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ABSTRACT 

We present a novel design and implementation of relational join 

algorithms for new-generation graphics processing units (GPUs). 

The most recent GPU features include support for writing to 

random memory locations, efficient inter-processor 

communication, and a programming model for general-purpose 

computing. Taking advantage of these new features, we design a 

set of data-parallel primitives such as split and sort, and use these 

primitives to implement indexed or non-indexed nested-loop, sort-

merge and hash joins. Our algorithms utilize the high parallelism 

as well as the high memory bandwidth of the GPU, and use 

parallel computation and memory optimizations to effectively 

reduce memory stalls. We have implemented our algorithms on a 

PC with an NVIDIA G80 GPU and an Intel quad-core CPU. Our 

GPU-based join algorithms are able to achieve a performance 

improvement of 2-7X over their optimized CPU-based 

counterparts.   

Categories and Subject Descriptors:  H.2.4 Systems, 

Query processing; Relational databases 

General Terms: Algorithms, Measurement, Performance. 

Keywords: relational database, join, sort, primitive, parallel 

processing, graphics processors 

1. INTRODUCTION 
Graphics processing units (GPUs) are specialized architectures 

traditionally designed for gaming applications. Recent research 

has shown that they can significantly speed up database query 

processing [5][14][15][16][36].  Moreover, new generation 

GPUs, such as AMD R600 and NVIDIA G80, have transformed 

into powerful co-processors for general-purpose computing 

(GPGPU). In particular, they provide general parallel processing 

capabilities, including support for scatter operations and inter-

processor communication, as well as general-purpose 

programming languages such as NVIDIA CUDA [27]. In this 

paper, we investigate the design and implementation of common 

relational join algorithms on such GPUs.  

Joins are the cornerstone operator in relational database systems 

and CPU-based join algorithms have been studied extensively in 

the literature. Basic join algorithms include non-indexed and 

indexed nested-loop joins (NINLJ and INLJ respectively), the 

sort-merge join (SMJ) and the hash join (HJ). Many variants have 

been designed for in-memory databases [10][31][34] and for 

parallel databases [13][24][32]. These studies have shown that the 

implementation techniques, as well as the design, have a great 

impact on the join performance on CPU-based architectures. In 

general, memory stalls are a major performance factor for CPU-

based relational joins [10][34]. 

Similar to CPUs, in particular multi-core CPUs, GPUs are 

commodity hardware consisting of multiple processors. However, 

these two types of processors differ significantly in their hardware 

architecture. Specifically, GPUs provide parallel lower-clocked 

execution capabilities on over a hundred SIMD (Single 

Instruction Multiple Data) processors whereas current multi-core 

CPUs typically offer out-of-order execution capabilities on a 

much smaller number of cores. Moreover, the majority of GPU 

transistors are devoted to computation units rather than caches, 

and GPU cache sizes are 10X smaller than CPU cache sizes.  

These GPU hardware design choices provide higher 

computational capabilities, better latency tolerance and higher 

memory bandwidth.  

We explore how relational joins can utilize hardware features of 

the GPU. In particular, the SIMD design and the massively 

multithreaded capability in GPUs require our algorithms to 

achieve good load balancing across processors to hide the latency 

effectively. Moreover, most GPUs lack hardware support for 

handling read/write conflicts among concurrent threads. On one 

hand, this design choice reduces the hardware complexity. On the 

other hand, high-level abstractions and carefully designed patterns 

in the software are necessary for correctness and efficiency.  

Considering the characteristics of GPUs and individual join 

algorithms, we design a set of data-parallel primitives that are 

used as building blocks for our join algorithms. Most of these 

primitives can find their functionally-equivalent CPU-based 

counterparts in traditional databases, but our design and 

implementation are highly optimized for the GPU. In particular, 

our algorithms for these primitives take advantage of three 

advanced features of current GPUs: (1) the massive thread 

parallelism, (2) the fast inter-processor communication through 
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local memory, and (3) the coalesced access. Specifically, our map 

primitive employs the coalesced accesses among GPU threads to 

fully utilize the video memory bandwidth; our split operation 

avoids the read/write conflicts by aligning histograms to the GPU 

threading architecture efficiently; our scatter and gather 

operations work in multiple passes for improved spatial locality in 

the memory access; and our sort algorithm uses the map primitive 

to implement a sorting network, or uses the split primitive to 

implement a quick sort.  

Utilizing this small set of data-parallel primitives, we have 

designed and implemented GPU-based algorithms for NINLJ, 

INLJ, SMJ, and HJ. Specifically, our NINLJ is block-nested 

loops, with a data block mapped to a group of threads within a 

processor; our INLJ constructs a GPU-based variant of the CSS-

Tree (Cache-Sensitive Search Trees) [31] and performs a massive 

number of concurrent index searches in the join; our SMJ utilizes 

quantiles for balanced range-partitioning and merges sorted 

partitions in parallel; and our HJ recursively splits the relation 

into multiple partitions and performs joins on the matching 

partitions in parallel. We have implemented all of our GPU-based 

primitives and join algorithms using CUDA [27], NVIDIA’s 

GPGPU language, and DirectX 10 [6], a graphics API for 

programmable GPUs. We evaluated our GPU-based algorithms in 

comparison with their optimized parallel counterparts on an Intel 

quad-core CPU. All join algorithms operate on memory-resident 

data organized in the column-based model [10][35]. 

In summary, this paper makes the following three contributions. 

First, we identify the technical challenges in performing parallel 

query processing on GPUs and provide general solutions to 

address these challenges. Our GPU-based data-parallel primitives 

are applicable to not only joins but also other query operators.  

Second, we design and implement several representative join 

algorithms on the new-generation GPUs and empirically evaluate 

these algorithms in comparison with the optimized CPU-based 

join algorithms. To the best of our knowledge, this is the first 

attempt to develop relational joins on graphics processors. Third, 

we discuss the lessons we have learned from experience and 

provide insights and suggestions on GPU programming for the 

GPGPU and database communities. 

The remainder of this paper is organized as follows. In Section 2, 

we briefly introduce the GPU architecture and review GPU- and 

CPU-based query processing techniques and parallel join 

algorithms. In Section 3, we describe the technical challenges of 

performing parallel query processing on GPUs, and present our 

solutions. These solutions are then used as building blocks for our 

join algorithms, which are described in Section 4. We 

experimentally evaluate our algorithms in Section 5. We discuss 

the lessons learned from our experience in Section 6, and 

conclude in Section 7. 

2. PRELIMINARY AND RELATED WORK 
In this section, we introduce the GPU architecture and discuss 

related work.  

2.1 Graphics Processors (GPUs) 
GPUs are widely available as commodity components in modern 

machines. They are used as co-processors for the CPU [1]. GPU 

programming languages include graphics APIs such as OpenGL 

[28] and DirectX [6], and GPGPU languages such as NVIDIA 

CUDA [27], AMD CTM [2], Brook [8] and Accelerator [37]. 

With these APIs, programmers write two kinds of code, the kernel 

code and the host code. The host code runs on the CPU to control 

the data transfer between the GPU and the main memory, and to 

start kernels on the GPU. The kernel code is executed in parallel 

on the GPU. A general flow for a computation task on the GPU 

consists of three steps. First, the host code allocates GPU memory 

for input and output data, and copies input data from the main 

memory to the GPU memory. Second, the host code starts the 

kernel on the GPU. The kernel performs the task on the GPU. 

Third, when the kernel execution is done, the host code copies 

results from the GPU memory to the main memory. 

The GPU architecture model is illustrated in Figure 1. Such 

architecture is a common design for both AMD [2][7] and 

NVIDIA GPUs [27].  At a high level, the GPU consists of many 

SIMD multi-processors. At any given clock cycle, each processor 

of a multiprocessor executes the same instruction, but operates on 

different data. The GPU has a large amount of device memory, 

which has high bandwidth and high access latency. For example, 

the G80 GPU has an access latency of 200 cycles and the memory 

bandwidth of 86 GB/second. Additionally, each multiprocessor 

usually has a fast on-chip local memory, which is shared by all the 

processors in a multi-processor. The size of this local memory is 

small and the access latency is low.  

