N. Nes, P. Boncz. Super-Scalar

RAM-CPU Cache Compression. ICDE, 2006.

524

