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Abstract query optimization, judicious resource allocation, and

sophisticated scheduling to achieve high performance,

This paper describes our ongoing work developing the, s ore targeting environments where data rates and query
Stanford Stream Data Manag@8TREAM, a system for |- may exceed available resources. In these cases our

executing continuous queries over multiple continuous.System is designed to provideproximate answerto
data streams. The STREAM system supports a declaisyntinyous queries. Managing the interaction between

ative query language, and it copes with high data rategegqrce availability and approximation is an important

and query workloads by providing approximate answerg,q ;s of our project. We are developing both static tech-

when resources are limited. This paper describes Spedﬁﬁiques and techniques for adapting as run-time condi-
contributions made so far and enumerates our next steRRyns change.

in developing a general-purpose Data Stream Manage-

This paper presents a snapshot of our language design,
ment System. paperp P guag g

algorithms, system design, and system implementation
efforts as of autumn 2002. Clearly we are not presenting
1 Introduction a finished prototype in any sense, e.g., our query lan-

o guage is designed but only a subset is implemented, and
At Stanford we are building Bata Stream Management o, annroximation techniques have been identified but

System (DSMShat we call STREAM The new chal- 510 hot exploited fully by our resource allocation algo-

lenges in building a DSMS instead of a traditional DBMS ithms. However, there are a number of concrete contri-
arise from two fundamental differences: butions to report on at this point:

1. In addition to managing traditional stored data such , an extension of SQL suitable for a general-purpose

as relations, a DSMS must handle multiple contin-  pg\s with a precisely-defined semantics (Section 2)
uous, unbounded, possibly rapid and time-varying . .
data streams e Structure of query plans, accounting for plan sharing

. and approximation techniques (Section 3)
2. Due to the continuous nature of the data, a DSMS

typically supports long-runningontinuous queries An algorithm for exploiting constraints on data
which are expected to produce answers in a continu-  Séams to reduce memory overhead during query
ous and timely fashion. processing (Section 4.1)

A near-optimal scheduling algorithm for reducing

Our goal is to build and evaluate a general-purpose ® ) .
inter-operator queue sizes (Section 4.2)

DSMS that supports a declarative query language and
can cope with high data rates and thousands of continu-e A set of techniques for static and dynamic approxi-
ous queries. In addition to the obvious need for multi-  mation to cope with limited resources (Section 5)
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Chambers, 3Com and Rambus, by a Microsoft graduate fel- precision (Section 5.3)

| hi db ts f Mi ft, Verit d the Ok . .
,?c\;\fnég‘tgﬂ_ y grants from MICTOSOIL, Veritas, and the DKaWa o a software architecture designed for extensibility

o ) ) o and for easy experimentation with DSMS query pro-
Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed cessing techniques (Section 6)
for direct commercial advantage, the VLDB copyright notice Some current limitations are:

and the title of the publication and its date appear, and notice . . .
is given that copying is by permission of the Very Large Data ® Our DSMS is centralized and based on the relational

Base Endowment. To copy otherwise, or to republish, requires model. We believe that distributed query processing
a fee and/or special permission from the Endowment. will be essential for many data stream applications,
Proceedings of the 2003 CIDR Conference and we are designing our query processor with a mi-



gration to distributed processing in mind. We may CQL also contains two new operator¢stream and
eventually extend our system to handle XML dataDstream —whose function is discussed in Section 2.2.
streams, but extending to distributed processing has As introduced in [3], in CQL a window specification
higher priority. consists of an optionglartitioning clause a mandatory

e We have done no significant work so far in query p|anwindow sizeand an optiondiltering predicate The par-

generation. Our system supports a subset of our exitioning clause partitions the data into several groups,

tended query language with naive translation to a sin©0MPUtes a separate window for each group, and then

gle plan. Italso supports direct input of plans, includ- Merges the windows into a single result. It is syntacti-

ing plan component sharing across multiple queries.ca”y analogous to a grouping clause, using the keywords
Partition By in place ofGroup By . As in SQL-

Due to space limitations this paper does not include ggq [19], windows are specified using eitfeows (e.g.,
section dedicated to related work. We refer the readesrqows 50 Preceding ”) or Range (e.g., ‘Range

to our recent survey paper [3], which provides extensive; 5 minutes Preceding ). The filtering predicate
coverage of related work. We do make some comparjg specified using a standard S@there clause.

isons to other work throughout this paper, particularly 5 sampling clause specifies that a random sample of
the Aurora project [5], which appears to be the closestin e gata elements from the stream should be used for
overall spirit to STREAM. However even these compar-qery processing in place of the entire stream. The syn-
isons are narrow in scope and again we refer the readgky of the sampling clause is the keywddmple pa-

to [3]. rameterized by percentage sampling rate. For example,
“Sample(2) ”indicates that, independently, each data
2 Query Language element in the stream should be retained with probability

The STREAM system allows direct input of query plans, 0.02 and discarded with probability.93.

similar to the Aurora approach [5] and described briefly2 1 Examples

in Section 6. However, the system also supports a declai=

ative query language using an extended version of SQLOUr example queries reference a stre@equests  of

All queries arecontinuous as opposed to thene-time ~ requests to a web proxy server. Each request tuple has
queries supported by a standard DBMS, so we call outhree attributesclient  _id , domain , andURL

languageCQL (pronounced “sequel”), foContinuous The following query counts the number of requests for
Query Language In this section we focus on the syn- Pages from the domastanford.edu in the last day.
tax and semantics of continuous queries in CQL. Select Count(*)

