Automating the Detection of Snapshot Isolation Anomalies

Sudhir Jorwekar
[.I.T. Bombay

sudhirj@cse.iitb.ac.in

Krithi Ramamritham
[.I.T. Bombay

krithi@cse.iitb.ac.in

ABSTRACT

Snapshot isolation (SI) provides significantly improvedaarrency
over 2PL, allowing reads to be non-blocking. Unfortunatélgan

also lead to non-serializable executions in general. Despis, it

is widely used, supported in many commercial databasesisand
fact the highest available level of consistency in Oracle Bost-
greSQL. Sufficient conditions for detecting whether S| anbes

could occur in a given set of transactions were presentezhtc
and extended to necessary conditions for transactionsutifired-
icate reads.

In this paper we address several issues in extending thierearl
theory to practical detection/correction of anomalies. fifg: show
how to mechanically find a set of programs which is large ehoug
so that we ensure that all executions will be free of SI an@sal
by modifying these programs appropriately. We then additess
problem of false positives, i.e., transaction programsngtpiden-
tified as possibly leading to anomalies, and present teabsithat
can significantly reduce such false positives. Unlike eashork,
our techniques are designed to be automated, rather thamafhan
carried out. We describe a tool which we are developing toycar
out this task. The tool operates on descriptions of the progr
either taken from the application code itself, or taken fr8QL

query traces. It can be used with any database system. We havé!

used our tool on two real world applications in productior as$
IIT Bombay, and detected several anomalies, some of whieé ha
caused real world problems. We believe such a tool will balinv
able for ensuring safe execution of the large number of apftins
which are already running under Sl.

1. INTRODUCTION

Databases provide different isolation levels to meet dhffiecon-
currency and consistency requirements. The highest isol&vel
(serializable) ensures the highest level of consistergcy serializ-
ability. However, lower isolation levels provide signifitty better
concurrency, and are widely used, even though they can &ead
reduced level of consistency.

Snapshot isolation (SI) is an attractive optimistic conency
control protocol, which is widely implemented and widelyeds

—

Permission to copy without fee all or part of this materiajianted provided
that the copies are not made or distributed for direct consrakadvantage,
the VLDB copyright notice and the title of the publicatiortéts date appear,
and notice is given that copying is by permission of the Veayde Data
Base Endowment. To copy otherwise, or to republish, to possesvers
or to redistribute to lists, requires a fee and/or speciaipgsion from the
publisher, ACM.

VLDB ‘07, September 23-28, 2007, Vienna, Austria.

Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3@¥./

Alan Fekete
University of Sydney

fekete@it.usyd.edu.au

S. Sudarshan
I.I.T. Bombay

sudarsha@cse.iitb.ac.in

Among its attractive features are that under Sl, reads avaysl
non-blocking, and it avoids some of the common types of anoma
lies. However, as pointed out in [2], Sl is vulnerable to aaraaly
called write-skew, as well as a related situation involvjstzgan-
toms. Thus, transactions running under snapshot isolatiariead

to non-serializable schedules (anomalies) and can cauabase
inconsistency.

Despite this, not only is SI widely supported, it is also tighh
est level of consistency supported by widely used systeris asi
Oracle and PostgreSQL, which in fact use Sl even if the user re
quests serializable level of isolation. Many organizetiase these
databases for running their applications, and so they aengally
at risk of corrupted data.

It was observed in [6] that transactions in many applicatjon
such as those in the TPC-C benchmark [12], have certain prop-
erties that ensure serializable executions even if run udeln
fact in many applications, Sl anomalies either do not ocegabise
data items that are read are also updated, or the Sl anonzailysre
in violation of an integrity constraint, such as primary kend so
rollback eliminates the anomaly. As a result, consistemoplems
are not widely seen.

However, itis not a wise idea to assume that an applicatisafes
just because consistency problems have not been obseined, s
isolation problems are often hard to detect and to repraduoe
one of the applications in use at [IT Bombay, for example rfaizl
auditors twice found problems with accounts which couldraedd
back to problems with Sl in one of the cases, and to bad tréinsac
boundaries in the other. Even after such problems are faitiig,
non-trivial to find their cause, since race conditions areesmely
hard to reproduce.

Fekete et al. [6] and Fekete [5], provide a theory for detarmi
ing which transactions among a given set of transactionsbean
run under Sl, and which must be run under 2PL, to ensure serial
izable executions. The theory is based on analyzing reité-amd
write-write conflicts between transactions, and identifya set of
“pivot” transactions; if the pivot transactions are run an@&PL (or
by using other techniques described in Section 2), all i@t
are guaranteed to be serializable.

The theory of [5] assumes that transactions work on prespeci
fied data items, whereas real world transactions are pragesdras
SQL statements containing predicates. Moreover, anatyss be
done at an abstract level where the SQL statements are paizede
and actual parameter values are not available to the andlysi.
Fekete et al. [6] do consider parametrized SQL statemerits wi
predicates, but their analysis is applied manually to ptbaétrans-
actions in the TPC-C benchmark could all be run under Sl,avhil
guaranteeing serializability. They do not address theraatimn of
such analysis.

1263

account(accnadbalance, acctype)

customer(idname, address);

owner(id, accnp

txn(txnid, txntype, accno, id, amount, timestamp)
batchaudit(bid starttimestamp, endtimestamp, inamount, o
mount)

Our Contributions : In this paper we describe the architecture of a
tool we have developed to analyze application transactondsau-
tomatically detect S| anomalies. In the process we alscesddrev-
eral issues in extending the earlier theory (described tiiGe 2)

to practical detection/correction of SI anomalies.

1. We describe (in Section 3) a syntactic analysis technique
which combines the pivot detection technique of [5] with the
column-based analysis of [6] to flag a set of transactions as
those that could cause anomalies if run under SI.