Device memory

P1 P2 Pn

Multiprocessor 1

GPU

CPU

Main
memory

P1 P2 Pn

Multiprocessor N

 

Figure 1. The GPU architecture model. The GPU is a co-

processor to the CPU. It consists of multiple SIMD 

multiprocessors, and has a large amount of device memory. 

This model is applicable to both AMD’s CTM [2][7] and 

NVIDIA’s CUDA [27]. 

GPU threads are different from CPU threads in that they have low 

context-switch and low creation time as compared to their CPU 

counterparts. On the GPU, threads on each multiprocessor are 

organized into thread groups. These thread groups are 

dynamically scheduled on the multiprocessors. Threads within a 

thread group share computation resources such as registers on a 

multiprocessor. Moreover, when multiple threads in a thread 

group access consecutive memory addresses, these memory 

accesses are grouped into one access. This hardware feature is 

called coalesced access.  

2.2 Query Processing on GPUs 
Recently, GPUs have been used to accelerate scientific, 

geometric, database and imaging applications. For an overview on 

the state-of-the-art GPGPU techniques, we refer the reader to the 

recent survey by Owens et al. [30]. We now briefly survey the 

techniques that use GPUs to improve the performance of database 

operations.  

Sun et al. [36] used the rendering and search capabilities of GPUs 

for spatial selection and join operations. Bandi et al. [5] 

implemented GPU-based spatial operations as external procedures 

to a commercial DBMS. Govindaraju et al. presented novel GPU-

based algorithms for relational operators including selections, 

aggregations [15] as well as sorting [14], and for data mining 

operations such as computing frequencies and quantiles for data 
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streams [16]. The existing work mainly develops 

OpenGL/DirectX programs to exploit the specialized hardware 

features of GPUs. In contrast, we focus on GPU-based algorithms 

for the join operation, which is a core operator in relational 

databases. Moreover, our algorithms are based on a many-core 

SIMD architecture model of the GPU, and thus can be applied to 

CPUs of a similar architecture. Based on a similar model, 

Sengupta et al. [33] implemented the segmented scan using the 

scatter. He et al. [19] proposed a multi-pass scheme to improve 

the scatter and the gather operations on the GPU.  Our algorithms 

utilize these operations as primitives to compose join algorithms.  

Most recently, Lieberman et al. [23] implemented a similarity join 

using CUDA.  

2.3 In-Memory Query Processing on CPUs 
Memory stalls are an important factor for the overall performance 

of relational query processing [10][34]. Cache-conscious 

techniques have been the leading approach to improve the 

memory performance of the CPU joins.   

Shatdal et al. [34] proposed the blocked NINLJ algorithm by 

applying cache blocking on the nested-loop join. In comparison, 

we determine the block size in NINLJ by the size of the local 

memory. Rao et al. [31] proposed a cache-optimized B+-tree 

index, namely the CSS-tree. A CSS-tree has a node size equal to 

the cache block size. Each node is fully packed with keys. 

Pointers are eliminated by laying out nodes contiguously, level by 

level. Index search is done through address arithmetic.  We adopt 

this tree index to the GPU and optimize its performance by fitting 

the top levels of the tree index into the local memory. Lamarca et 

al. [22]  studied the cache performance for the quick sort and 

showed that cache optimizations can significantly improve the 

overall performance. In comparison, we implement the quick sort 

on the GPU and use bitonic sort to sort partitions that fit into the 

local memory. Boncz et al. [10] proposed the radix hash join with 

a multi-pass partitioning method in order to optimize the cache 

performance. Our GPU-based hash join is a parallel version of the 

radix hash join with optimizations for the local memory. 

With the same goal of reducing memory stalls, our local memory 

optimization aims at improving the spatial locality and temporal 

locality of the data accesses. In contrast with the hardware-

managed cache on the CPU, our techniques are specifically 

designed for the local memory on GPUs, which is manipulated by 

the programmer and is shared by multiple threads.  

2.4 Parallel Joins 
Parallel algorithms greatly improve the performance of the 

relational join in shared-nothing systems [24][32] or shared-

memory systems [11][25].   

Liu et al. [24] investigated the pipelined parallelism for multi-join 

queries. In comparison, we focus on exploiting the parallelism 

within a single join operation. For a single join, Lu et al. [25] 

studied four hash-based join algorithms on a shared-memory 

multiprocessor system. Schneider et al. [32] evaluated one sort-

merge and three hash-based join algorithms in a shared-nothing 

system. In the presence of data skews, techniques such as bucket 

tuning [32] and partition tuning [21] are used to balance loads 

among processor nodes. Azadegan et al. [3][4] used machine-

specific communication primitives to develop parallel join 

algorithms on the SIMD Connection Machine (CM-2). Recently, 

Cieslewicz et al. [11] implemented a multi-threaded hash join 

using the atomic operations supported in the Cray MTA-2 

architecture.  

In comparison with previous parallel join algorithms, our GPU-

based parallel join algorithms take into account the GPU 

architectural characteristics and provide general, yet efficient 

solutions. Specifically, in contrast with using machine-specific 

primitives [3][4],  we develop software primitives that are general 

and highly scalable for GPUs. Additionally, our thread parallelism 

does not require hardware-supported atomic operations.  

3. PRIMITIVES 
Based on the GPU architectural model, we have identified three 

technical challenges in join processing on GPUs: 

• How to efficiently utilize both the computation resource and 

the memory bandwidth of the GPU, and to use parallel 

computation to hide memory latency. This challenge is 

critical in that joins are both computation and data intensive.  

Even though the GPU has massive thread parallelism and 

high memory bandwidth, its memory latency is also high.  

Therefore, we need to examine individual join algorithms 

and develop common building blocks that improve data 

parallelism. 

• How to handle read/write conflicts efficiently. Since we do 

not have hardware-supported atomic operations for conflict 

handling, we need to develop an efficient conflict handling 

mechanism that is suitable for GPUs.  

• How to handle data skews on GPUs.  As on any parallel 

architecture, data skews must be handled effectively to 

balance the workload among processors so as to improve the 

overall performance. 

We address these challenges in primitives, a small set of common 

operations that we design for join processing on the GPU. These 

primitives exploit the hardware features of the GPU and can be 

used for database query processing, including joins.  

Notation.  In this paper, we consider a join on two relations R and 

S with a single join attribute. We assume the join attribute to be 

an integer for simplicity. R[i] represents the ith tuple of R. The 

notations used throughout this paper are summarized in Table 1. 

Table 1. Notations used in this paper 

Parameter Description 

Bp Total number of thread groups on the GPU 

T Number of threads per thread group 

M The size of local memory per thread group 

R, S  Outer and inner relations of the join 

r, s Tuple sizes of R and S (bytes) 

|R|, |S| Cardinalities of R and S 

||R||, ||S|| Sizes of R and S (bytes) 

3.1 Baseline Design 
We aim at designing and implementing a complete set of parallel 

primitives for relational query processing. In this section, we 

describe our primitives, namely map, scatter, gather, prefix scan, 

split and sort. These primitives are used as constructs for our join 

algorithms and have the following features: 

1) They have low synchronization overhead, thus achieving 

close to peak performances on GPUs. 

2) They are scalable to hundreds of processors. 

3) They are applicable not only to joins but also to other 

relational query operators.  
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3.1.1 Map 
A map is similar to a database scan. We define the map primitive 

as follows: 

 
We use multiple thread groups to implement the map. Each thread 

group is responsible for a segment of the relation. 

3.1.2 Scatter and Gather 
We adopt the definitions of scatter and gather used by He et al. 

[19]. A scatter performs indexed writes to a relation, for example, 

hashing. Its definition is as follows, where the array L defines the 

distinct write location for each Rin tuple.  

  
The gather primitive performs indexed reads from a relation. It 

can be used, for instance, when fetching a tuple given a record id, 

and probing hash tables. Its definition is as follows, where the 

array L defines the read location for each Rin tuple.  

