
Massive Stochastic Testing of SQL

Don Slutz
Microsoft Research

dslutz@Microsoft.com

Abstract
Deterministic testing of SQL database systems is

human intensive and cannot adequately cover the
SQL input domain. A system (RAGS), was built
to stochastically generate valid SQL statements 1
million times faster than a human and execute
them.

1 Testing SQL is Hard
Good test coverage for commercial SQL database
systems is very hard. The input domain, all SQL
statements, from any number of users, combined with
all states of the database, is gigantic. It is also diffi-
cult to verify output for positive tests because the
semantics of SQL are complicated.’

Software engineering technology exists to pre-
dictably improve quality ([Bei90] for example). The
techniques involve a software development process
including unit tests and final system validation tests
(to verify the absence of bugs). This process requires
a substantial investment so commercial SQL vendors
with tight schedules tend to use a more ad hoc proc-
ess. The most popular method’ is rapid development
followed by test-repair cycles.

SQL test groups focus on deterministic testing to
cover individual features of the language. Typical
SQL test libraries contain tens of thousands of state-
ments and require an estimated % person-hour per
statement to compose. These test libraries cover an
important, but tiny, fraction of the SQL input domain.

Large increases in test coverage must come from
automating the generation of tests. This paper de-
scribes a method to rapidly create a very large num-
ber of SQL statements without human intervention.
The SQL statements are generated stochastically (or
‘randomly’) which provides the speed as well as wider
coverage of the input domain. The challenge is to

‘Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Very Large Data Base En-
dowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.
Proceedings of the 24th VLDB Conference
New York, USA, 1998

’ SQL testing procedures and bug counts are proprietary so there is
little public information.

618

distribute the SQL statements in useful regions of the
input domain. If the distribution is adequate, stochas-
tic testing has the advantage that the quality of the
tests improves as the test size increases [TFW93].

A system called RAGS (Random Generation of
SQL) was built to explore automated testing. RAGS
is currently used by the Microsoft SQL Server
[MSS98] testing group. This paper describes RAGS
and some illustrative test results.

Figure 1 illustrates the test coverage problem.
Customers use the hexagon, bugs are in the oval, and
the test libraries cover the shaded circle.

Input Domain

database states

customers

I \
Detectable ‘SQL test library
software bugs coverage

Figure l:SQL test library coverage should in-
clude at least region 2. Unfortunately, we don’t
know the actual region boundaries.

2 The RAGS System
The RAGS approach is:
1. Greatly enlarged the shaded circle in Figure 1 by

stochastic SQL statement generation.
2. Make all aspects of the generated SQL state-

ments configurable.
3. Experiment with configurations to maximize the

bug detection rate.
RAGS is an experiment to see how effective a mil-

lion fold increase in the size of a SQL test library can
be. It was necessary to add several features to in-
crease the automation beyond SQL statement gen-
eration.

RAGS can be used to drive one SQL system and
look for observable errors such as lost connections,
compiler errors, execution errors, and system crashes.
The output of successful Select statements can be
saved for regression testing. If a SQL Select executes
without errors, there is no easy method to validate the
returned values by observing only the values, the

query, and the database state. Our approach is to exe-
cute the same query on multiple vendor’s DBMSs and
then compare the results. First, the number of rows
returned is compared and then, to avoid sorts, a spe-
cial checksum over all the column values in all the
rows is compared. The comparison method only
works for SQL statements that will execute on more
than one vendor’s database, such as entry level ANSI
92 compliant SQL[Ans92].

The RAGS system is shown in Figure 2 below. A
configuration file identifies one or more SQL systems
and the SQL features to generate. The configuration
file has several parameters for stochastic SQL gen-
eration: the frequency of occurrence of different

DBMSISQLA
DBMSZSQLB
DBMSZSQLC

LOOP
Generate SQL stmt

stochastically
Execute SQL on DBMS
Execute SQL on DBMS
Execute SQL on DBMS
compare results
Record Errors

Stmt 3551: Wrong results on DBMS

Figure 2: RAGS system. Several instances can
be executed concurrently to represent multiple
users.

connect to the first DBMS and read the schema in-
formation. RAGS loops to generate SQL statements
and optionally execute them. Statement generation is
described in the next section. If the statement is exe-
cuted on more than one system, the execution results
are compared. For numeric fields, the precision is
reduced to a configurable value before the compari-
son is made. This avoids the problem of 1.999999
differing from 2.