Figure 1: Schema for mini banking system

. The syntactic analysis technique is conservative, angl ma under SI. We present a summary of results obtained using

over-approximate the set of transactions that could cause a
malies if run under SI; in other words, the technique may re-
sult in false positives. We therefore present (in Section 4)
three sufficient conditions to determine whether transasti

are safe (i.e. cannot cause anomalies). We make use of in-
formation about updates/deletes present in the transaactio

our tool; our tool was able to detect several instances where
anomalies are possible in these applications. The tecagiqu
from Section 4 were successful in eliminating several false
positives. We also ran our tool on the TPC-C benchmark,
which was shown to be free of anomalies in [6] using manual
analysis. Our tool was able to come to the same conclusion,

database integrity constraints, either of which can someti
ensure that the transactions cannot run concurrently \eith ¢
tain other transactions. Using these techniques, we aee abl
to significantly reduce the incidence of false positives.

We also note that the above analysis takes into account the
presence of artificially introduced conflicts select for up-
date statements, which are used to avoid some anomalies
in Sl. Thus, if an application is analyzed, found to contain
anomalies, and the anomaly is (manually) fixed by introduc-
ing conflicts or by usingselect for updatestatements, our
analysis can be run on the modified program to detect if it is
indeed safe.

. We develop a tool to automate the analysis of applications
The tool (described in Section 5), can automatically ana-
lyze a given set of transactions and report all transactions
that could result in SI anomalies, and can be used with any
database system.

A challenge in building such a tool lies in identifying the
set of transactions in a given application. In our analysis,

automatically.

. We discuss practical issues in ensuring serializalfititgec-
tion 6). We show that there may be multiple ways of choos-
ing which transactions to modify, to ensure serializafilit
We discuss the problem of finding a minimum-sized set of

such transactions to minimize the efforts required. See Sec

tion 6 for details.

The rest of the paper is organized as follows. Section 2 pro-

vides a background of snapshot isolation testing inclutipgs of
anomalies, and a theory for detecting anomalies and tegbsifpr
avoiding anomalies. Section 3 describes the syntactiysisakch-
nigue. Section 4 addresses the problem of reducing falsévess
Section 5 presents an overview of various steps involvechaps
shot isolation testing tool. It explains the basic apprdacigetting
a set of transaction programs, and performing a conseevatialy-
sis. Section 6 discusses issues in using various methodsiove
anomalies. Section 7 contains discussion related to nsesius
issues in developing an Sl testing tool.

as in [6], we assume that each transaction is a sequence of2 BACKGROUND

(parametrized) SQL statements, including queries, ugdate
inserts and deletes. Transactions are usually coded in the
form of programs with control structures like loops and con-
ditional branches, but as described in [6], such transastio
can be split into multiple straight-line transactions, oep-
resenting every possible execution. (Since our analysitksde
with parametrized SQL statements, the number of iterations
of a loop is not relevant, so the above set is finite.)

It is difficult to automatically analyze transaction codenco
taining control flow statements and generate all possiblestr

actions, as described above. This step can be done manually,

and the resultant transactions provided to our tool. Howeve
our tool supports an alternative mode, where executior$rac
(i.e., sequences of SQL statements generated by the applica

In this section we briefly recap the existing knowledge about

snapshot isolation anomalies. To illustrate the variouscepts,

we use a simplified banking application as the running exarimpl
this paper. The schema for this application is shown in Edur
while Figure 2 shows the different kinds of transactionspsufed

by this application.

2.1 Snapshot Isolation (SI)

Snapshot Isolation is an extension of multiversion corenay
control. It was first defined in [2] as follows:

DEFINITION 2.1. Snapshot Isolation. A transaction T1 exe-
cuting with Snapshot Isolation always reads data from a shap
of committed data valid as of the (logical) time T1 starteal|ed

tion) are _collected, ar_1d the togl processes these to extracty,q start-timestamp. (The snapshot could be any point iitabg
parametrized transactions. While itis hard to ensure that & jne pefore the transactions first read.) Updates of othangac-
possible transactions are captured, this approach caree Us {jons active after T1 started are not visible to T1. When Tréasly
as a way to test, if not verify, the safety of an application. to commit, it is assigned a commit-timestamp and alloweato-c
We have used our tool on two real world applications in use at mit if no other concurrent transaction T2 (i.e., one whosévac
IIT Bombay, and detected several transaction programs that period [start-timestamp, commit-timestamp] overlapshiitat of
could result in executions with anomalies; these couldeaus T1) has already written data that T1 intends to write; thisédled
(and some have caused) real world problems. We believe the First-committer-wins rule to prevent lost updates. |
such a tool will be invaluable for ensuring safe execution of In fact, most implementations use exclusive locks on matlifie
the large number of applications which are already running rows, so that instead of First-Committer-wins, a First-dfg-wins

1264

Creation of new account: A new account is created for p
customer using this transaction. If customer is openinditss
account in bank, his personal information is also savecust
tomerrelation. A new customer id (resp. a new account nym-
ber) is generated by finding the maximum value of the coluymn
id in the customermelation (resp. the column accno in the-
countrelation), and adding one.

Update of contact information of customer: Personal infor-
mation of a customer is updated using this transaction.
Deposit: The specified amount is deposited in the specified|ac-
count number by updating the account balance. The transatti
is recorded in the relatiotxn.
Withdrawal: A withdrawal is permitted from an account pro
vided the sum of balances of all accounts belonging to the Lse
remains non-negative. Overdraft beyond this is allowed, |bu
with a penalty of 1 unit. The transaction updates the account
balance and records the transaction in the reldtion
End-of-the-day audit: At the end of each day an au-
dit batch is formed. These batches are stored in relation
batchaudit These batches define non overlapping interyals
[starttimestamp, endtimestamp). Each batch identifies
all transactions listed inxn that havestarttimestamp <
timestamp < endtimestamp. The sums of the amounts de-
posited and withdrawn by transactions in the batch are edlcu
lated and stored, for each batch.

Figure 2: Transaction Types in the Simplified Banking Appli-
cation

policy is applied. The distinction is not important, the keypact

of either policy is that one can’t have two transactions #ratcon-
current (overlapping in time) and modify the same data it&ms
means that the “lost-update” anomaly can’t occur. Simjlatie
way all reads by a transactidnsee the same set of complete trans-
actions (those that committed befdfestarted), and they see no
effects of incomplete transactions, means that S| preubstéin-
consistent read” anomaly.