 
In general, tuples in the output relation can be a superset or a 

subset of the input relation in gather and scatter. For simplicity, 

our definitions assume the tuples in the output relation are the 

same set as those in the input relation.  

We implemented the scatter and the gather using the multi-pass 

optimization scheme proposed by He et al. [19].   

3.1.3 Prefix scan 
A prefix scan applies a binary operator to the input relation of size 

n and generates an output relation of size n [30]. We present the 

definition of a prefix scan that applies the binary operator ⊕  to 

the input relation as follows: 

 

An example of prefix scan is the prefix sum, which is an 

important operation in parallel databases [9]:  Given an input 

relation (or array) Rin, the value of each output array element Rout[i] 

( ||2
in

Ri ≤≤ ) is obtained from the sum of Rin[1],..., and Rin[i-1] 

(Rout[1]=0).  

We use the prefix sum implementation from the CUDA library 

[27]. The prefix sum has two stages, reduce and down-sweep. The 

reduce stage has |
in

R|
2

log steps. In step i ( |in|Ri 2log0 <≤ ), thread j 

computes the partial sum of Rin[j*2i] and Rin[(j+1)*2i]. The down-

sweep stage also takes |
in

R|
2

log steps. In step i ( |in|Ri 2log0 <≤ ), 

the partial sum is applied to Rin[j*2i] and Rin[(j+1)*2i]. Both 

stages are highly parallel on the GPU. 

3.1.4 Split 
A split primitive divides a relation into a number of disjoint 

partitions according to a given partitioning function. The result 

partitions are stored in the output relation. Splits are used in hash 

partitioning or range partitioning.  Given the partitioning fanout 

F, the definition of the split is as follows: 

  

A basic implementation is that each thread processes a portion of 

the input relation and inserts tuples to their target partitions. A 

major issue is the write conflicts among threads. They occur when 

multiple threads try to insert tuples into a partition concurrently. 

Unfortunately, there are no atomic operations such as locks for 

handling such conflicts on most GPUs. Thus, we propose a 

software approach to implement a lock-free split algorithm. The 

basic idea is that, prior to writing the output, we use histograms to 

compute the write locations of each thread. Since each thread 

knows its target position to write, the write conflicts among 

threads are avoided.  

Our histogram-based algorithm is partially inspired by the parallel 

radix sort proposed by Zagha [39], which uses histograms to 

perform the radix sort. The major difference is that our histogram 

scheme is embedded in our primitives on the GPU. In particular, 

our split algorithm uses the histogram to compute the write 

location for each tuple (stored in the array L) and scatters Rin to 

Rout according to the array L.  

Algorithm 1: split (Rin, fcn, Rout) 

Parameters: 

#thread, the total number of threads (#thread=Bp*T).  

F, the partitioning fanout. 

tHist, the thread-level histogram. tHist[t][p] is the number of tuples 

processed by thread t and belonging to partition p F)p(1 ≤≤ . 

tOffset, the thread-level offset array. tOffset[t][p] contains the start 

position to output the tuples of thread t that belong to partition p. 

L, the array storing start positions to output the tuples of each partition for 

each thread. The start position of partition p for thread t is L[(p-

1)*#thread+t].  

(1) Each thread constructs its tHist histogram from Rin. 

(2) Each thread writes its histogram to L so that L[(p-1)*#thread+t]= 

tHist[t][p]. 

(3)  Perform a prefix sum on L. The result is stored in L.  

(4)  Each thread updates its offset so that tOffset[t][p]=L[(p-

1)*#thread+t]. 

(5) Each thread scatters its tuples to Rout based on its offset.  

Each thread group is responsible for a similar-sized portion of Rin. 

Each thread maintains a thread-level histogram (tHist[1…F]). It 

records the number of tuples of each partition for the thread. We 

use the thread-level histogram to compute the thread-level offset 

array (tOffset[1…F]), which contains the start position for 

outputting the tuples belonging to the partition for the thread.  

Primitive: Gather 

Input: Rin [1, …, n], L [1, …, n]. 

Output: Rout [1, …, n]. 

Function: Rout[i]=Rin[L[i]], i=1, …, n. 

Primitive: Scatter 

Input: Rin [1, …, n], L [1, …, n]. 

Output: Rout [1, …, n]. 

Function: Rout[L[i]]=Rin[i], i=1, …, n. 

Primitive: Map 

Input: Rin [1, …, n], a map function fcn. 

Output: Rout[1,…,n]. 

Function: Rout[i]=fcn(Rin[i]). 

Primitive: Split 

Input: Rin [1, …, n], F][1,...,[i])
in

func(R ∈ , i=1, …, n. 

Output: Rout [1, …, n]. 

Function: {Rout[i], i=1,…, n}={Rin[i], i=1, …, n} 

and ji n],[1,..,ji, [j]),
out

func(R[i])
out

func(R ≤∈∀≤ .  

Primitive: Prefix Scan 

Input: Rin [1, …, n], binary operator⊕ . 

Output: Rout[1,…,n]. 

Function: Rout[i]=⊕ j<iRin[j]. 
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Our split works in five steps, as illustrated in Algorithm 1. The 

five steps are implemented using our other primitives. The first 

step is implemented using a map primitive; the third one uses 

prefix scan; the forth one uses a gather; and the other two use 

scatter. 

Figure 2 shows an example of our split operation, where we 

divide Rin into two partitions. The arrows represent how the data 

is loaded and stored. In this example, there are two thread groups, 

one containing T1 and T2 and the other containing T3 and T4. 

The portions of Rin processed by different threads are in different 

shades.  In the first step, there are four thread-level histograms. 

Step (2) creates the histograms and outputs them to L.  Step (3) 

uses prefix sum to compute the offset array of each thread. For 

example, the start positions for writing the tuples belonging to the 

first and the second partitions are 0 and 4 respectively for thread 

T1. With these offsets, the write locations of the four threads are 

deterministic, and tuples can be output in parallel. 

2 1 2 2 1 1 1 2

T1 T2 T3 T4

Step (1), count 1

1

0

2

2

0

1

1

tHist

Step (3), prefix 

sum

Step (4), load 

counts

Rin

Rout

1 1 1 1 2 2 2 2

Thread group 1 Thread group 2

L

1 0 2 1 1 2 0 1

0 1 1 3 4 5 7 7

L

0

4

1

5

1

7

3

7

2 1 2 2 1 1 1 2

Rin

tOffset

Step (2), output

counts

Step (5), scatter

For partition 1

For partition 2

For partition 1

For partition 2

Figure 2. An example of the split primitive. 

3.1.5 Sort  
The sort primitive is used in a number of operators such as 

aggregation and join operators. 

  

We have implemented two comparison-based sorting algorithms 

including the bitonic sort and the quick sort. The bitonic sort uses 

the GPU-based bitonic sorting network [14], because independent 

swaps between the elements in this sorting algorithm map well to 

the massively threaded architecture of GPU. However, the 

complexity of the bitonic sort is N)log 2
O(N , where N is the 

number of tuples to be sorted. In contrast, the complexity of the 

quick sort is O(NlogN) , which is lower than the bitonic sort. With 

the split primitive, the quick sort can be implemented on the GPU.  

Bitonic sort. The bitonic sort merges bitonic sequences in 

multiple stages.  A bitonic sequence is of a monotonic ascending 

or descending order. Given a relation Rin, the bitonic sorting 

algorithm has |
in

R|
2

log   stages. Stage x has x steps 

( |inR|2logx1 ≤≤ ).  In Step i, it constructs bitonic sequences 

each of size i2 . Thus, Stage x generates the bitonic sequences 

each of size x2 . After |R|
2

log  stages, R is sorted. Each step of the 

bitonic sort performs a map on the input relation and a scatter to 

output the results.  