At the end of the run, RAGS produces a report
containing errors found, statistics of the run, and
checksums of queries. A utility is provided that com-
pares the reports from several runs and summarizes
the differences. The comparison can be between dif-
ferent vendors or different versions of the same sys-
tem (regression testing).

A typical SQL Select statement generated by
RAGS is shown in Figure 3.
SELECT TO.au-id , LTRIM(('cuIe' +TO.au-id))
FROM authors TO
WHERE NOT (NOT ((TO.au-fname) != ANY (

SELECT ')E'
FROM discounts Tl, authors T2
WHERE NOT (('IK')>= 'tKpclAV'))))

GROUP BY TO.au-id, TO.au-id

Figure 3. Select statement generated by
RAGS.

statements (Select, Insert.. .), limits (maximum num-
ber of tables in a join, maximum entries in a Group
by list...), and frequency of occurrence of features
(outer join, Where, Group by.. .). It also has execu-
tion parameters such as the maximum number of
rows to fetch per query.

acter strings). RAGS uses parenthesis liberally,

The target database pertains to a publishing com-
pany. The stochastic nature of the statement is most

mostly to aid human recognition.

evident in the unusual character constants and in un-
necessary constructs such as “NOT NOT”. RAGS
also builds From lists, expressions, scalar functions,
and subqueries stochastically but they appear less
bizarre. Correlation names are used for tables to al-
low correlated column references. Constants are ran-
domly generated (both length and content for char-

A somewhat larger RAGS generated SQL Select
statement is shown in Figure 4 below. This type of
statement is sufficiently complex that it is not likely
to be found in a deterministic test library.

Our experience has been that about 50% of the Se-
lect statements return rows. This follows from the
symmetry of predicates P and Not P occurring
equally likely.

The first step in running experiments on multiple
systems is to ensure the databases are the same. They
all must have identical schemas and identical data in
their tables. It is not necessary that they have the
same set of indexes or other physical attributes.

When the RAGS program is started, it first reads
the configuration tile. It then uses ODBC[MS097] to
SELECT TOP 2 '60' , ((-1)%(-(-(Tl.qty))))/(-(-2)), (2)+(TO.min-lvl),'-"p:'
FROM jobs TO, sales Tl
WHERE (((TO.job-id) IS NOT NULL) OR (('Feb 24 7014 10:47pm')= (

SELECT DISTINCT 'Jun 2 5147 6:17am’
FROM employee T2, titleauthor T3, jobs T4
WHERE (T2.job-lvl BETWEEN (3) AND (((-(T4.max-lvl))%((3)-(
-5)))-(((-1)/(T4.job-id))%((3)%(4 1)))) OR (EXISTS (

SELECT DISTINCT TOP 7 MIN(LTRIM('Hqz6=141')), LOWERS MIN(T5.country)),
MAX(REVERSE((LTRIM(REVERSE(T5.city I)+ LOWER('Iir1')))), MIN(T5.city 1

FROM publishers T5
WHERE EXISTS (

SELECT (T6.country +T6.country 1, 'rW' , LTRIM(MIN(T6.pub-id 1)

619

FROM publishers T6, roysched T7
WHERE ((NOT (NOT (('2NPTd7s') IN ((LTRIM('DYQ=a')+'4Jk')A3oB'), (
'xFWU' +'616J:U-b'), 'Q<D6_4s' , (LOWER('B}^TK]‘b')+(" +'V;K2')),
"min?' , 'vl=Jp2b@')))) AND ((EXISTS (
SELECT TOP 10 Tg.job-desc , -(-(Tg.max-lvl)), '?(t\UGMNm'
FROM authors T8, jobs T9, authors TlO
WHERE ((TlO.zip) IS NULL) OR (-((7)%(-(1))) BETWEEN (-(((Tg.job-id
)*(-3.0))+(Tg.min-lvl))) AND (Tg.min-lvl)) 1

) AND (NOT (((T7.hirange) IN (T7.hirange , -(T7.hirange), -(
0), 1 I -(((-(-(T7.hirange)))/(-(T7.hirange)))-(T7.royalty)),
Tll.lorange)) OR ((-2.0)< ALL (