2.2 Snapshot Isolation Anomalies

Even though Sl avoids all the classically known anomalieh su
as lost update or inconsistent read, there are some naalizabile
executions that can occur. Two types of anomalies have loken i
tified in a set of transactions running using Sl [2]. Writewke a
very common anomaly, illustrated by the example below, Wwiéc
not detected by théirst-committer-wingolicy of SI.

EXAMPLE 2.1. Write skew A personP owns two bank ac-

Fekete et al. [7] also describe another kind of anomaly tiat t
call aread-only-transaction anomaly. This involves a eeadeing
a state that could not occur in any serial execution thatsléathe
actual final state of the interleaved execution.

2.3 Theory of Anomaly Detection

The starting point for understanding how transactions aan p
duce anomalies under Sl is the theory of multiversion seghll-
ity. There are several variants of this theory ([1, 3, 8]}, &lldefine
a serialization graph for a given execution, with nodeslierttans-
actions, and edges reflecting conflicts or dependenciesexaon-
ple, there can be an edge frdfto 77 if 75 reads a version of an
item andT; produces a later version of the same item; this is called
a rw-edge. The key theorem is that when the serializatioptgra
is acyclic, then the execution is serializable, and no afiesiaan
occur.

For the DBA or application developer, the real concern is not
whether a given execution is serializable, but rather wéregvery
possible execution is serializable (that is, whether oramaimalies
are possible). There are two different sources for the tiaricbe-
tween different executions of a single system. The systamaide
of programs, each of which can execute in different wayseddp
ing on inputs (such as different parameter values) or by ntpki
control flow decisions based on the values read in earliebdse
accesses. Also, there can be many executions as the tiansact
interleave in different orders, based on non-determimistitcomes
of process scheduling and lock contention. Earlier work@g es-
tablished some important conditions on a set of applicafiomat
guarantee that every execution of these applications ializable
when Sl is the concurrency control mechanism.

The main intellectual tool in [6] is a graph called thitic de-
pendency grapfiSDG). This can be drawn for a given collection of
application programs A. The nodes of SDG(A) are the progriams
the collection. An edge is drawn frof to P if there is some ex-
ecution of the system, in which, is a transaction that arises from
running programP;, and7; arises from running?, and there is a
dependency fror; to T5. Of special importance are edges called
vulnerable edges An edge fromP; to P, is vulnerable if there
is some execution of the system, in whi€h is a transaction that
arises from running progran®;, and7» arises from runningP,,
and there is a read-write dependency fr@nto 7>, and7; and
T, are concurrent (that is, they overlap in execution time)dib:
grams, vulnerable edges are shown specially (as dashessyrro

Within the SDG, certain patterns of edges are crucial inrdete
mining whether or not anomalies might occur. [6] definedaa-
gerous structuran the graph SDG(A) to be where there are pro-
gramsP, @ and R, which may not all be distinct, such that there
is a vulnerable edge fromR to P, there is a vulnerable edge from

counts. Let X and Y be the balance in these accounts. This bank?” t0 @, and there is a path fror@ to R (or elseQ) = R). We

provides a facility wheré/ units can be withdrawn from any of the
two accounts aslonga¥ +Y > M. LetX = 100 andY = 0.
Consider a scenario wher® initiates two withdrawal transactions
(T1,T») on the different accounts simultaneously, both trying to
withdraw 100 units.

T1 : 7‘1(X, 100) 7‘1(Y, 0) wl(X, O) C1
T2 . TQ(X, 100) TQ(Y, 0) wz(K—loo) C2

Snapshot Isolation allows both these withdrawals to comfiits

P is able to withdraw200 units and the final sum of balance is

—100. This is not possible in any serial execution of the two trans

actions. O
Write skew can also happen between reads and inserts, ss illu

trated later in Example 4.4.

can call a progran®P with the properties above @ivot program in
the collectionA. Note that the definition includes the possibility of
a pivot with a vulnerable self-loop (theR = @ = R), and also
of a pair of pivots with vulnerable edges in each directiotwiaen
them.

The main theorem of [6] shows that if the collection of progsa
A has SDG(A) without pivots, then every execution of the pro-
grams in A, all running on a DBMS with Sl as concurrency cohtro
mechanism, is serializable.

2.4 Removing Anomalies

Of course, the application developer hopes that analysigyus
SDG will show that the set of programs in the system will gatesr
executions which are all serializable. If there are no @yvthis is

1265

true. But what if there are some pivots? The general appr@ch
to modify some of the application programs, in ways that db no
alter their business logic, but lead to a new set of progrdmasttas
no pivots. In general, one can make changes to eliminatespivo
by changing at least one vulnerable edge to be non-vulrerabl

abbreviate this as SF) the implementation does not do a write,
but anyway it treats all the items read just like writes whieeaking
for first-committer-winsstrategy. In either of these modifications,
the transaction will not be able to run concurrently with tiber
transaction on the (formerly) vulnerable edge, which igiwg the

every dangerous structure. Here we summarize the main knownsame item.

ways (from [5, 6]) to do this modification; note that most oéske
involve modifying the code of the pivot programs. Not all bése
may be applicable to a given program or for given DBMS. Also,
they have different impacts on concurrency.

2.4.1 Strict Two Phase Locking (S2PL) for Pivots

The cleanest modification is to run the pivot programs witke tr
serializability (using strict-two-phase locking), rathian using

Sl. This does not require any change in the code of the program

except for configuration information for the session. Aswghan
[5], the above modification ensures serializability as laaghe fol-
lowing properties hold for the concurrency control meckami (a)
The version of an itemr produced by an Sl transacti@hmust be
protected by an exclusive lock from the time it leaves anygte
universe ofT’, until (and including the instant when) the version is
installed becaus# commits. The exclusive lock must be obtained
following the normal locking rules. (b) The check againselBv
writing a version which was installed while an Sl transacfiowas
active covers versions produced by locking transactionsedlsas
versions produced by Sl transactions. These conditionmdeet
met by all implementations of SI whose details we are awaye of
including Oracle, PostgreSQL and Microsoft SQL Server.