Quick sort. The quick sort has a lower complexity than the 

bitonic sort. Moreover, it uses the efficient split primitive. The 

quick sort has two steps. First, given a set of pivots, we use the 

split primitive to divide the relation into multiple chunks. The 

pivots are chosen randomly [12]. The split process goes 

recursively until each chunk is smaller than a preset threshold for 

the chunk size. (We discuss this preset threshold in Section 3.2.2.) 

After the split process, we use the bitonic sort on each chunk. We 

choose the bitonic sort other than the insertion sort, because the 

bitonic sort can work entirely in the local memory and its 

computation maps well to the parallel execution of the GPU. We 

present the local memory optimization in Section 3.2.   

3.2 Memory Optimizations 
Our primitives are developed based on the many-core architecture 

model. The thread-level parallelism reduces the memory stalls in 

these primitives. However, thread-level parallelism may not 

completely hide the memory stalls for database workloads [17].  

Thus, we utilize two memory optimization techniques on the GPU 

to further reduce the memory stalls: coalesced access to improve 

spatial locality and local memory optimization to improve 

temporal locality. Frequently accessed data are stored in the local 

memory to reduce the accesses to the device memory.  

3.2.1 Coalesced Access  
We use the map primitive to illustrate how we take advantage of 

the coalesced access.  

The coalesced access improves the memory bandwidth utilization. 

Figure 3  illustrates two map schemes with and without coalesced 

accesses. Suppose a thread group consists of three threads.  In 

Figure 3 (a), due to the SIMD nature of GPUs, the accesses to the 

device memory among the threads are consecutive during the 

execution. Every three concurrent accesses are coalesced into a 

single read. In Figure 3 (b), the accesses among threads are not 

consecutive. Each thread issues a distinct memory request. This 

results in low utilization of the memory bandwidth. Suppose every 

k memory requests are merged into a single request, the number of 

memory requests with the coalesced access is (k-1) times less than 

that without the coalesced access.  

R

(a) Coalesced accesses (b) Non-coalesced accesses

Thread group 1

1 2 3 4 5 6

T1 T2 T3 T1 T2 T3

Device memory

1 2 3 4 5 6

T1 T1 T2 T2 T3 T3

Device memory

i+1 i+2 i+3 i+4 i+5 i+6

T’1 T’1 T’2 T’2 T’3 T’3

Device memory

i+1 i+2 i+3 i+4 i+5 i+6

T’1 T’2 T’3 T’1 T’2 T’3

Device memory

R

Thread group n Thread group 1 Thread group n

Figure 3. Maps with and without coalesced accesses. 

With this optimized map primitive, the memory performance of 

the bitonic sort is greatly improved. Similarly, the memory 

accesses in steps (2) and (4) of the split primitive are also 

designed as coalesced ones. 

Primitive: Sort 

Input: Rin [1, …, n]. 

Output: Rout [1, …, n]. 

Function: {Rout[i], i=1,…, n}={Rin[i], i=1, …, n} and 

ji andn] [1,..,ji, [j],
out

R[i]
out

R ≤∈∀≤ . 
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3.2.2 Local Memory Optimization 

We use the split and the sort algorithms including the bitonic sort 

and the quick sort as examples to illustrate the local memory 

optimization.  

In the split, each tuple accesses the histogram and the offset array.   

We store these arrays in the local memory. Due to the limited size 

of the local memory, we determine the maximum partitioning 

fanout for the split. Suppose the number of partitions is f  and 

each element in the array is encoded in z bytes. We determine F to 

be the maximum f such that MzfT ≤⋅⋅ . To divide a relation into 

an arbitrary number of partitions, x, we apply the split operation 

recursively. The number of levels in the recursion is  xF
log , and 

we uniformly set the number of partitions generated in each level 

of recursion. 

The bitonic sort has repetitive fetches on the device memory. We 

propose two optimization techniques on the local memory to 

improve its temporal locality. These two optimizations are 

illustrated in Figure 4. The first optimization is applied to the first 

c stages (
r

M
logc

2
= ) of the bitonic sort, which are independently 

performed on individual chunks of size M. We use local memory 

to store this chunk of data and process Stages 1 to c in the local 

memory. This saves 11)(cc
2

1
c...21OPT −+⋅=++= fetches from 

the relation in the device memory. The second optimization is 

applied to Steps c, c-1, …, and 1 of Stage i ( ci > ,
r

M
logc

2
= ). 

These steps sort a bitonic sequence of size M. We store this 

bitonic sequence into the local memory at the (i-c)th step so that 

Steps c, c-1, …, and 1 process the data in the local memory. This 

saves (c-1) fetches in Stage i ( ci > ). In total, it saves 

c)|inR|2(log1)-(c2OPT −⋅=  fetches for the entire bitonic sort. 

Note, without the local memory optimization, the total number of 

times fetching the relation is )|in|R(|in|R 12log2log
2

1
+⋅ . Suppose 

the relation has 16 million tuples and the local memory can hold 

1024 tuples, the local memory optimization reduces the total 

number of times fetching the relation from originally 300 to 120. 

Bitonic sort 
on local memory

Stage 1 Stage (c+1) Stage i (i>c)Stage c
(i-c) maps

Accesses to the
device memory

Accesses to the
local memory

Figure 4. Data accesses in the bitonic sort on the GPU with 

local memory optimization. 

In the quick sort, since we use the bitonic sort to sort each chunk 

after the partitioning step, the preset threshold for the chunk size 

is the local memory size. Since each chunk is smaller than the 

local memory, the bitonic sort performs completely within the 

local memory. 

4. JOIN ALGORITHMS 
We now briefly describe our join algorithms, including the non-

indexed and indexed nested-loop join (NINLJ and INLJ 

respectively), the sort-merge join (SMJ) and the hash join (HJ). 

Since the GPU-based algorithms are similar to their CPU-based 

counterparts, we focus on the differences in our GPU-based 

implementations, especially their usage of our primitives. 

Specifically, NINLJ uses the map primitive on both relations; 

INLJ uses the map primitive on the outer relation; SMJ uses the 

sort on both relations and then maps the sorted relation for 

merging; HJ uses the split primitive on both relations. The result 

output of each join algorithm uses the prefix scan and the scatter 

primitives.  

4.1 Join Processing  
We describe the join processing of each join algorithm. Since the 

scheme for outputting the join result is the same for the four join 

algorithms, we present the result output in Section 4.2. 

Non-indexed NLJs (NINLJ). Our algorithm is blocked nested-

loops. The nested-loop join can be naturally mapped to our GPU 

model, as shown in Figure 5. The circles represent tuples 

generated by the join, some of which may be eliminated by the 

join predicate.  

Each thread group computes the join on a portion of R and S, 

denoted as R' and S’, respectively. Within a thread group, each 

thread processes the join on one tuple from R’ and all tuples from 

S’. The joins of the tuple from R’ and other tuples from S are 

computed in other thread groups. Thus, the number of threads in 

each thread group is equal to the number of tuples in R’ ( T|R'| = ).  

Within the join of R’ and S’, we store S’ into the local memory to 

avoid reading S’ repeatedly from the device memory. Due to the 

limited size of the local memory, the size of S’ is set to the local 

memory size. Since each thread group requires to access R’ and S’ 

only once from the device memory, the total volume of data 

transfer between the GPU and the device memory 

is s)Msr(T
MT

|S||R|
||)S'||||R'(||

|S'||R'|

|S||R|
⋅+⋅⋅

⋅

⋅
=+

⋅

⋅
. 

Thread
group 1

Thread
group i

Thread
group j

Thread
group BpS

R

S’

R’

Thread1 Thread T

 

Figure 5. The non-indexed NLJ algorithm on the GPU. 

Indexed NLJs (INLJ). We implement the indexed join algorithm 

through adapting the cache-optimized search tree, CSS-Tree [31], 

to the GPU. Different from traditional B+-Trees that use discrete 

memory pointers for tree traversal, CSS-trees store the entire tree 

in an array and tree traversal is performed via address arithmetic. 

This effectively trades off more computation for less memory 

access, which makes it a suitable index structure to utilize the 

GPU’s computational power. 