Queries in a DSMS should handle data from both con- From Requests S [Range 1 Day Preceding]

tinuous data streams and conventional relations. For nowWhere S.domain = ‘stanford.edu’

assume a global, discrete, ordered time domain. TimeThe semantics of providing continuous answers to this
related issues are discussed briefly in Section 2.3. query (and the next two examples) are covered in Sec-

e Streamshave the notion of an arrival order, they tion 2.2.
are unbounded, and they are append-only. (Updates The following query counts how many page requests
can be modeled in a stream using keys, but fronivere for pages served by Stanford’'s CS department web
the query-processor perspective we treat streams &€rver, considering only each clientl® most recent
append-only.) A stream can be thought of as a sepage requests from the domatanford.edu . This
(multiset to be precise) of paits, s), indicating that ~ query makes use of a partitioning clause and also brings
a tuples arrives on the stream at time In addition ~ out the distinction between predicates applied before de-
to the continuous source data streams that arrive d€rmining the sliding window cutoffs and predicates ap-
the DSMS, streams may result from queries or sub®lied after windowing.
queries as specified in Section 2.2. Select Count(*)

: From Requests S
e Relationsare unordered, and they support updates [Partition By S.client_id

and deletions as well as insertions (all of which are Rows 10 Preceding
timestamped). In addition to relations stored by the Where S.domain = ‘stanford.edu’]
DSMS, relations may result from queries or sub- Where S.URL Like ‘http://cs.stanford.edu/%’

queries as specified in Section 2.2. Our final example references a stored relatioo-

Syntactically, CQL extends SQL by allowing the mains that classifies domains by the primary type of
From clause of any query or subquery to contain rela-web content they serve. This query extracts a 10% sam-
tions, streams, or both. A stream in theom clause may ple of requests to sites that are primarily of type “com-
be followed by an optionaliding window specificatign merce,” and from those it streams the URLs of requests
enclosed in brackets, and an optiosampling clause where the clientd is in the range [1..1000]. Notice that



Window Specification in R at timer but notinR attimer — 1.

Langauge Relational Query

plied to relationR contains a stream elemeft, s)

whenever tuple is in R at timer — 1 but not inR at
timer.

Although these operators can be specified explicitly in
queries in order to turn relations into streams for win-
dowing, or to produce streamed rather than relational
query results, the most common case is an implicit
Figure 1: Mappings among streams and relations. |stream operator as part of CQL's default behavior,
discussed below.

The last mapping in Figure 1 is from relations to re-
lations via a relational query language. In general any
relational query language may be used, but CQL relies

(>|_anguage e Analogously, Dstream (for “delete stream”) ap-

Operators
| stream Dstream

a subquery is used to produce an intermediate stféam
from which the 10% sample is taken.

Select T.URL on SQL as its relational basis.
From ) ) . . .

(Select client_id, URL Using the mappings in Figure 1, CQL queries can
From Requests S, Domains R freely mix relations and streams. However, whenever a
Where S.domain = R.domain stream is used it is mapped immediately to a relation by
And R.type = ‘commerce’) T Sample(10) an explicit or implicit window specification. We can now

Where T.client id Between 1 And 1000 state the semantics of continuous queries over streams

and relations:

e The result of a query) at timer is obtained by tak-
ing all relations at timer, all streams up to time
converted to relations by their window specifications,
and applying conventional relational semantics. |If

1. We should exploit well-understood relational seman-  the outermost operator istream or Dstream
tics to the extent possible. then the query result is converted to a stream, oth-

erwise it remains as a relation.

2.2 Formal Semantics

One of our contributions is to provide a precise seman-
tics for continuous queries over streams and relations. In
specifying our semantics we had several goals in mind:

2. Since transformations are crucial for query optimiza-
tion, we should not inhibit standard relational trans-  Let us briefly consider the three example queries in
formations and we should enable new transforma-Section 2.1. The first two queries are similar and rela-

tions relevant to streams. tively straightforward: At any time-, a window is evalu-
3. Easy queries should be easy to write, and simplét€d on th&Requests stream up to time:, a predicate
queries should do what one expects. is applied, and the result contains the number of remain-

_ . ing tuples. By default, the result is a singleton relation,
Our approach is based on mappings between streamg, vever if we add an outermastream operator the

and relations, as illustrated in Figure 1. We explain ead}esult instead streams a new value each time the count

arc in Figure 1, then specify our query semantics. Reyhanges  The third query is somewhat more complex,

call again that we assume a global discrete time domair},e|ying on two CQL defaults: First, when no window
further discussed in Section 2.3. _ _ specification is provided the default window [Range

Astream is mapped to arelation by applying awindow\y, o nded Preceding] ” Second, whenever the
specification. In general any windowing language mayg,\termosgrom list of a non-aggregation query contains
be used, but CQL supports th®ws, Range, Parti- one or more streams, the query result hasstneam
tion By , andWhere constructs described earlier. A yerator applied by default. We leave it to the reader to
window specification is applied to a stream up t0 & Speyerify that the transformations between streams and rela-
cific ime 7, and the result is a finite set of tuples which ,,q'in this query do indeed produce the desired result.
IS trﬁa(tjed as a relation. A window speC|f|cat|ocri1 maglé)e Space limitations prohibit detailed elaboration of our
applied to ahsource strgam,for to alstream pro uEg " Y &mantics, but we briefly discuss the three goals set out
subquery. The semantics of tBample operator, which 4 the heginning of this subsection. First, clearly we rely
is applied before windowing, are straightforward and not, e 4,ify on existing relational semantics. Second, rela-
discussed again in this section. _ _tjonal transformations continue to hold and our language

Relatlorls are mapped to streams by applying special,,norts a number of useful stream-based transforma-
operators: tions. For instance, in our third example query, if relation

e Istream (for “insert stream”) applied to relatioR ~ Domains is static then we can transform the (default)
contains a stream elemefit s) whenever tuple is ~ Unbounded window on theRequests stream into a