Note that promotion might apply to the piv@ (on the item
which is read inP and produces a vulnerable edge leavingf)e
or it could apply toP’s predecessor in the vulnerable structure, by
promoting the read in the predecessor which conflicts wittritew
in the pivot programP.

This technique is not usable if the conflict involves a readtivh
is part of evaluating a predicate (deciding which rows $atés
WHERE clause) rather than simply obtaining a value (in the SE
LECT clause); such a transaction would be vulnerable to tizep
tom problem [4, 6] even if promotion is used.

3. SYNTACTIC ANALYSIS

The starting point for the tool we have built is a syntactialgsis
based on the names of the columns accessed in the SQL stédemen
that occur within the transaction. This is similar to (bugdesubtle
than) the style of argument used in [6], when the TPC-C progra
were manually analyzed for dependencies.

In our column-name based syntactic analysis, our startirgt p
is a set oftransaction programseach consisting of a set of SQL
statements. Every execution of the transaction prograrssisraed
to execute each of these SQL statements. These can be faw in
ways: by extraction transaction programs from the sourcke af

Unfortunately, among the widely used database systemsras fa the application programs, or by logging the SQL statemeuls s

as we are aware, only Microsoft SQL Server 2005 and MySQL
with the InnoDB storage manager support both Sl and 2PL as con
currency control choices. On other platforms such as Oracte
PostgreSQL, asking for a transaction to run with “Isolaticavel
Serializable” actually leads to it running using Sl. Thuss thp-
proach to preventing anomalies is often hard to utilize. \&e c
work around this problem by simulating 2PL in the applicatamnd
explicitly obtaining table locks, as discussed further ecn 6.
However, this approach has a significant impact on perfooman

2.4.2 Materializing Conflicts

Programmers can explicitly introduce extra conflicts imgac-
tions, in order to prevent the transactions from runningoccmn
rently. Typically, one introduces a new table, and both theg-
actions are made to write the same row of this table (for argive
vulnerable edge). This will mean that First-committer-svia in-
voked, and the transactions won'’t run concurrently; thesetige

mitted to the database. Each of these has some complex thsties
need to be resolved. For example, if an application has abntr
flow, different executions of an application program mayaete
different sets of SQL statements. As in [6], such applicatavel
transactions can be “split” into multiple straight-linemsactions.
We discuss these issues further in Section 5.1.

However it is done, we assume that we have the complete set of
transaction programs for our application. In the syntaatialysis
based on column names, we define, for each transaction pnogra
readset and a writeset. Each of these is a set of tablendomarco
entries, determined by seeing which names appear in the 8- s
ments. Note that because SQL allows the tablename to beedimitt
if it is deducible from context, our tool must first fill in anyissing
table names. For example, in Create new transaction, th&SEL
clause “select max(accno+1) as m from account” is rewritten
“select max(account.accno+1) as m from account”, and theset
will contain the entry account.accno.

becomes non-vulnerable. In many cases, the new data item can

be seen as a materialization of some integrity constrairitiwis
violated in non-serializable executions.

2.4.3 Promotion

There is sometimes another approach to modify programs; in o
der to remove the vulnerable nature from an edge in a dangerou
structure. In this approach we change the program at thendil
of the edge (the one with the read in the read-write conflicthe
transaction writes the data item involved, or is treated @srites
the item. We say that the readgeomotedto a write.

Suppose that the read of interest is a statemsglettT.c from T
where". Promotion can be done by introducing a statetinet
updates the item from its current value to the same valupdateT
set T.c=T.c where ..."). In some platforms such as Oraclenday
effect is obtained by replacing tteelectby select for updatéwe

ExampLE 3.1. Determining Transaction Programs Con-
sider transaction programs for the mini banking applicatimen-
tioned in Figure 2. The Update customer information transac
does not contain any control structure. Hence, we get only on
transaction progranl/C1T from it. Similarly, Deposit transaction
and End of the day audit transaction are covered with onedaan
tion program each, namel EP and EOD. The transaction for
creation of new accounts has two possible execution pathsndke
ing on whether the customer is already recorded in the custom

1SFU in PostgreSQL holds exclusive locks till commit, but sloe
not prevent a conflicting concurrent transaction from cotting
subsequently. Thus, PostgreSQL's SFU does not promoteduks r
to writes. i.e., a transactidh, does not rollback if the rows updated
by it were concurrently selected by another transacfigrusing
SFU but not modified byi». Hence, actual updates must be done
to promote read[13].

1266

table or not. LetC Ac; be the program where the customer is al-
ready recorded, and”Ace be the one where the customer is not
already recorded, and a new customer record has to be created
Similarly, the withdrawal transaction is covered with twaris-
action programs, one for the case where the resultant badac
non-negative, and the other for the case where the balanuega-
tive, requiring an overdraft penalty to be deducted fromabeount
balance. LetShWW; and ShWW> denote the respective transactions
programs. Thus, we have seven transaction programs

{UCI,DEP, EOD,CAci,CAcy, ShWy, ShWa}

in our simplified banking system. ad

Assumption: For the remainder of this paper, we assume for
simplicity that in any SQL SELECT statement, no table is ndme
in the FROM clause unless some column of that table is megdion
in the SELECT clause or the WHERE clause or both. The results
in this paper can however, be easily extended to removedkisa-
tion.

DEFINITION 3.1. Syntactic read and write sets.The readset
for syntactic column-name analysis consists of every teiiee.col-
umn that appears in the SELECT clause, or in the WHERE clause,
or on the righthandside of the equals in the UPDATE clause Th
writeset consists of every tablename.column that appearthe
lefthandside of the equals in the UPDATE clause, and alsojeve
column in any table that is mentioned in an insert or deletdest
ment. We denote the syntactic readset of transaction pmdras
rset(P), and the syntactic writeset as wset(P). ad

ExAMPLE 3.2. Read write sets based on table.column as data
items The rset and wset for example statemefitand U are
calculated as shown below.