SELECT DISTINCT TB.hirange
FROM roysched T8, stores T9, stores TlO
WHERE (((1)+((Ta.royalty)%(-3)) BETWEEN ((T8.hirange)*((Ta.hirange
)/(-4))) AND (T8.hirange)) OR (NOT (((T8.royalty)= TB.hirange) OR ((
TB.hirange)< TB.lorange)))) AND (Tg.stor-id BETWEEN (RTRIM(
Ta.title-id)) AND ('?' 1))

))))) AND (((RADIANS(T7.royalty))/(-3))= -2)
GROUP BY -(-((T7.lorange)+(T7.lorange))), T7.hirange, T6.country
HAVING -(COUNT ((1)*(4))) BETWEEN (T7.hirange) AND (-1.0))) 1)

) AND (EXISTS (
SELECT DISTINCT TOP 1 Tl.ord-date , 'Jul 15 4792 4:16am’
FROM discounts T2, discounts T3
WHERE (Tl.ord-date) IN ('Apr 1 6681 1:42am' , 'Jul 10 5558 1:55Am' ,
Tl.ord-date)
ORDER BY 2, 1))

rigure 4: RAGS generated SQL Select statement for the publishing company database. The
;ubqueries nest five deep and the inner queries reference correlated columns in the
)uter queries.

3 SQL Statement Generation
RAGS generates SQL statements by walking a sto-
chastic parse tree and printing it out. Consider the
SQL statement
SELECT name, salary + commission
FROM Employee
WHERE (salary > 10000) AND

(department = 'sales')

and the parse tree for the statement shown below in
Figure 5. Given the parse tree, you could imagine a

AND

On a 200Mhz Pentium RAGS can generate 833
moderate size SQL statements per second. The SQL
statements average 12 lines and 550 bytes of text
each. In one hour RAGS can generate 3 million dif-
ferent SQL statements - more than contained in the
combined test libraries of all SQL vendors.

The starting random seed for a RAGS run can be
specified in the configuration file. This allows a
given run to be repeated without saving the SQL text.
If the starting seed is not specified, RAGS obtains a
seed by hashing the time of day.

I Figure 5: Parse tree for Select statement. 4 Testing Experiences

program that would walk the tree and print out the
SQL text. RAGS is like that program except that it
builds the tree stochastically as it walks it.

This section contains examples of RAGS tests on a
very small database (less that 4KB).

RAGS follows the semantic rules of SQL by car-
rying state information and directives on its walk

down the tree and the results of stochastic outcomes
as it walks up. For example, the datatype of an ex-
pression is carried down an expression tree and the
name of a column reference that comprises an entire
expression is carried up the tree.

RAGS makes all its stochastic decisions at the last
possible moment. When it needs to make a decision,
such as selecting an element for an expression, it first
analyzes the current state and directives and assem-
bles a set of choices. Then it makes a stochastic se-
lection from among the set of choices and it updates
the state information for subsequent calls.

620

4.1 Multi-user Test

The results of a 10 concurrent user test are shown in
Figure 6 below. Each user ran RAGS and generated a
mix of Select, Insert, Update, and Deb statements.
Item Number
Number of clients 10
Total number of statements 25000
Statements per transaction 1 to 9
Execution with no errors 21518
Errors expected:

Deadlock victim 2715
Arithmetic error 553
Character value too long 196

Errors not expected (bugs)
Error code 1 13
Error code 2 5

Figure 6. RAGS output for 10 clients executing 2500
statements each on one svstem.

Each of the 10 clients executed 2500 SQL state-
ments in transactions that contained an average of 5
statements, Errors expected in random expressions
include overflow and divide by zero. 86.1% of the
statements executed without error, 13.8% had ex-
pected errors and 0.07% indicated possible bugs (18
occurrences of 2 different error codes).

4.2 Comparison Tests

The results of a comparison test between four sys-
tems are shown in Figure 7. The same 2000 random
Select statements were run on each system. The
numbers in each column reflect how that system’s
output compared to the output of the other three sys-
tems. The Comparison Case column enumerates the
cases, with the dark circle representing the system of
interest. The shaded ovals contain identical outputs.
For example, the 15 in row 4 under system SYSB

means that, for 1.5 statements, SYSB got the same
output as one other system and the remaining two
systems each got different outputs (or errors). Counts
in row 5, where the specified system got a unique
answer, are likely bugs.

4.3 Automatic Statement Simplification

When a RAGS generated statement caused an error,
the debugging process was difficult if the statement
was complex, such as in Figure 4. It was discovered
that the offending statement could usually be vastly
simplified by hand. The simplification involved re-
moving as many elements of the statement as possi-
ble, while preserving the raising of the original error
message (note that the simplified statement is not
necessarily equivalent to the original statement).