A CSS-Tree can be efficiently constructed on the GPU taking a 

sorted relation as input. In the presence of the tree index, the 

indexed join consists of two major steps, searching for the first 

occurrence of matching tuples in the indexed relation, and then 

accessing the indexed relation for join results. While searching for 

a single key in such a tree offers little opportunity for parallel 

processing, multiple searches, however, fit extremely well into the 
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parallel programming model. Therefore, multiple keys are 

searched in parallel on the tree. Given a relation R, the search 

starts at the root node and steps one level down the tree in each 

iteration until reaching the data nodes on the bottom. A binary 

search or a sequential search is used to locate the index of the 

node to go. The binary search has fewer comparisons but has 

more branch divergence among the threads than the sequential 

search. We empirically evaluated these two search methods in 

Section 5.4.  

Since the upper levels of the tree index are frequently accessed, 

we replicate the upper levels of the tree index to the local 

memory. Given the tree fanout f, and tree node size z, the total 

size of tree nodes in the upper l levels is 
1f

1lf
z

−

−
⋅ . We compute the 

number of levels that can be replicated into the local memory as 

the maximum l such that M
1f

1lf
z ≤

−

−
⋅ . 

Sort-Merge Joins (SMJ). Similar to the traditional sort-merge 

joins, we first sort the two relations and then perform a merge step 

on these two sorted relations.  

The merge step is done in parallel to fully utilize the computation 

resources. The basic idea is to perform the merge on a chunk of S 

and its matching chunk of R independently. The merge is 

performed in three steps. First, we divide the smaller relation S to 

be Q chunks (
M

||S||
Q = ). The size of each chunk (except the last 

chunk) is M so that each chunk fits into the local memory. 

Second, we use the key values of the first and the last tuples of 

each chunk in S to identify the start and the end positions of its 

matching chunks in R. Third, we merge each pair of the chunk in 

S and its matching chunk in R in parallel. Each thread group is 

responsible for a pair. In the merge process, the S chunk is first 

loaded into the local memory. Next, the R tuples are used to find 

the matching results. Each thread reads a tuple from R and 

performs a search on the S chunk for matching. Either a sequential 

search or a binary search can be used.  

Hash joins (HJ). We develop a parallel version of the radix hash 

join [10]. The radix partitioning is implemented using our split 

primitive. Our algorithm has two phases. 

Phase 1) Partitioning. We split R and S into the same number of 

partitions using )/||(||2log MS  radix bits so that most S 

partitions fit into the local memory. The join on R and S is 

decomposed into multiple small joins on an R partition and 

its corresponding S partition.  

Phase 2) Matching. We choose the smaller one of the R and S 

partitions as the inner partition to be loaded into the local 

memory, and the other one as the outer partition. Each tuple 

from the outer partition uses a sequential search or a binary 

search on the inner partition for matching. If the binary 

search is used, we use the bitonic sort to sort the inner 

partition prior to probing.  

4.2 A Lock-Free Scheme for Result Output  
Since the GPU lacks incremental memory allocation on the device 

memory during the kernel execution, the result output has two 

major problems. The first one is the unknown join result size. One 

may consider estimating the (maximum) number of results for 

each thread. However, since the maximum number of results for 

the join of m by n tuples is nm× , this upper bound usually exceeds 

the size of the device memory. The second one is that write 

conflicts occur when multiple threads write results to the shared 

output region in the device memory. We propose a three-phase 

scheme to solve these two problems.  

First, each thread counts the number of join results for the 

partitioned join it is responsible for. A counter is maintained 

locally. There is no conflict in this step, because no threads write 

the actual join result.  

Second, we compute a prefix sum on the counters to get an array 

of write locations, each of which is the start location in the device 

memory for the corresponding thread to write. Through the prefix 

sum, we also know the total number of results generated by the 

join.  

Third, the host code allocates a memory area of the exact size of 

the join result and each thread outputs the join results to the 

device memory according to its start write location. Since each 

thread has its deterministic positions to write to, any write 

conflicts are avoided. If the size of the join result is larger than the 

device memory, we output the join results in multiple passes. In 

each pass, we output the join results from a portion of the threads.  

This three-phase scheme does not require the hardware support of 

atomic functions. However, it requires evaluating the join 

predicates twice. Fortunately, with the GPU's high computation 

power, the extra join predicate evaluation poses little overhead. 

4.3 Skew Handling  
In the partitioning-based algorithms such as SMJ and HJ, the 

skew in the data results in an imbalanced partition size. The 

processing of an inner partition that is larger than the local 

memory requires accesses to the device memory. Consequently, it 

may suffer from the memory stall and hurt the overall 

performance.  

The first problem is to identify the partitions that do not fit into 

the local memory. Taking the input array of partition sizes (i.e., 

the element i in the array is the size of the ith partition), we use 

the split primitive to divide the partitions into two groups, one for 

the partitions larger than the local memory and the other for those 

not larger than the local memory.  

Once we identify the partitions that are larger than M, we further 

decompose each of these partitions into multiple chunks each of 

size M, and process these generated small chunks in the local 

memory. For the SMJ, we perform a merge step on all possible 

matching pairs of chunks. For the HJ, we use the NINLJ on each 

matching pair of chunks. 

5. EXPERIMENTS 
In this section, we evaluate the performance of our proposed GPU 

primitives and join algorithms in comparison with the algorithms 

on the CPU.  

5.1 Experimental Setup 
We have implemented and tested our algorithms on a PC with a 

NVIDIA 8800 GTX GPU and a recently-released Intel Core2 Duo 

Quad-Core processor. The hardware configuration of the PC is 

shown in Table 2. The GPU uses a PCI-EXPRESS bus to transfer 

data between the main memory and the device memory with a 

theoretical bandwidth of 4 GB/s.  
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We compute the theoretical bandwidth to be the bus width 

multiplied by the memory clock rate. Thus, GPU and CPU have a 

theoretical bandwidth of 86.4 GB/s and 10.4 GB/s, respectively. 

Based on our measurements, the G80 achieves a memory 

bandwidth of around 69.2 GB/s whereas the quad-core CPU has 

5.6 GB/s. 

Table 2. Hardware configuration 

 GPU CPU(Quad-core) 
Processors 1350MHz × 8 × 16 2.4 GHz × 4 

Data cache (local 

memory) 

16KB × 16  L1: 32KB × 4, L2: 

4096KB × 2 

Cache latency (cycle) 2 L1: 2 , L2: 8  

DRAM (MB) 768 2048 

DRAM latency (cycle) 200 300 

Bus width (bit) 384  64  

Memory clock (GHz) 1.8 1.3  

We used synthetic data sets and workloads for detailed studies on 

our join algorithms. Our homegrown workload contains two join 

queries on relations R and S. Relations R and S are binary tables 

each consisting of two four-byte integer attributes, the record ID 

(rid) and the key value (key). We used both uniform and non-

uniform key values. We generated our non-uniform key values by 

setting a certain percentage of tuples to be a constant key value 

(e.g., one in our experiments). Other tuples are randomly 

distributed. When this percentage is zero, key values in the 

relation are uniformly distributed; when it is 100%, all tuples have 

the same key value. We varied this percentage to simulate 

different degrees of skewness.   

The join queries in our own workloads are “SELECT R.rid, S.rid 

FROM R, S WHERE <predicate>”. We used an equijoin and a 

non-equijoin query. The equi-join takes  S.keyR.key =  as the 

predicate and the non-equijoin δR.key S.key R.key +≤≤ ( δ  is a constant 

integer).  

Considering different parameters in our workload, we performed 

three sets of experiments on the equijoin query. First, we fixed the 

size of R and varied the size of S. The key values of R and S are 

uniformly distributed.  For NINLJ, we fixed |R| to be 1 million; 

while for the other three joins, we fixed |R| to be 16 million. 

Second, we examined the performance impact of varying the join 

selectivity. Third, we investigated our algorithms on the non-

uniform data sets. In the later two sets of experiments, we fixed 

both |R| and |S| to be one million for NINLJ. For the other three 

joins, we fixed both |R| and |S| to be 16 million. This is our default 

experimental setting for data sizes unless specified otherwise.  