S select balance from account where accno=100
u update customer set namesyz’ where id=103
I insert into customer value$(2,’ ryz’',’ PQR’)
D delete from account where accno=104
| | rset | wset |
S | account.accno, account.balance|
U | customer.id customer.name
I | ¢ customer.*
D | account.accno account.*

a

There is a relationship between these definitions and theahct
read and write sets of the generated transaction instawbese in-
dividual column values are treated as data items (thatis gen-
erated transaction instance, we regard the value of oribaérin
a single row as an item). Our calculated syntactic sets atelm
per bounds for the true sets. That is, the individual datlfietds
that are read all lie in the columns named in the syntactidse
and similarly all the fields written lie in the columns namedthe
syntactic writeset. Furthermore, the predicate in any ipegd read
operation in a generated transaction instance is computkydoo
columns that are part of the syntactic read set.

From these, we define a graph called the column-based sintact
dependency graph (CSDG), as follows.

DEFINITION 3.2. Column-based Syntactic Dependency Gra-
ph. The nodes of the CSDG consist of the transaction programs
that make up the applications. Given two prografsand Py,
there is an edgé®’; — P, whenever

(rset(P;) Nwset(Py) # 0)V
(wset(Pj) Nrset(Py) # 0)V
(wset(P;) Nwset(P,) # 0)

Figure 3: CSDG for Mini Banking Application. Dashed edges
denotevulnerableedges, and solid edges denot®n-vulnerable
edges. Shaded nodes are Syntactic Pseudopivots.

vul

This edge is marked as pseudovulnerable (writtetPas— Py,
and shown as a dashed arrow in diagrams) when

rset(P;) Nwset(Px) # 0

a
Based on CSDG, we identify certain transaction programs as
syntactic pseudopivots.

DEeFINITION 3.3. Syntactic Pseudopivot. A transaction pro-
gram Pg is a syntactic pseudopivot if there exist transaction pro-

vul

grams P4 and Pc (which may be the same), such tHat —
Py 2 Pc is a subpath irsome cyclef edges in CSDG. O

ExAMPLE 3.3. CSDG and Syntactic Pseudopivots for Mini
banking application If we find the syntactic read, write sets and
create the CSDG for transactions in mini banking system, ete g
the graph shown in Figure 3. |

This analysis is safe, that is, there are no false negatwhsré
a potential anomaly is not identified). CSDG has an edge when-
ever the true static dependency graph has an edge, and tee edg
in CSDG is pseudovulnerable whenever the corresponding iedg
SDG is vulnerable. This means that any pivot is a syntacézips
dopivot and we have a theorem (which follows immediatelyrfro
Theorem 3.1 in [6]).

THEOREM 1. Syntactic column-based analysis is safe. If
a set of transaction programs contains no syntactic psewaotg
then every execution under Sl will in fact be serializable.

One might imagine relying on the first committer wins progert
of Sl, and propose a stricter definition of pseudovulneratlges
that has the same form as the definition of exposed edge i it
is, one could consider the alternative definition where thged?;
to Py is not labeled as vulnerable unlggset(P;) N wset(Pr) #

D) A (wset(P;)Nwset(Py) = 0). This alternative definition would
not be safe, because the syntactic writeset can be an ovexapp
mation of the true write set. That is, there are cases whemeso
generated instances are allowed to execute concurrentigube
they are not writing to any common data item (even thougtr thei
syntactic write sets do overlap).

1267

4. ELIMINATING FALSE POSITIVES

A false positive is erroneous identification of a threat angker-
ous condition that turns out to be harmless. In this papefalsg
positive we refer to a transaction which is falsely deteeteg@oten-
tially contributing to an anomaly, for example, a transactivhich
is a syntactic pseudopivot but not in fact a pivot.

The analysis done with the syntactic column-name analgais,
expressed in CSDG, is safe. It never misses noticing thetplitys
of anomalies (non-serializable executions). Howeves &a con-
servative that it identifies many false positives: in oureangnce
with some real-world application mixes, almost every testi®n
program is a syntactic pseudopivot. In this section we iflesbme
situations where the syntactic analysis is unnecessavitgearva-
tive, so one can prove that certain transaction programshwéie
syntactic pseudopivots are not in fact pivots, based ongstigs of
the columns and of the programs.

4.1 Modification Protected Readset

]

The above condition ensures that whatever rows are selbgted
S'in P, either do not conflict withP, at all (i.e. P> does not update
any columns read ii%), or the rows are modified subsequently in
Py.

DEFINITION 4.3. Transaction with modification protectedrset
(MPR Transaction). A transaction progran®; is said to he MPR
W.L.t. transaction progran®; if

1. every select query as well as every subquery of an insert,
delete or update irP; is an MPR-Select w.r.2.

2. WHERE clause predicates of every update/delete statemen
in P, are stable w.r.tP,.

]

THEOREM 2. If transaction programP; is MPR w.r.t. transac-

The Oracle and PostgreSQL implementations of Snapshot Iso-tion program P>, and if the DBMS uses row-level granularity for

lation treat a tuple as the lowest level data item; that istevgets
identify rows, rather than specific columns of rows, and thet-fi
committer-wins rule forces that two transaction are nototmrent

if they both commit updates on any columns (not necessardy t

same columns) of some row. This will give us a valuable tempiai
to argue that certain pseudovulnerable edges are not alligeand
this will sometimes show that some pseudopivot is not a pivbe
essential property we need to look for, is where a transactiod-
ifies the rows it selects (or at least, the rows involved irdreaite

the first-committer-wins checks, then in SDG, the edge o
P» can not be vulnerable. m|
We omit the proof details, but here is a sketch. SuppBsés
MPRw.r.t. P, Ty arises from executing;, T» arises fromP., and
there is some read-write dependency frdinto 7%. The definition
shows thatl: cannot affect a predicate based on whighselect
rows, so there is no predicate-read-to-write dependenbys The
dependency must be data-item-read-to-write, but whereads a
row (possibly selected using a predicate), dadupdates the row

dependencies). We have seen many cases of this in realapplic thenZ; and7> both modify that row, and so the two cannot run

tion code, especially a common coding pattern is to selemiveby
primary key before updating or deleting that row.