Nowwindow. Finally, although the mapping-based se-its presence serves as a hint to the system that may influ-
mantics may appear complex, it is our belief that the deence decisions about query plans and resource allocation
faults in our language do make easy queries easy to writ¢Sections 3-5).
and queries do behave as they appear. Queries may be assigned weights indicating their rel-
As the most basic of test cases for our semantic goalsitive importance. These weights are taken into account
guery “‘Select * From S ” should produce stream by the system when it is forced to provide approximate
S, and it does. The default window f6tis Unbounded answers due to resource limitations. Given a choice be-
(but can be transformed tdowif S contains a key). Each tween introducing error into the answers of two queries,
time a stream elemeifit, s) arrives onS, s is logically  the system will attempt to provide more precision for the
added to the relational result of the query, and thus query with higher weight. Weights might also influence
is generated in the defauktream query result with  scheduling decisions, although we have not yet explored
timestampr. weighted scheduling. Note that inactive queries may be
thought of as queries with negligible weight.

2.3 Stream Ordering and Timestamps

Our language semantics—or more accurately the abil3 Query Plans

ity to implement our semantics—makes a number of im-Thjs section describes the basic query processing archi-
plicit assumptions about time: tecture of the STREAM system. Queries are registered
e So that we can evaluate row-bas&b(s) and time-  With the system and execute continuously as new data ar-
based Range) sliding windows, all stream elements rives. For now let us assume that a separate query plan is
arrive in order, timestamped according to a globalused for each continuous query, although sharing of plan
clock. components is very important and will be discussed in
e So that we can coordinate streams with relationSection 32 We also assume that que_ries are registered
states, all relation updates are timestamped accorotzefore their input streams begm producmg data, a!though
ing to the same global clock as streams. cle.arlly we must addres; the issue of adding queries over
existing (perhaps partially discarded or archived) data
e So that we can generate query results, the globadtregams.
clock provides periodic “heartbeats” that tellus when |t is worth a short digression to highlight a basic dif-
no further stream elements or relation updates willierence between our approach and that of Aurora [5].
occur with a timestamp lower than the heartbeatAurora uses one “mega” guery p|an performing all com-
value. putation of interest to all users. Adding a query con-

If we use a centralized system clock and the systengists of directly augmenting portions of the current mega-
timestamps stream elements and relation updates as the{an, and conversely for deleting a query. In STREAM,
arrive, then these assumptions are satisfied. We can al§tyeries are independent units that logically generate sep-
handle less strict notions of time, including application-arate plans, although plans may be combined by the sys-
defined time. Full details are beyond the scope of this patem and ultimately could result in an Aurora-like mega-
per, but out-of-order streams can be ordered by buffering!an.
and waiting for heartbeats, and the absence of a heartbeatTo date we have an initial implementation in place
can be compensated for with timeout mechanisms, in théor a fairly substantial subset of the language presented
worst case resulting in some query result imprecision. N Section 2, omitting primarily certain subqueries and

Note that the related areas imporalandsequence Mmany esoteric features of standard SQL. In this section
query languages [15, 16] can capture most aspects of the highlight the features of our basic query processing
timestamps and window Specifications in our |anguagear0hitecture but do not go into detail about individual

Those languages are considerably more expressive th&l/ery operators. Most of our operators are stream- or
our |anguage, and we feel they are “overkill” in typ|ca| window-based analogS to Operators found in a traditional

data stream environments. DBMS.
A query plan in our system runs continuously and is
2.4 Inactive and Weighted Queries composed of three different types of components:

d ® Query operators similar to a traditional DBMS.
Each operator reads a stream of tuples from a set of
input queues, processes the tuples based on its se-

inactive and the other is thereightassigned to the query. mantics, and writes its output tuples into a single out-
When a query is inactive, the system may not maintain ~Putqueue.

the answer to the query as new data arrives. However,e Inter-operatorqueues also similar to the approach
because an inactive query may be activated at any time, taken by some traditional DBMS’s. Queues connect

Two dynamic properties of queries are controlle
through our administrative interface discussed in Sec-
tion 6. One property is whether the queryaistive or



different operators and define the paths along which
tuples flow as they are being processed.

e Synopsesused to maintain state associated with op-
erators and discussed in more detail next.

A synopsis summarizes the tuples seen so far at som
intermediate operator in a running query plan, as neede
for future evaluation of that operator. For example, for
full precision a join operator must remember all the tu- Scheduler O3
ples it has seen so far on each of its input streams, so it
maintains one synopsis for each (similar teyanmetric
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hash join[21]). On the other hand, simple filter opera-
tors, such as selection and duplicate-preserving projec- / O, \

tion, do not require a synopsis since they need not main-

tain state. o % % 2]

For many queries, synopsis sizes grow without bound
if full precision is expected in the query result [1]. Thus, T T
an important feature to support is synopses that use some \ \
kind of summarization technique to limit their size [10], R S T
e.g., fixed-size hash tablesliding windows reservoir
samplesquantile estimatesandhistograms Of course
limited-size synopses may produce approximate operator
results, further discussed in Section 5. window synopses, which keep a summary of the last

Although operators and synopses are closely coupled (0 < w < o0) tuples of some intermediate stream.
in query plans, we have carefully separated their imple-One use of sliding-window synopses is to implement the
mentation and provide generic interfaces for both. Thiswindow specifications in our query language (Section 2).
approach allows us to couple any operator type with anyFor RANGEwvindow specifications we cannot bound the
synopsis type, and it also paves the way for operator angynopsis size, but foROWSvindow specifications the
synopsis sharing. The generic methods of @pera- memory requirement/ is determined by the tuple size
tor class are: and number of rows. Sliding-window synopses also
. o . are used for approximation (Section 5), in which case
e create , with parameters specifying the input : . : ;