The simplification process itself was tedious so
RAGS was extended to simplify the statement auto-
matically. The RAGS simplified version of the
statement in Figure 4 is shown in Figure 8.

To simplify a statement, RAGS walks a parse tree
for the statement and tries to remove terms in expres-
sions and certain clauses (Where and Having). This
simplification algorithm was found to be very effec-
tive so it was not extended. For example, RAGS does
not attempt to remove elements in the Select, Group
by, or Order by lists

4.4 Visualization

To investigate the relationship between two metrics,
such as statement execution times on two systems, a
set of sample pairs is collected and analyzed.

RAGS presents an opportunity to scale up the size
of such samples by several orders of magnitude. Not
only does the scale up allow one to better analyze the
relationship mathematically, it also allows one to plot

ComnarisonCase SYSA SYSB SYSC SYSD
1672 1672 1672 1672 All fou r

agree 84%

232 234 241 31

1 1 1 1

31 15 12 28 Probably
1 12 5 116 a bug

0 29 32 4

18 18 19 25

Error 45 19 18 113 1

Ggure 7. Results of comparing the outputs of four database systems for 2000
ielect statements. The numbers in row 5 indicate how many times this system got
ne result but the other three vendors all got a different result

621

the sample points and visualize the relationship. ments and comparing their outputs. Equivalent state-
ments are obtained by permuting operands and lists

SELECT TOP 2 '60', -t-2), TO.min-lvl, '-"p:'
FROM jobs TO , sales Tl WHERE EXISTS (

SELECT DISTINCT TOP 1 Tl.ord-date, 'Jul 15 4792 4:16am'
FROM discounts T2, discounts T3
ORDER BY 2,1)

Figure 8: RAGS simplified version of the statement in Figure 4. This statement
causes the same error as the statement in Figure 4.

One example, shown in Figure 9, compares the
execution times on two releases of the same system.
With a few exceptions, the v2 release of SYSC is a
little faster for the smaller queries and about the same
for the larger ones.

5 Extensions
SQL coverage can be extended to more data types,
more DDL, stored procedures, utilities, etc. The input
domain can be extended to negative testing (injecting
random errors in the generated SQL statements). Ro-
bustness tests can be performed by stochastically
generating a whole family of equivalent SQL state-

Execution Times for Two Versions of SYSC

0.6

0.4

f

‘s

f 0.3
i=

‘S
i

0.2

0

0 0.1 0.2 0.3 0.

Ewxtion Time of vl (sac)

Figure 9: Relationship of 990 Select statement
execution times on two versions of the same sys-
tem. Version v2 is about as fast as version vl.

(From and Group by) and adding useless terms (AND
in a factor that is always TRUE). Testing with
equivalent statements has the important advantage of
a method to help validate the outputs.

In the performance area, the optimizer estimates of
execution metrics, together with the measured execu-
tion metrics, can be compared for millions of SQL
statements.

6 Summary
RAGS is an experiment in massive stochastic testing
of SQL systems. Its main contribution is to generate
entire SQL statements stochastically since this en-
ables greater coverage of the SQL input domain as
well as rapid test generation.

The problem of validating outputs remains a tough
issue. Output comparisons for different vendor’s da-
tabase systems proved to be extremely useful, but
only for the small set of common SQL The differ-
ences in NULL and character string handling and
numeric type coercion in expressions was particularly
problematic (these are also portability issues).

The outcome of our experiment was encouraging
since RAGS could steadily generate errors in released
SQL products.

References
[Ans92] ANSI X3.135-1992, American National

Standard for Information Systems - Data-
base Language - SQL, November, 1992.

[Bei90] B.Beizer, “Software Testing Techniques,”
Van Nostrand Reinhold, New York, Sec-
ond Edition, 1990.

[MS0971 Microsoft ODBC 3.0 SDK and Program-
mer’s Reference, Microsoft Press, Febru-
ary, 1997.

[TFW93] P.Thevenod-Fosse, H. Waeselynch,
“Statemate applied to Statistical Software
Testing,” ISSTA ‘93, Proceedings of the
1993 International Symposium on Software
Testing and analysis, pp 99-109.

[MSS98] Microsoft SQL Server Version 6.5,
http://www.microsoft.com/sql.

622