We will now build up to a fairly broad definition, that covers

a significant number of false positives among the syntacteup
dopivots in the applications we have examined.

DEFINITION 4.1. Stable Predicates. A predicateC used in
transaction programP; is stable w.r.t. transaction prograrR., iff

for every possible schedulH containing execution instances of

transaction programP; and P» asT: andT» respectively, the set

of rows identified by in 71 does not depend on the serialization

order of 71 andT5.]

DEFINITION 4.2. Selectwith modification protected rse{MPR-
Selec}. A select statemerfi (which could be in a sub-query) in
transaction programpP; is said to be MPR w.r.t. transaction pro-
gram P, if either

rset(S) Nwset(Pz) =0
or all of following conditions are true
e The WHERE clause predicateused inS is stable w.r.t.Ps.
e P; contains a statemeni#/, such that

— M is an update or delete statemént

— The WHERE clause predicafe used byM to identify
rows to be modified is such that = D, and D must
be stable w.r.tP;.

— Whenever the program execut§sit either also exe-
cutesM, or aborts.

concurrently to commitment.

As we have mentioned, for DBMS’s which apffigst-committer-
wins at row granularity, the MPR property implies that an edge
in SDG is not vulnerable, even though the corresponding éuge
CSDG might be pseudovulnerable. If enough edges are not ac-
tually vulnerable, a syntactic pseudopivot might not beetpat
all, and therefore there is no danger of anomalies. Thus & too
that adopts the conservative approximation, and repdriyatac-
tic pseudopivots, would be delivering a false positive.

DEFINITION 4.4. MPR Analysis. We say that a transaction is
found to be a false positive using MPR analysis if

e itis detected as a syntactic pseudopivot, and

e after eliminating vulnerable edges using Theorem 2, thestra
action is found to not be a pivot.

a

In order to build a tool that does not report many false pes#]
we want to automatically identify some cases where traimact
are MPRw.r.t. others. This requires using syntactic sufficient con-
ditions for the concepts defined above.

We wish to show that the set of rows returned by a WHERE
clause are not affected by another program. The rows reduare
filtered from the rows in (a cross product of) some tablesetam
the value of a predicate. Thus we need to consider ways to show
that the set of rows in the cross product doesn’t change, kad a
ways to show that the value of the attributes used in the pageli
doesn’t change. This suggests the following definitions.

DEFINITION 4.5. Insert-Delete Stable Table. Tablet is said

2M may also be a SFU, on platforms where SFU is treated like a 0 be insert-delete stable w.r.t. transaction progrdmif P does

modification when it or other transactions do the first-coien
wins checks.

not contain any insert or delete statement which operatesible
t. [m]

1268

DEFINITION 4.6. Syntactically Stable Column. Columnc of
tablet, denoted by.c, is said to be syntactically stable w.r.t. trans-
action programP, if t.c & wset(P). |

Note that, if atablename.column t.c is syntactically stable
w.r.t. P thent.c is not affected byinsert deleteor updatestate-
ment in P. With the help of Definition 4.6 and Definition 4.5 we
can conservatively identify if a predicate is stablet. some trans-
action program.

DEFINITION 4.7. Syntactically Stable Predicate.Consider a
predicateC and a transaction progran®. If every tablename.column
used inC is stable w.r.t.P and every table on which' operates
is insert-delete stable w.r.?, thenC' is syntactically stable w.r.t.
transaction programP. a

DEFINITION 4.8. Selectwith syntactic modification protected
rset(Syntactically MPR-Select).A select statemeist (which could
be in a sub-query) in transaction prograf is said to be syntac-
tically MPR w.r.t. transaction progran#., if either

rset(S) Nwset(Ps) = 0
or all of following conditions are true

e The WHERE clause predicaté used inS is syntactically
stable w.r.t.P.

e P contains a statemeni#/, such that

— M is an update or delete statemént

— The WHERE clause predicafe used byM to identify
rows to be modified is such th&t = (D and D’) for
someD’, and D must be syntactically stable w.ri;.

— Whenever the program executgsit either also exe-
cutesM, or aborts.

O
Notice that in the preceding definition, we use an easy stintac
test which ensures that = D. One frequent case is whefé =
D (soD’ istrue).

DEFINITION 4.9. Transaction with syntactically modification
protected rset (Syntactically MPR Transaction). A transaction
program P; is said to be syntactically MPR w.r.t. transaction pro-
gram P; if

1. every select query as well as every subquery of an insert,

delete or update is a syntactically MPR-Select wit:t.

2. WHERE clause predicates of every update/delete statemen

in P; are syntactically stable w.r.t?.

O
The following theorem expresses that these syntactic jed
are safe.

THEOREM 3. If S is a select statement in transaction program
Py such thatS is syntactically MPR w.r.t. transaction prograf,
thenS is MPR w.r.t.P. a

We will now try to use the MPR analysis to detect some of the
false positives in our simplified banking application.

ExamMPLE 4.1. Update Customer transaction Consider the
update customer information transaction prograf'T (Figure 4).