L . _typically w is determined by the tuple size and memory

queues, output queue, and initial memory allocatlon'allocationM
e changeMem, with a parameter indicating a dynamic

decrease or increase in allocated memory. 3.1 Example

e run , with a parameter indicating how much work the Figure 3.1 illustrates plans for two querig®, andQ-.
operator should perform before returning control to Together the plans contain three operatoys-O;, four
the scheduler (see Section 4.2). synopses;—s, (two per join operator), and four queues

q1—q4. Query(Q is a selection over a join of two streams

R and$S. QueryQ)- is a join of three stream?, S, and

e create , with a parameter specifying an initial 7. The two plans share a subplan joining stredend

Figure 2: Plans for querig3;,Q- over stream$?,S,T".

The generic methods of ti&ynopsis class are:

memory allocation. S by sharing its output queug. Plan and queue sharing
» changeMem, with a parameter indicating a dynamic is discussed in Section 3.2. Execution of query operators
decrease or increase in allocated memory. is controlled by a globadcheduler When an operatap

e insert anddelete , with a parameter indicating hs sche_dulgdb, contrgl pa?sesl@ofor a perlog a;r;entl;;]
the data element to be inserted into or deleted from etermme_ y number o tup €s processed, at. ough we
the synopsis. may later mcqrporatg tlmesllce—basgd schedyllng. Sec-

tion 4.2 considers different scheduling algorithms and

e query , whose parameters and behavior depend ORheir impact on resource utilization.
the synopsis type. For example, in a hash-table

synopsis this method might look for matching tu- 3.2 Resource Sharing in Query Plans

pIgzs(jwﬂh a partllcu:ﬁ_r key \tlﬁllée' V.Vhr']Ite for as}l;dmfg;l As illustrated in Figure 3.1, when continuous queries
w!ndow synopsis this method might support a TUll . \tain common subexpressions we can share resources
window scan. and computation within their query plans, similar to
So far in our system we have focused on sliding-multi-query optimization and processing in a traditional



DBMS [14]. We have not yet focused on resource sharof interesting issues arise, most of which we have not yet
ing in our work—we have established a query plan archi-addressed:

tecture that enables sharing, and we can combine plans,
that have exact matching subexpressions. However, sev-
eral important topics are yet to be addressed:

Which operator is responsible for managing the

shared synopsis (e.g., allocating memory, inserting

tuples)?

e For now we are considering resource sharing and o |fthe synopses required by the different operators are
approximation separately. That is, we do not in- ot of identical types or sizes, is there a theory of

troduce sharing that intrinsically introduces approx- “synopsis subsumption” (and synopsis overlap) that
imate query results, such as merging subexpressions e can rely on?

with different window sizes, sampling rates, or fil-
ters. Doing so may be a very effective technique
when resources are limited, but we have not yet ex-
plored it in sufficient depth to report here.

« Our techniques so far are based on exact common Cléarly we have much work to do in the area of re-
subexpressions. Detecting and exploiting subexpres30urce sharing. Note again that the issue of automatic
sion containment is a topic of future work that poses'€S0Urce sharing is less crucial in a system like Au-

some novel challenges due to window specifications/Or& Where resource sharing is primarily programmed by

timestamps and ordering, and sampling in our query!Sers when they augment the current mega-plan.
language.

o If the synopses are identical, how do we cope with
the different rates at which operators may “consume”
data in the synopses?

The implementation of a shared queue (gigin Fig- 4  Resource Management

ure 3.1) maintains a pointer to the first unread ltup.le forefective resource management is a key component of a
each operator that reads from the queue, and it discarqgyi5 siream management system, and it is a specific focus
tuples once they have been read by all parent operatorgs o project. There are a number of relevant resources
_Currently multiple queries accessing the same incom;, - psms: memory, computation, I/O if disk is used,
ing base data streasi “share” S as a common Subex- g network bandwidth in a distributed DSMS. We are
pression, although we may decide ultimately that '”pUtfocusing initially on memory consumed by query plan
data streams should be treated separately from COMMAy nopses and queubsithough some of our techniques
subexpressions. can be applied readily to other resources. Furthermore,
The number of tuples in a shared queue at any timgn many cases reducing memory overhead has a natu-
depends on the rate at which tuples are added to thgy side-effect of reducing other resource requirements
gueue, and the rate at which the slowest parent operggg well.
tor consumes the tuples. If two queries with a common | this section we discuss two techniques we have
subexpression produce paren_t operators with very diﬁerdeveloped that can reduce memory overhead dramati-
ent consumption rates, then it may be preferable not t.q)ly during query execution. Neither of these techniques

use a shared subplan. As an example, consider a que¥gmpromises the precision of query results.
q output from a join operatoy, and supposd is very

unselective so it produces nearly the cross-product of itst- AN @lgorithm for incorporating known constraints on
inputs. If J’s parentP; in one query is a “heavy con- mput_data st_ream_s to re_duce synopsis sizes. This
sumer,” then our scheduling algorithm (Section 4.2) is ~ WoOrk is described in Section 4.1.

likely to scheduleJ frequently in order to produce tuples 2. An algorithm for operator scheduling that minimizes
for P, to consume. If/’s parentP, in another query is a gueue sizes. This work is described in Section 4.2.

“light consumer,” then the scheduler will schedulkess In Section 5 we discuss approximation techniques, and

frequently so tuples don't proliferate in_In this situ- 5 jmnortant interaction between resource allocation
ation it may not be beneficial faP, and P, to share a and approximation.

common subplan rooted iA.