These settings were chosen to be similar to the previous studies on 

in-memory join algorithms [10]. Finally, we varied the δ value in 

the non-equijoin predicate and examined the performance of non-

equijoins.  

In addition to supporting the regular data types such as integers, 

our primitives and join algorithms support more complex data 

types such as strings. We support more complex data types 

through indirection by storing offsets and lengths in our record. 

Specifically, the values of the field of all tuples are consecutively 

stored into an array named data array. We represent the field of 

each tuple using a pair (offset, length), where offset is the start 

position of the value in the data array and length is the length of 

the value (in bytes). The value is fetched according to the offset 

and the length. If two tuples need to be swapped, we swap them 

without modifying the data array. 

We run each experiment ten times and report the average value.  

Implementation details on CPU. For comparison, we have 

implemented highly optimized CPU-based primitives and join 

algorithms. The primitives are designed to be parallel and run on 

the quad-core machine. We use cache optimization techniques 

[34] to fine tune the performance of the parallel implementation. 

With these optimized primitives, we implement four join 

algorithms including the blocked NINLJ [34], the INLJ with the 

CSS-tree index [31], the SMJ with the optimized quick sort [22] 

and the radix HJ [10]. We compiled our algorithms using MSVC 

8.0 with full optimizations. Moreover, we used OpenMP [29] to 

implement the threading mechanism on the CPU. In general, the 

parallel CPU-based primitives and join algorithms are 2-6X faster 

than the sequential ones on the quad-core CPU. To check whether 

our CPU-based implementation has a comparable performance 

with state-of-the-art main memory databases, we also performed a 

performance comparison between our algorithms and MonetDB 

[26]. The comparison was done on the core query processing 

algorithms, excluding the other components such as query parsing 

and plan generation. 

Implementation details on GPU.  We implemented our 

primitives and join algorithms using CUDA [27] and DirectX10 

[6]. DirectX is a common graphics API runnable on most GPUs 

including AMD’s and NVIDIA’s. In contrast, CUDA is a GPGPU 

programming framework for recent NVIDIA GPUs. In the CUDA 

programming API, the developer can program the GPUs without 

any knowledge of graphics rendering APIs. Similar abstractions 

are also available on AMD GPUs using their compute abstraction 

layer (CAL) API. Both of these APIs expose a general-purpose, 

massively multi-threaded parallel computing architecture and 

provide a programming environment similar to multi-threaded 

C/C++. Since the performance results of the DirectX 

implementation are similar to those of CUDA, we discuss our 

implementation and results of CUDA in detail and briefly present 

the results for DirectX.  

Our GPU-based joins can be easily mapped to the CUDA 

framework. To implement an efficient algorithm using CUDA, we 

need to determine the following parameters with respect to the 

target operation: the number of threads for each thread group (T) 

and the number of thread groups (Bp). Issuing more threads to the 

GPU can potentially improve the overall performance by hiding 

memory latency at the cost increasing register pressure. Moreover, 

due to the limited local memory space on the multiprocessors, Bp 

and T cannot be arbitrarily large. Through experiments, we find 

that Bp=128 and T=64 are a good tradeoff value, where the 

memory latency is sufficiently masked, and each block receives 

adequate computation resources. Taking the search performance 

and data transfer into account, we set the number of keys in a 

node of the GPU CSS-tree to be 32.  

The DirectX10 programmable pipeline contains multiple stages 

including the Vertex Shader (VS), Geometry Shader (GS) and 

Pixel Shader (PS). For each algorithm, we draw a set of points 

corresponding to a tuple processing. The map, the gather and the 

scatter are implemented as vertex texture fetches and positioning 

in the VS. These APIs have inherent thread parallelism and 

achieve a similar performance to the CUDA implementation. The 

prefix scan is adopted from Horn's algorithm [20] and our sorting 
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algorithm is the bitonic sort [14]. We implement the split 

primitive as two steps, first sorting the tuples according to their 

partition identifiers, and next scattering these tuples with Min and 

Max blending to obtain the start and the end positions of each 

partition. The matching process is performed by drawing points 

from the outer relation, each point probing the inner relation. 

Since the local memory is not exposed to DirectX, NINLJ stores 

the inner block in the constant buffer, a fast on-chip cache 

exposed to DirectX. INLJ probes the texture storing the CSS-tree 

using the search keys of the outer relation. The fanout of the CSS-

tree is set to four, which is the number of color channels on the 

GPU for parallel comparison. SMJ sorts the texture of the inner 

relation and performs binary search for matching results. HJ 

builds the hash table for the inner relation in the texture using the 

split and renders the outer relation to probe the textures of the 

hash table. Unlike the three-phase result output scheme in the 

CUDA implementation, the DirectX implementation utilizes the 

stream-out feature of the GS to output the join results in parallel. 

5.2 Data Transfer between Device Memory 

and Main Memory 

Figure 6 shows the memory copy time from the main memory to 

the device memory. Similar results are obtained for data transfer 

from the device memory to the main memory. Given a certain 

block size, we transfer the data block by block. Due to the 

overhead associated with each transfer, the copy time increases as 

the block size decreases. When the block size is larger than 4MB, 

the copy time remains almost constant. That means when the 

relation size is larger than 4MB, the bandwidth is fully utilized. 

These results suggest that the programmer could batch small data 

transfers to reduce the time of data transfer between the GPU and 

the CPU.  
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Figure 6. Data transfer time from the main memory to the 

device memory (||R||=256MB). When the block size is larger 

than 4MB, the peak bandwidth is 3.1 GB/sec. 

5.3 Results on Primitives 

Since GPU-based primitives are usually used as intermediate 

components in the GPU-based join algorithms, their input data are 

already in the device memory and their output data are stored in 

the device memory as input to other primitives. Thus, we exclude 

the time of data transfer between the GPU and the CPU in the 

results for the primitives on the GPU.   

Table 3 shows the elapsed time of optimized primitives when |R| 

is fixed to be 16 million. The locations in the scatter and the 

gather are random. For the prefix scan, we compute the prefix sum 

on 16 million integers. The split function for the split is fcn(x) = x 

mod 64. That means the split divides the relation into 64 

partitions.   

We define the speedup to be the ratio of the execution time on the 

CPU to that on the GPU. Overall, the GPU-based primitives 

achieve a performance speedup of 2-27X over the CPU-based 

primitives. We obtained similar performance speedup with the 

data size varied. This speedup is due to the high parallelism and 

the two memory optimizations.  

Table 3. Elapsed time for primitives (|R| is 16 million). The 

speedup of the GPU-based primitives is 2-27X over the CPU-

based primitives. 

Primitive CPU (ms) GPU (ms) Speedup 
Map 109 4 27.3 

Scatter 1312 104 12.6 

Gather 1000 103 9.7 

Prefix scan 141 14 10.1 

Split 813 125 6.5 

Sort(qsort) 2313 945 2.4 

We have the following four observations. First, the average 

bandwidth of the optimized map primitive is 2.4GB/sec and 

64GB/sec on the CPU and the GPU, respectively. The speedup of 

the optimized GPU map is 27X over the CPU-based map. 

Additionally, it has a high bus utilization of 75%, given the 

theoretical bandwidth of 86GB/sec. Second, the scatter and the 

gather have a much lower bandwidth than the map due to their 

random access nature. Third, in the split on both the GPU and the 

CPU, the scatter takes over 70% of the total execution time. Forth, 

the speedup of the GPU-based quick sort algorithm is 2X over the 

optimized quick-sort on the quad-core CPU. Comparing the two 

GPU-based sorting algorithms, we find that the quick sort is 

around 30% faster than the bitonic sort (the results is not shown in 

the table). This result is consistent with the fact that the quick sort 

has lower complexity than the bitonic sort. We used the quick sort 

as our sorting primitive in the CUDA implementation.  