3M may also be a SFU, on platforms where SFU is treated like a
modification when it or other transactions do the first-coien
wins checks.

begin;

select * from customer where id=:id;
update customer set name=?, address=? where id=:
commit;
rset={customer.id, customer.name, customer.addre
wset={ customer.name, customer.addiess

Figure 4: Update Customer InformatioriProgram

begin;
select currentimestamp as c;
update account set balance=balance+m

where accno=:a and acctype in (‘current’,'saving’);
insert into txn values (j&c, :a, ‘Deposit’, :id, :m, :c);
commit;
rset={account.accno, account.acctype, account.bajance
wset={account.accno, account.balance, account.acctype,
txn.*}

Figure 5: DepositProgram

Using the column-based syntactic rules mentioned in Difing.2,

vul

we getUCT — UCI. i.e., in CSDG (Figure 3), there is a pseu-
dovulnerable self-loop fron/C1 to itself. Thus,UC1I satisfies
the definition of syntactic pseudopivot (Definition 3.3)isleasy

to verify that transactiorU CI is a syntactically MPR transaction
program w.r.t. itself. Hence, by Theorem 2 and 3, the edge fro
UCIT to itself in SDG is not vulnerable. Unless there are some
other exposed edges involviigC'I, we do not havd/C1 as a
true pivot. i.e., this is an example of a false positive pratliby
over-approximating in the syntactic analysis. m|

ExXAaMPLE 4.2. Deposit transaction Consider the deposit
transaction programD E P (Figure 5). DE P has a pseudovulner-
able self-loop in CSDG (Figure 3). It reads the valuecofrent_-
timestamp, but does not modify it. Also, it has an extra write
operation which inserts a new row in relation txn. The updsdtde-
ment uses a predicate which is stable w.r.t. itself.

As in Example 4.1DEP is MPR w.r.t. itself, hence it is a false
positive as long as it doesn't participate in other vulndeabdges.

a

ExamMPLE 4.3. Promotion and MPR Consider the shared with-
drawal transaction progran$ AW 1 which we used in Example 2.1.
ShW1 is a syntactic pseudopivot due to vulnerable edge in a self-
loop. If we used promotion on the select statemen#hii/ 1, then
according to Definition 4.3ShW1 will become MPR w.r.t. itself.
Thus, if we rerun the analysis after introducing promotisi,i/ 1
will be detected as false positive. a

The above examples illustrate how our techniques not orlly he
to find transactions that could not cause any anomalies battal
check that the programs are safe after they have been modified

4.2 Integrity Constraints (ICs)

The database system ensures the preservation of somatintegr
constraints which are explicitly declared to the systenhéstchema
definition, such as uniqueness of primary key and referkemtia
tegrity. Some of the S| anomalies are avoided due to the dbms
enforcement of these constraints.

EXAMPLE 4.4. Primary key constraint avoids write skewCon-
sider two instance$T1,T3) of the create account program (Fig-

1269

begin;
select max(accno)+1 as m from accoupt;
insert into account values (:m, 0O, :type);
insert into owner values (:id, :m);
commit;

rset={account.accnp
wset={account.*, owner.}

Figure 6: Create New Account Program

ure 6) where new accounts are created for existing usef, #nd
T> are executed concurrently, both transactions would tryreate

a new account with same account number. However, the account

number is a primary key, and hence duplicates are not allowed
As a result, only one of the two transaction will be commitigd
the database. (In the absence of the primary key constraoth
transactions would be able to execute concurrently and domm
resulting in a non-serializable schedule.)

Note that above transaction will be detected as syntactips
dopivot and is a case of false positive. ad

The pattern ofselect max()+1 asn ... insert new tuple with
valuem, illustrated in the above example, is commonly used for
assigning a numeric primary key for new tuples.

We therefore explicitly check for the situation where aneily
CSDG is labeled vulnerablenly because of a conflict between one

program which has select max that is used to create the vélue o

primary key in a subsequent insert, and another programhiras
an insert to the same table. We must be careful not to ideatify
edge which has such a conflict but also has other read-write co
flicts; this edge may be truly vulnerable. Note that our clsemlso
apply to self-loop edges, that is, the two programs involvey be
the same.

DEFINITION 4.10. New ldentifier Generation Analysis. We
say that a transaction is found to be a false positive using/ Ne
Identifier Generation analysis if

e it is detected as a syntactic pseudopivot, and it is not found

to be a false positive by MPR analysis, and

e after eliminating vulnerable edges created only because of

conflict between select-max used to calculate a primary key

for insertion, and insert, the transaction is found not tosbe
pivot.

ad
It is common practice to test whether an identifier is in use, b
fore inserting a tuple with that identifier. Such a selectesteent
can't be in conflict with anynsertto the table in a concurrent trans-
action, because if they are dealing with different key valtlere
is no conflict, and if they are dealing with the same key vatlen
both will try to insert and one must fail to maintain the primpaey
uniqueness. If this situation is the only reason for an edgm f
P, that edge is not in fact vulnerable. If however there aherot
read-write conflicts as well, the edge should be kept as vabie

ExamMPLE 4.5. Check for existence before inserting Con-
sider a new account creation transaction with provision tegpec-
ify desired account number (Figure 7). The programmer tt@s
make sure that specified account number is not already asgign
Note that this program will be detected as syntactic pseivdop
and is a false positive. a

begin;
select accno as found from account where accno=:m;
if(found==null)

insert into account values (:m, 0, :type);
else

print ‘Error: Requested account number is already in use’;
endif
commit;

rset={account.accnp
wset=account.’}

Figure 7: Create New Account With Desired Account Number

Figure 8: CSDG for simplified banking application after re-
moval of false positives. Shaded nodes are the remaining syn
tactic pseudopivots.

DEFINITION 4.11. Existence Check before Insert Analysis.
We say that a transaction is found to be a false positive uskig-
tence Check before Insert analysis if

e it contains a select using equality on primary key and also
does insert with that same primary key value in the same
table whenever the select returns zero rows.

e it is detected as a syntactic pseudopivot, and it is not found
to be a false positive by MPR analysis, and

e after eliminating vulnerable edges created only because of
a conflict between select that uses an equality predicate on
primary key and insert, the transaction is found not to be a
pivot.

a
Extending the above idea to more general classes of programs
and to other integrity constraints, such as foreign key tairgs,
is an area of future work.

EXAMPLE 4.6. Reducing False Positives for the Mini Bank-
ing Application. The transaction® EP, C Aci,C Ac; andUCT
were found as false positives in the simplified banking appbn,
from Example 3.1 using the MPR analysis and the New Identifier
Generation analysis. The Figure 8 shows the resulting CSDG.