. We have shown formqlly that although subplan shar-, 4 Exploiting Constraints Over Data Streams

ing may be suboptimal in the case of common subex- ) B )
pressions with joins, for common subexpressions with-So far we h_ave not discussed expl_omng data or arn_val
out joins sharing always is preferable. Details are beyongharacteristics of input streams during query processing.
the scope of this paper. Certainly we must be able to handle arbitrary streams,

When several operators read from the same queue ar%‘t when we have additional information about streams,

when more than one of those operators builds some kind™ 15ig)c 2150 could be used for synopses and queues, although

of synopsis, then it may be beneficial to introdwey@- i that case we might want to treat I/O as a separate resource
opsis sharingn addition tosubplan sharing A number  given its different performance characteristics, as in Aurora [5].



either by gathering statistics over time or through con-4.2 Scheduling
straint specifications at stream-registration time, we can
use this information to reduce resource requirementfuery plans are executed viegobal schedulgrwhich
without sacrificing query result precision. (An alter- calls therun methods of query plan operators (Sec-
nate and more dynamic technique is for the streams tdion 3) in order to make progress in moving tuples
containpunctuationswhich specify run-time constraints through query plans and producing query results. Our
that also can be used to reduce resource requirement#itial scheduler uses a simple round-robin scheme and
see [18].) a single granularity for theun operator expressed as
We have identified several types of constraints ovethe maximum number of tuples to be consumed from
data streams, and for each constraint type we specify afl€ operator’s input queue before relinquishing control.
“adherence parameter” that captures how closely a give his simple scheduler gives us a functioning system but
stream or pair of streams adheres to a constraint of thalearly is far from optimal for most sets of query plans.
type. We have developed query plan construction and ex- There are many possible objectives for the sched-
ecution algorithms that take stream constraints into aculer, including stream-based variations of response time,
count in order to reduce synopsis sizes at query operahroughput, and (weighted) fairness among queries. For
tors, while still producing precise output streams. Usingour first cut at a more “intelligent” scheduler, we focused
our algorithm, the closer the streams adhere to the specén minimizing peak total queue size during query pro-
fied constraints at run-time, the smaller the required syncessing, in keeping with our general project goal of cop-
opses. We have implemented our algorithm in a standing with limited resources.

alone query processor in order to run experiments, and Consider the following very simple example. Suppose
our next step is to incorporate it into the STREAM pro- we have a query plan with two unary operatas: op-
totype. _ _ erates on input queug, writing its results to queue,

As a simple example, consider a continuous queryyhich is the input to operatad,. Suppose®),; takes one
that_Joms a strear@rders (hereafteiO) with a stream  time unit to operate on a batch aftuples fromg,, and
Fulfillments (hereafter”) based ororderlD  and  jt has 20% selectivity, i.e., it introduces/5 tuples into
itemID (orders may be fulfilled in multiple pieces), per- > when consuming: tuples fromg;. (Time units and
haps to monitor average fulfillment delays. Inthe generapziches of, input tuples simplify exposition; their ac-
case, answering this query precisely requires synopses @ja| values are not relevant to the overall reasoning in
unbounded_size [1]. Howevgr, if we kpow that all tu- 5 example.) OperataP, takes one time unit to op-
ples for a given orderlD and itemID arrive @hbefore  erate onn/5 tuples, and let us assume that its output is
the corresponding tuples arrive d then we need not ot queued by the system since it is the final result of
maintain a join synopsis for the’ operand at all. Fur- e guery. Suppose that over the long-term the average
thermore, ifF' tuples arrive clustered by orderID, then gyrival rate of tuples af; is no more tham/2 tuples
we need only_ save tuples for a given orderID until the per time unit, so all tuples can be processed and queues
next orderlD is seen. will not grow without bound. (If queues do grow with-

In practice, constraints may not be adhered to by datgut bound, eventually some form of load shedding must

streams strictly, even if they “usually” hold. For exam- occur, as discussed in Section 5.2.2.) However, tuple ar-
ple, we may expect tuples on stredmto be clustered rivals may be bursty.

by orderID within a tolerance parameterno more than
k tuples with a different orderID appear between two tu-
ples with same orderID. Similarly, due to network delays 1. Tuples are processed to completion in the order they

Here are two possible scheduling strategies:

a tuple for a given ord_erID and itemID may arrive én arrive atg; . Each batch of, tuples ing; is processed
before the corresponding tuple arrives@nbut we may by O; and thenO, based on arrival time, requiring
be able to bound the time delay with a constanThese two time units overall.

constants are the “adherence parameters” discussed eas-
lier, and it should be clear that the smaller the valuk,of
the smaller the necessary synopses.

The constraints considered in our work anany-one
join and referential integrity constraints between two
streams, andlustered-arrivaland ordered-arrivalcon-
straints on individual streams. Our algorithm acceptsSuppose we have the following arrival patterntuples
select-project-join queries over streams with arbitraryarrive at every time instant from= 1tor = 7, then no
constraints, and it produces a query plan that exploitéuples arrive from time- = 8 throughr = 14. On aver-
constraints to reduce synopsis sizes without compromisage,n /2 tuples arrive per unit of time, but with an initial
ing precision. Details are beyond the scope of this papeburst. The following table shows the total size of queues

If there is a batch of tuples ing,, thenO; operates
on them using one time unit, producing5 new tu-
ples ing;. Otherwise, if there are any tuples ¢n,
then up ton/5 of these tuples are operated on®y,
requiring one time unit.