The speedups on the scatter, gather and prefix scan primitives are 

similar to those in the previous work [19][33]. Thus, we discuss 

the map, split and sort primitives in more detail. Specifically, we 

studied the performance impact of the three optimizations on the 

GPU.  
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Figure 7. The map performance with and without the 

coalesced access. The coalesced access improves the map 

bandwidth on the GPU by around twice. 

Coalesced access. Figure 7 shows the performance of the map 

primitive with the relation size varied. To isolate the performance 

impact of the coalesced access from the thread parallelism, we set 

Bp=16 and T=32, which is equal to the number of multiprocessors 

and the number of threads in a schedule unit of G80, respectively.  

The coalesced access improves the map bandwidth on the GPU by 
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a factor of about two. Note, the bandwidth of the coalesced map is 

4.5GB/sec, which is far lower than the theoretical bandwidth due 

to the absence of high parallelism and the local memory 

optimization.   

Thread parallelism. Figure 8 shows the elapsed time with a 

varying number of thread groups for the map and the split 

primitives. The number of threads in each thread group is fixed to 

be 32. Since the results for the bitonic sort are similar to those of 

the map, and the results for the quick sort are similar to the split, 

the results for the sort are omitted. The map primitive is 

implemented with coalesced accesses. As Bp is smaller than a 

threshold value, the elapsed time of both algorithms greatly 

decreases as the Bp value increases. This is because the memory 

stalls of accessing the device memory are better hidden by 

computation and the increase in bandwidth utilization. Since the 

map is cheaper than the split, the performance impact of 

increasing the number of thread groups is more significant on the 

map than on the split. When Bp is larger than the threshold value, 

the elapsed time slightly increases as Bp increases. The suitable 

numbers of thread groups are 128 and 64 for the map and the split, 

respectively. 

After obtaining the suitable number of thread groups, we further 

varied the number of threads per thread group. The results are 

shown in Figure 9. When T is smaller than a threshold value, the 

elapsed time decreases as T increases. This indicates memory 

stalls can be further hidden by increasing the number of threads 

per thread groups. When T is larger than the threshold value, the 

performance degrades due to the computation resource contention 

on the multiprocessor. The suitable numbers of threads per thread 

group for the map and the split are 64 and 32, respectively. Note, 

with the optimization of the coalesced access and the thread 

parallelism, the map primitive achieves a bandwidth of 64 GB/sec. 

 
Figure 8. The elapsed time with the number of thread groups 

varied. The number of threads in each thread group is fixed to 

32. The best numbers of thread groups in the map and the split 

are 128 and 64, respectively. 

 
Figure 9. The elapsed time with the number of threads per 

thread group varied. The number of thread groups is set to be 

the best one shown in Figure 8. The suitable numbers of 

threads per thread group for the map and the split are 64 and 

32, respectively. 

Local memory optimization. Figure 10 compares the GPU-based 

primitives with and without the local memory optimization. The 

local memory optimization improves the overall performance of 

the split and the sort primitives by 1.5-2X. This indicates that the 

thread parallelism may not fully eliminate the memory stalls when 

accessing the device memory. With the local memory 

optimization, the efficiency of the GPU-based primitives is greatly 

improved.   

 

0

500

1000

1500

2000

2500

Split Sort (Bitonic) Sort (qsort)

E
la
p
se
d
 t
im
e
 (
m
s
)

GPU (no-opt)

GPU(opt)

 
Figure 10. The performance impact of the local memory 

optimization. The shared memory optimization improves the 

overall performance by 1.5-2X.  

5.4 Results on Joins 
Since searching the data in the local memory is a core operation in 

the join step, we first studied the binary search and the sequential 

search. Figure 11 compares the performance of our joins with 

binary search and with sequential search. The result for NINLJ is 

not shown, because binary search is not used in NINLJ. The result 

for INLJ does not include the time for constructing the tree index. 

The tree construction time is so small that it can be ignorable on 

the GPU. Additionally, we observed that the local memory 

optimization achieved a performance improvement of around 10% 

on INLJ.  

Although the sequential search takes fewer branches than the 

binary search, the binary search has fewer data accesses than the 

sequential search. The binary search improves the performance by 

2.5X and 1.5X on INLJ and SMJ, respectively. The binary search 

has a relatively high speedup in the INLJ, because the search on 

the tree node is the major operation of INLJ. In contrast, the 

binary search degrades the performance of HJ due to the overhead 

of the extra sorting on the local memory.  
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Figure 11. Elapsed time of join algorithms with binary search 

and sequential search.  

Table 4. Elapsed time of the four relational joins on the GPU 

and the CPU for the uniform data sets. The speedup of the 

GPU-based primitives is 2-7X over the CPU-based primitives. 

Joins CPU (sec) GPU (sec) Speedup 
NINLJ 528.0 75.0 7.0 

INLJ 4.2 0.7 6.1 

SMJ 5.0 2.0 2.4 

HJ 2.5 1.3 1.9 
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Table 4 shows an end-to-end comparison on the elapsed time of 

the four relational joins on the GPU and the CPU. The elapsed 

time on the GPU includes the data transfer time between the 

device memory and the main memory. Overall, the GPU-based 

joins have a 2-7X speedup over the CPU-based joins. The high 

performance speedup is due to the efficient primitives as well as 

the efficient matching on the data in the local memory.  

Figure 12 shows the time breakdown of the four join algorithms 

on the GPU. We divide the total execution time of a GPU-based 

join into three components including the time for copying input 

data into the device memory, join processing and result output to 

the main memory.  For all join algorithms, the join processing 

time is dominant. The total time of copying data between the main 

memory and the GPU memory (one time cost for each join) was 

around 0.1%, 13%, 4% and 6% of the total execution time of 

NINLJ, INLJ, SMJ and HJ, respectively. Copying the input 

relations and outputting the join results are bulk transfers with a 

block size larger than 4MB. Thus, the bandwidth between the 

main memory and the device memory is fully utilized.   
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Figure 12. Join processing time and data transfer time 

between the main memory and the device memory. 

We studied the join performance with varying workload 

characteristics. Figure 13 shows the speedup of the GPU-based 

joins over the CPU-based joins with varying join selectivity and 

percentage of duplicates in R. The larger the join selectivity is, the 

larger the join output. The speedup is stable when the join 

selectivity varies. This result indicates that the data transfer time 

between the device memory and the main memory has little 

performance impact on GPU-based joins. As the percentage of 

duplicates increases, the relation becomes more skewed. The 

speedup of the SMJ and HJ is stable. This indicates the 

effectiveness of our skew handling.  

 
Figure 13. The speedup of the GPU-based joins over the CPU-

based joins: (left) the join selectivity is varied; (right) the 

percentage of duplicates in R is varied and S is uniform.   

 
Figure 14. Performance comparison between our algorithms 

and MonetDB: (left) sort, (right) hash joins.  

5.5 Comparison with MonetDB 
Figure 14 compares the performance of the sort and the hash join. 

We varied |R| from 4M to 16M for the sort. For the hash join, we 

kept |R| = |S|, and varied both |R| and |S| from 4M to 16M. As the 

data size increases, both our CPU- and GPU-based 

implementations outperform MonetDB. This figure indicates that 

the efficiency of our implementation is comparable to MonetDB. 

5.6 Results on DirectX Implementation 
Table 5 shows the elapsed time of the four relational joins 

implemented with CUDA and DirectX. For each implementation, 

we show its total execution time and the time for the join 

processing only, i.e., the texture copy in/out and 

encoding/decoding time is not included for the DirectX 

measurement and the data copy in/out is not included for the 

CUDA measurement. The DirectX-based NINLJ and INLJ 

achieve a similar performance to their CUDA-based counterparts.  

The GPU pipelines in these DirectX implementations are short 

and simple. In contrast, the DirectX-based SMJ and HJ are about 

twice as slow as their CUDA-based counterparts. These DirectX 

implementations contain more graphics related overhead such as 

texture coding/decoding.  

Table 5. Elapsed time in seconds of the four relational joins 

implemented with CUDA and DirectX (DX).  