¢q1 andg, under the two scheduling strategies during theing. Even exploiting those techniques, it is our supposi-
burst, where each table entry is a multiplier for tion that the combination of:

[Tmer [1] 2 [ 3 [ 4[] 5]6 ] 7| e multiple unbounded and possibly rapid incoming
Statl|[ 1| 12| 2 | 22] 3 | 32] & data streams,

Strat. 2] 1 [12]14]116]18]20] 22 e multiple complex continuous queries with timeliness
requirements, and

After time r = 7, queue sizes for both strategies decline _
until they reach 0 when time = 15. In this example,  * finite computation and memory resources
both strategies finish at= 15, and Strategy 2 is clearly yijelds an environment where eventually the system will
preferable in terms of run-time memory overhead duringnot be able to provide continuous and timely exact an-
the burst. swers to all registered queries. Our goal is to build a
We have designed a scheduling policy that provablysystem that, under these circumstances, degrades grace-
has near-optimal maximum total queue size and is basemny to approximateguery answers. In this section we
roughly on the general property observed in our exampresent a number of approximation techniques, and we
ple: Greedily schedule the operator that “consumes” theiscuss the close relationship between resource manage-
largest number of tuples per time unit and is the most sement and approximation.
lective (i.e., “produces” the fewest tuples). However, this  When conditions such as data rates and query load
per-operator greedypproach may underutilize a high- change, the availability and best use of resources change
priority operator if the operators feeding it are low prior- also. Our overall goal is to maximize query precision
ity. Therefore, we considerhainsof operators within a by making the best use of available resources, and ul-
plan when making scheduling decisions. Details of outtimately to have the capability of doing so dynamically
scheduling algorithm and the proof of its near-optimality and adaptively. Solving the overall problem (which fur-
are fairly involved and not presented due to space limitather includesnactiveandweightedqueries as discussed

tions. in Section 2.4) involves a huge number of variables, and
Scheduling chains of operators also is being considcertainly is intractable in the general case.
ered in Aurora'grain schedulingalgorithm [5], although In the remainder of this section we propose satagic

for entirely differentreasons. Aurora’s objective is to im- gpproximation(compile-time) techniques in Section 5.1
prove throughputby reducing context-switching betweenand somedynamic approximatiorfrun-time, adaptive)
operators, batching the processing of tuples through oprechniques in Section 5.2. In Section 5.3 we present
erators, and reducing 1/O overhead since their interpyr first algorithm—Iargely theoretical at this point but a
operator queues may be written to disk. So far we havgyood first step—for allocating memory in order to maxi-
considered minimizing memory-based peak queue sizegjze result precision.
as our only scheduling objective. Also, we have been |, comparison with other systems for processing
assuming a single thread of control shared among opergeries over data streams, both Fetegraph[12] and
tors, while Aurora considers multiple threads for differ- Njagara [9] projects do consider resource management
ent operatorsEddies[2, 13] uses a scheduling criterion (jargely dynamic in the case of Telegraph and static in
similar to our per-operator greedy approach, but for routyhe case of Niagara), but not in the context of providing
ing individual tuples through operator queues rather thaypproximate query answers when available resources are
scheduling the execution of operators. Furthermore, lik§nsyfficient. An important contribution was made in Au-
Aurora the goal of Eddies is to maximize throughput, un-rora [5] with the introduction of “QoS graphs” that cap-
like our goal of minimizing total queue size. ture tradeoffs among precision, response time, resource
While our algorithm achieves queue-size minimiza-ysage, and usefulness to the application. However, in
tion, it may incur increased time to initial results. In our Ayrora approximation currently appears to occur solely

example above, although both strategies finish processhroughdrop-boxesthat perform load shedding as de-
ing tuples at the same time, Strategy 1 generally has thecribed in Section 5.2.2.

potential to produce initial results earlier than Strategy 2.
An important next step is to incorporate response times 1 giatic Approximation

and (weighted) fairness across queries into our schedul- ] ) ] ) -
In static approximation, queries are modified when they

ing algorithm. I
are submitted to the system so that they use fewer re-
. ) sources at execution time. The advantages of static ap-
S Approximations proximation over dynamic approximation (discussed in

The previous section described two complementary tech—SeCtion 5.2) are:
nigues for reducing the memory overhead (synopses and. Assuming the statically optimized query is executed
gueue sizes respectively) required during query process- precisely by the system, the user is guaranteed cer-



tain query behavior. A user might even participate5.2 Dynamic Approximation

in the process of static approximation, guiding or ap-j, 5r second and more challenging approatmamic
proving the system’s query modifications. approximation queries are unchanged, but the system

2. Adaptive approximation techniques and continuousmay not always provide precise query answers. Dynamic
monitoring of system activity are not required—the approximation has some important advantages over static
guery is modified once, before it begins execution. approximation:

The two static approximation techniques we consider are® The level of approximation can vary with fluctuations
window reductiorandsampling rate reduction in data rates and distributions, query workload, and
resource availability. In “times of plenty,” when loads
are low and resources are high, queries can be an-
swered precisely, with approximation occurring only
Our query language includes a windowing clause for ~ when absolutely necessary.

specifyjng sliding windows on streams or on §ubqueri?5 e Approximation can occur at the plan operator level,
producing streams (Section 2). By decreasing the size and decisions can be made based on the global set of

specified originally, both memory and computation re- of anifi hall f h bili
quirements can be reduced. In fact, several propos- O course a significant challenge from the usabilit

als for stream query languages automatically introducé).erSpef:t'Ve IS conveying to USers or gpp!maﬂqns at any
windows in all joins, sometimes referred to hand given time what kind of approximation is being per-

joins, in order to bound the resource requirement, e.g.formed on their queries, and some applications simply
5,7, 12, 13, 20] may not want to cope with variable and unpredictable

accuracy. We are considering augmenting our query lan-
ificat ¢ | indowed ioin. Red guage so users can specify tolerable imprecision (e.g.,
specification, most commonly a windowed JoIn. ReAUC 5465 of acceptable window sizes, or ranges of sampling

ing 17’s window size not only affects the resources usedyieq) \yhich offers a middle ground between static and
by W, but it can have a ripple effect that propagates Updynamic approximation.