  DX (join) DX (total) CUDA (join) CUDA (total) 

NINLJ 72.3 74.1 75.0 75.0 

INLJ 0.7 0.9 0.6 0.7 

SMJ 3.8 4.7 1.9 2.0 

HJ 2.3 2.7 1.2 1.3 

5.7 Handling Other Data Types 
Figure 15 shows the performance of our sort primitive on the 

strings. Each tuple contains two fields, the record ID and the 

string field. The number of tuples is fixed to be four million, and 

we varied the average string length. As the string length increases, 

the variance of the string lengths increases. The performance 

speedup of our GPU-based sort over the CPU-based sort slightly 

decreases. One possible reason is the increasing branches in the 

string matching. Nevertheless, the speedup of the GPU-based 

quick sort is around 2X over its CPU-based counterpart.  
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Figure 15. Sorting strings on the CPU and the GPU. The 

GPU-based quick sort achieves a speedup of around 2X over 

its CPU-based counterpart. 

5.8 Summary 
In summary, our GPU-based primitives and join algorithms 

achieve a speedup of 2-27X over their optimized CPU-based 

counterparts. We evaluated our join algorithms for both equijoins 

and non-equijoins, different data sizes, join selectivities and data 

distributions. Generally, INLJ is the suitable join algorithm in the 

presence of the index, and NINLJ for non-equijoins and HJ for 

equi-joins otherwise. The performance speedup for the non-

indexed NLJ, the indexed NLJ, the sort-merge join and the hash 

join is over 7.0X, 6.1X, 2.4X and 1.9X, respectively.  

6. DISCUSSION 
We first discuss the performance speedups, and next the 

opportunities and the limitations of query processing on the GPU. 

The performance speedup of our GPU-based join algorithms over 

quad-core CPU-based join algorithms is resulted from the 

differences in the architectures as well as the algorithm design. 

First, the G80 has 18X more total clock cycles and over 12X 

higher memory bandwidth than the quad-core CPU. The speedups 

of our join algorithms are smaller than both ratios, mainly due to 

the inter-thread communication on the GPU. Second, the L2 

cache of the quad-core CPU is 32X larger than the local memory 

on the GPU. Since memory stalls are a significant performance 

factor, memory optimizations are important in the algorithm 

design. On the GPU, we utilize the coalesced access to improve 

the bandwidth utilization, and the local memory optimization for 

the temporal locality. In comparison, our CPU-based algorithms 

have only cache optimization for temporal locality. It would be 

interesting to quantitatively study the performance impact of each 

individual hardware feature.  

Through designing and implementing relational join algorithms 

on GPUs, we have identified a number of opportunities and 

limitations of new-generation GPUs as a database query co-

processor.  

The following are four major opportunities:   

First, GPUs have a highly parallel hardware architecture that fits 

extremely well with data-parallel query processing.  The massive 

thread parallelism of the GPU hides the memory latency more 

efficiently than traditional von Neumann architectures. Moreover, 

the high memory bandwidth and the fast inter-processor 

communication can significantly accelerate the performance of 

many database operations. 

Second, the GPU programmability for general-purpose computing 

has been improving greatly. The AMD CTM and NVIDIA CUDA 

APIs extend the functionality of GPUs for the high-performance 

computing market in addition to the traditional gaming market.  

Third, with the new architectural features and the improved 

general-purpose programmability, new-generation GPUs allow us 

to utilize traditional wisdom from both the GPU programming 

model and the CPU-based query processing techniques. 

Specifically, we adapt CPU-based optimization techniques to the 

GPU hardware features in order to reduce memory stalls of the 

primitives and the join algorithms on the GPU.    

Fourth, our primitive-based methodology has a high flexibility for 

the computation on many-core architectures including GPUs and 

multi-core CPUs. We proposed to break the four basic join 

algorithms into a set of simple primitives. The algorithms of these 

primitives are scalable to hundreds of processors. Moreover, these 

primitives can be used to develop higher-level primitives and 

other applications. Additionally, we can easily replace the existing 

implementation of a certain primitive with a more efficient one 

whenever applicable. For instance, GPGPU researchers recently 

released CUDPP [18], a CUDA library of data parallel primitives. 

We plan to compare it with our own primitives, and choose the 

more efficient ones to implement the join algorithms.  

We also identified a few limitations of GPUs for performing 

relational query processing:   

First, query processing in general and join processing in specific 

is a complex task in its runtime logic in addition to its data-

intensiveness.  Mapping such a task onto the SIMD processors in 

the GPU requires a significant amount of design and 

implementation effort.  In particular, the SIMD architecture by 

design trades functional simplicity for high efficiency and 

concurrency. For instance, branches frequently appear in query 

processing algorithms, e.g., index searches, and need special care 

on the GPU. Existing techniques [40] for rewriting the branches 

on the CPU can also be applied to the GPU. This rewrite is 

especially useful for common and expensive operations.  We 

acknowledge that this kind of rewriting in general is a difficult 

task for the run-time environment.   

Another example is that the synchronization mechanism for 

handling read/write conflicts, which happen constantly in query 

processing, is limited in the GPU.  As a result, our primitives and 

join algorithms take extra computation such as computing the 

writing offsets to avoid the conflicts. This extra computation 

increases the work complexity of our algorithms by a constant 

factor.  

Second, with the exposure of the massively multi-threaded 

hardware architecture on the GPU, it also makes GPGPU 

programming trickier to ensure correctness and to fully utilize the 

essential GPU features such as data parallelism than the previous 

GPUs.  In our work, we have developed a small set of primitives 

that are carefully designed and highly tuned for GPU join 

processing. Similarly, GPGPU programmers could produce better 

and faster programs using a set of well-defined primitives as 

building blocks to address this issue.  

Third, even though the latest GPU frameworks, such as CTM and 

CUDA, are a significant leap from the traditional GPUs in 

providing great details about the hardware architecture, they are 

still far behind the CPU vendors' tradition of giving sufficient 

details about the hardware specification, e.g., the memory 

hierarchy. Currently, we mainly rely on empirical experiments to 
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estimate the hardware parameters and to identify the suitable 

settings for our algorithms.   

Fourth, the power consumption of the GPU is higher than that of 

the CPU. In our experiments, the GPU requires a power supply of 

450 Watts, whereas the CPU requires 95 Watts only. It is 

desirable to develop software or hardware techniques to reduce 

the power consumption of the GPU.  

Finally, as a co-processor, the GPU requires advanced software 

techniques to support complex workloads. For example, lacking 

hardware support for complex data types is an inherent weakness 

of the GPU. Currently, we can use software solutions for 

supporting more complex data types such as high precision 

numbers on the GPU [38]. Fortunately, GPU vendors plan to 

support high precision numbers such as double in the near future.  

7. CONCLUSION 
Graphics processors have become an attractive alternative for 

general-purpose high performance computing on commodity 

hardware. The continuing advances in hardware and the recent 

improvements on programmability make GPUs even more 

suitable for database query processing than before. In this study, 

we have designed a small set of data-parallel primitives for 

relational join processing on GPUs. These primitives provide 

high-level abstractions for data-centric operations and are highly 

tuned to fully utilize the architectural features of graphics 

processors.  We have implemented four representative relational 

join algorithms using these primitives and have compared the join 

performance with optimized CPU-based in-memory join 

algorithms. We find that our GPU joins achieve a speedup of 2-

7X over their optimized CPU-based counterparts. 

This paper focuses on GPU join processing in the video memory.  

We believe this is an important but initial step towards building a 

high-performance, general-purpose database query processor 

using the GPU. One interesting future direction is to evaluate our 

join algorithms with more complex workloads. Additionally, we 

are interested in how to schedule the execution of relational query 

processing between the GPU and the CPU so that their 

computation power is fully exploited.  

8. Experiment Repeatability 
The repeatability committee has not been able to repeat the 

experiments of this paper due to the lack of appropriate hardware. 

Code and data used in the paper are available at 

http://www.sigmod.org/codearchive/sigmod2008/.  
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