the operator tree—in general a smaller window results The three dynamic approximation techniques we con-
in fewer tuples to be processed by the remainder of theSi

| H th t least tw h der aresynopsis compressipwhich is roughly anal-
query plan. However, there are at least two cases w er(?gous to window reduction in Section 5.1shmpling
we need to be careful:

which is analogous tsampling rate reductiofin Sec-
e If IV is a duplicate-elimination operator, then shrink- tion 5.1.2, andoad shedding
ing W’s window can actually increase its output rate.

5.1.1 Window Reduction

SupposéV is an operator that incorporates a window

5.2.1 Synopsis Compression

One technique for reducing the memory overhead of
a query plan is to reduce synopsis sizes at one or more
operators. Incorporating a sliding window into a syn-
opsis where no window is being used, or shrinking the
Fortunately, these “bad” cases can be detected statical§xisting window, typically shrinks the synopsis. Doing
at query modification time, so the system can avoid in-SO is analogous to introducing windows or statically re-
troducing or shrinking windows in these situations. ducing window sizes through query modification (Sec-
tion 5.1.1). Note that if plan sharing is in place then mod-
ifying a single window dynamically may affect multiple
queries, and if sophisticated synopsis-sharing algorithms

Analogous to shrinking window sizes, we can reduceare being used then different queries may be affected in
the sampling rate when Sample clause (Section 2) different ways.
is applied to a stream or to a subquery producing a There are other methods for reducing synopsis size,
stream. We can also introdu&ample clauses where including maintaining a sample of the intended synop-
not present in the original query. Although changing thesis content (which is not always equivalent to insert-
sampling rate at an operat@r will not reduce the re- ing a sample operator into the query plan), ushs-
source requirements @, it will reduce the output rate. tograms[17] or compressedaveletd11] when the syn-
We can also take an existing sample operator and pusbpsis is used for aggregation or even for a join [6], and
it down the query plan. However, we must be carefulusingBloom filters[4] for duplicate elimination, set dif-
to ensure that we don’t introduce biased sampling whefference, or set intersection.
we do so, especially in the presence of joins as discussed All of these techniques share the property that mem-
in [8]. ory use is flexible, and it can be traded against precision

o If T is part of the right-hand subtree of a negation
construct (e.gNOT EXISTSor EXCEPT, then re-
ducing the size of¥’s output may have the effect of
increasing output further up the query plan.

5.1.2 Sampling Rate Reduction



statically or on-the-fly. Some of the techniques providea plan from precision for its constituent operators—we
error guarantees, e.g., [11], however we have not solvedill discuss this computation shortly. Finally, assume we
the general problem of conveying accuracy to users dyhave fixed total resources. (Resources can be of any type

namically. as long as they can be expressed and allocated numeri-
) ) cally.) Then our goal of allocating resources to operators
5.2.2. Sampling and Load Shedding in order to maximize overall query precision can be ex-

The two primary consumers of memory in our query pressed as a nonlinear optimization problem for which
plans are synopses and queues (recall Section 3). In th@e use a packaged solver, although we are optimistic
previous subsection we discussed approximation techabout finding a more efficient formulation.
niques that reduce synopsis sizes (which may as a side- In the language handled by our resource allocation al-
effect reduce queue sizes). In this section we mentiogorithm, all operators and plans produce a stream of out-
approximation technigques that reduce queue sizes (whicput tuples, although ordering is not relevant for the op-
may as a side-effect reduce synopsis sizes). erators we consider. The precision of a stream—either a

One technique is to introduce one or more sample opresult stream or a stream within a query plan—is defined
erators into the query plan, or to reduce the samplingy (FP,FN), whereFP € [0, 1] andFN € [0, 1]. FP cap-
rate at existing operators. This approach is the dynamicures the false positive rate: the probability that an output
analogue of introducing sampling or statically reduc-stream tuple is incorrecEN captures the false negative
ing a sampling rate through query modification (Sec-rate: the probability, for each correct output stream tu-
tion 5.1.1), although again we note that when plan sharple, that there is another correct tuple that was missed.
ing is in place one sampling rate may affect multiple (FP,FN) also can denote the precision of an operator,
queries. with the interpretation that the operator produces a result

We can also simply drop tuples from queues when thestream with EP,FN) precision when given input(s) with
gueues grow too large, a technique sometimes referre,0) (exact) precision. In all caseéSP andFN denote
to asload sheddind5]. Load shedding at queues dif- expected (mean) precision values over time.
fers from sampling at operators since load shedding may We assume that all plan operators map allocated re-
drop chunks of tuples at a time, instead of eliminatingsources to precision specificatio8P(FN). Currently
tuples probabilistically. Both are effective techniques forwe do not depend on monotonicity—i.e., we do not as-
reducing queue sizes. While sampling may be more “unsume that more resources result in lower valuesier
biased,” dropping chunks of tuples may be easier to im-and FN—although we can expect monotonicity to hold

plement and to make decisions about dynamically. and are investigating whether it may help us in our nu-
merical solver. We have devised (and shown to be cor-
5.3 Resource Allocation to Maximize Precision rect, both mathematically and empirically) fairly com-

In this subsection we present our preliminary work onPI€X formulas that, for each operator type, compute out-

allocating resources to query plans with the objectiveput str_eam precisiorFe,FN) value_s _from the precision.
of maximizing result precision. The work is applicable of the input streams and the precision of the operator it-

whenever resource limitations are expected to force ap§elf' )
We assume the base input streams to a query have ex-

proximate query results. We address a restricted scenario

for now, but we believe our approach provides a solid ba-2Ct Precision, i.e., (0,0). We apply our formulas bottom-

sis for more general algorithms. Consider one query, andP 1© the query plan, feeding the result to the numerical

assume the query plan is provided or the system has afolver which produces the optimal resource allocation.

ready selected a “best” query plan. Plans are expressed The next s_te_ps in this work are to incorporate yariance
using the operators of relational algebra (including seft© our precision model, to extend the model to include

difference, which as usual introduces some challengesy/Ue-based precision so we can handle operators such
We use a simple model of precision that measures theS 2dgregation, and eventually to couple plan generation

accuracy of a query result as its average rafalst pos-  With resource allocation.
itivesandfalse negatives

We give a brief overview of our approach and algo-
rithm. Let us assume that each operator in a query plan
has a known function from resources to precision, typi-Recall that our overall goal is to manage resources care-
cally based on one or more of the approximation method$ully, and to perform approximation in the face of re-
that reduce synopsis sizes discussed earlier in this sesource limitations in a flexible, usable, and principled
tion. (We have encoded a number of realistic functionsmanner. We want solutions that perform static approx-
from memory to precision for several relational opera-imation based on predictable resource availability (Sec-
tors, but details are beyond the scope of this paper.) Futtions 5.1 and 5.3), and we want alternate solutions that
ther suppose that we know how to compute precision foperform dynamic approximation and resource allocation

5.4 Resource Management and Approximation:
Discussion



to maximize the use of available resources and ada simple matter to add new attributes to a CT as needs
to changes in data rates and query loads (Section 5.23rise, offering convenient extensibility.

Although we have solved some pieces of the problem

in limited environments, many important challenges lie

ahead; for example: 6.2 Query Plans

e We need a means of monitoring synopsis and queug/e want to be able to create, view, understand, and man-
sizes and determining when dynamic reduction meaually edit query plans in order to explore various aspects
sures (e.g., window size reduction, load shedding)of query optimization. Our query plans are implemented
should kick in. as networks oentitiesas described in the previous sec-

e Even if we have a good algorithm for initial al- tion, stored in main memory. A graphical interface is
location of memory to synopses and queues, weProvided for creating and viewing plans, and for adjust-

need a reallocation algorithm to handle the inevitablgnd attributes of operators, queues, and synopses. The in-
changes in data rates and distributions. terface was very easy to implement based on our generic

. . . CT structure, since the same code could be used for most
e The ability to add, delete, activate, and deactivate

: . ~query plan elements.
gueries at any time forces all resource allocation . . .
schemes, including static ones, to provide a means QUETY plans may be viewed and edited even as queries
of making incremental changes are running. Currently we do not support viewing of data

} ) . moving through query plans, although we certainly are

It is clear to us that no system will provide & cOm- pianning this feature for the future. Since continuous
pletely general and optimal solution to the problemsqueries in a DSMS should be persistent, main-memory
posed here, particularly in the dynamic case. Howeveryan structures are mirrored in XML files, which were
we will continue to chip away at important pieces of the ga5y o design again based on CT attribute-value pairs.
problem, with (we hope) the end result being a cohesives|ans are loaded at system startup, and any modifications
system that achieves good performance and usable, U plans during system execution are reflected in the cor-
derstandable functionality. responding XML. Of course users are free to create and

edit XML plans offline.

6 Implementation and Interfaces

Since we are developing the STREAM prototype from6.3 Programmatic and Human Interfaces

scratch we have the opportunity to create an extensible

and flexible software architecture, and to provide usefuRather than creating a traditional application program-
interfaces for system developers and “power users” to viiming interface (API), we provide a web interface to the
sualize and influence system behavior. Here we covePSMS through direct HTTP (and we are planning to ex-
three features of our design: our generic entities, our enpose the system asveeb servicehrough SOAP [22]).
coding of query plans, and the system interface. CollecRemote applications can be written in any language and
tively, these features form the start of a comprehensivé@n any platform. They can register queries, they can re-
“workbench” we envision for programming and interact- quest and update CT attribute values, and they can re-

ing with the DSMS. ceive the results of a query as a streaming HTTP response
in XML. For human users, we have developed a web-
6.1 Entities and Control Tables based GUI exposing the same functionality.

In the implementation of our system, operators, queues,
and synopses all are subclasses of a geriemiity
class. Each entity has a table of attribute-values pair
called itsControl Table(CT for short), and each entity
exports an interface to query and update its CT. The CTA System realizing the techniques described in this
serves two purposes in our system so far. First, some cPaper is being developed at Stanford.  Please
attributes are used to dynamically control the behavior otisit http://www.db.stanford.edu/stream ;

an entity. For example, the amount of memory used byvhich also contains links to papers expanding on sev-
a synopsisS can be controlled by updating the value of €ral of the topics covered in this paper, including the
attributeMemory in S's control table. Second, some CT query language, exploiting constraints, operator schedul-
attributes are used to collect statistics about entity behavld, and resource allocation.

ior. For example, the number of tuples that have passed We are grateful to Aris Gionis, Jon McAlister, Liadan
through a queue is stored in attributeCount of ¢'s O’Callaghan, Qi Sun, and Jeff Ullman for their partici-
control table. These statistics are available for resourceation in the STREAM project, and to Bruce Lindsay for
management and for user-level system monitoring. It ishis excellent suggestion about heartbeats.
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