1270

5. ARCHITECTUREOFSITESTING TOOL

We have built a tool for analyzing application programs hviite
goal of identifying possible anomalies, using the theomspnted
in the earlier sections. In this section we outline the decture of
the tool, detailing the steps taken to analyze an applicatio

5.1 Extracting Transactions

The first step in analysis is to extract the set of transagtion
grams that can be generated by the application. As mentioned
Section 3, we can get transaction programs either by amayzi
application code, or by getting traces of queries submittethe
database.

If we have access to the source code of the application progra
we can try to extract every SQL statement found in the program
The extracted SQL statements are parametrized by the itgptite
application. Not all SQL statements in an application psogmay
be executed on every invocation of the application. For etam
in a program of the formW;, if C then X else Y; Zeither X or
Y is executed but not both. Following [6], we can “split” such a
program into two straight-line transactionsif tiot(C) abort; W;

X; Z" and “if C abort; W, Y; Z'. For the case of loops, we could
consider all possible unrollings of the loop, but this woble in-
efficient. Since SQL statements are parametrized anywalydan
plicates can be ignored for analysis, we can get finite tictiosa
programs even in the presence of loops. However, in additon
being hard to automate, this may be difficult (or even imgaeyif
the programs construct the SQL statement dynamically, Xame
ple by concatenating string fragments. We therefore asshatef
extraction from source code is required, it is done manudHgr
example, we did this to analyze the programs in the TPC-Clbenc
mark.

The other way to obtain transaction programs is to captuge th
SQL statements submitted to the database during execuriois.
might be done while the system is executing normally, widms-
action identifiers or session information used to link tbgetthe
statements that form each separate transaction. Alteehgtive
may execute the application programs serially, each withidew
variety of parameter values.

The drawback of using traces of SQL statements submitted to
the database to obtain transaction programs is that oneotaen
sure that every significant path of control flow has been ésedc
If some path does not get executed during testing, the quomnes
ing transaction instances will not be considered by the, tant
as a result some anomalies may escape detection. If a gdod tes
suite is available, which exercises all parts of the appiticecode,
we can use it to generate a set of transactions with good ageer
In this case, the tool is still of great value as a testing,teskn
though it cannot be a verification tool. It is possible to aegin
these transactions with transactions generated by manablsis
of the application logic, to ensure complete coverage.

Our tool supports the extraction of transaction progranesnfr
logs of SQL statements collected from the database. Thetvat
metrizes the SQL statements and eliminates duplicateshwdit
lows a large set of transactions to be compacted to a mucHesmal
set of transaction programs.

In our experiments we obtained logs containing SQL statésnen
by using theauditing feature provided by Oracle, or tletatement
loggingfeature of PostgreSQL.

Our tool parses the SQL statements using the JavaCC parser ge
erator with the SQL grammar available at [11], and extraetstyn-
tactic read and write sets. The tool also extracts predidateanal-
ysis, using the expression parser provided by [10]. The C$DG
displayed in the graphical form using graph layout product[4]

where each transaction is a node in the graph. If a querydeslu

the select for updatelause, and the platform treats these rows as
modified when doing first-committer-wins checks, then tha-co
tents of the read set are moved to the write set, leaving thé re
set empty. This reflects the effect &élect for updat®n snapshot
isolation.

5.2 Steps in Analysis

The analysis begins with the syntactic column-name arsmlysi

from Section 3. Our tool then eliminates false positivestUdPR

transactions, using the theory from Section 4, as follows:
For each syntactic pseudopivBtdetected through the analysis

vul

1. Consider any cycle in CSDG containing a subpBth—

P 2L, Q. If for every such cycleP is MPR with respect
Q, then declareP as a false positive.

. If P is not found as a false positive by the previous test, ap-
ply the New Identifier Generation protection test and the Ex-
istence Check before Insert Test (Section 4.2). If eithst te
succeeds, declate as a false positive.

The output of the tool consists of a CSDG, with highlighting
on all pseudopivots that are not found as false positiveangac-
tions in CSDG are identified by transaction identifiers, ardalso
provide a list of all transactions with their identifiers atheir con-
tents, that is, the (parametrized form of the) statementsgrd
by the transactions. These can be used to locate the congisgo
transactions in the application code, and we can use thaitpes
described in Section 2.4 to avoid anomalies.

Here is a summary of the flow of activities in the tool, when
applied on an application:

1. Step 1:Find the set of transaction programs for the applica-

tion.

. Step 2: Use conservative analysis for creating the column-
based syntactic dependency graph (CSDG). Use CSDG to
detect syntactic pseudopivots in the application.

. Step 3: Reduce false positives present in the set of syntactic
pseudopivots obtained in step 2.

. Step 4: Select appropriate techniques to avoid anomalies for
the set of potential pivots remaining after step 3. This step
is not currently implemented in the tool and must be carried
out manually, using techniques described in [6] (outlined i
Section 2.4).

5.3 Experimental Results

We used our tool to analyze two applications, a financialiappl
cation which runs on Oracle 10g, and an academic system which
runs on PostgreSQL 8.1.4, which are in use at [IT Bombay.

The academic system is used to automate various academic ac-
tivities, including course registration, online coursedback, grade
allocation, modification of courses, faculty informationdastu-
dent information, and generation of numerous reports ssdhade
cards and transcripts. For the case of the academic systeim-we
strumented the live database, and collected logs of als&@ions
that were executed in one day and supplemented with seasonal
transactions, such as registrations, that were not acthenwve
collected the logs.

Among the transactions that caused conflicts was an endrof-s
ester summarization transaction, which reads all gradesaaéed
to each student in the semester, calculates grade poiragasr

1271

Acad. | Finance] TPC-GC Ban

Distinct txns 26 34 7 7
Syntactic Pseu{ 25 34 4 7
dopivots detected
MPR detected 11 3 4 2
New Identifier 3 3 0 2
Generation Protec
tion detected
Existence Check 2 0 0 0
before Insert
Protection detected
Remaining Poteni 9 28 0 3
tial Pivots

| Verified True Pivots] 2] 2] 0] 3]

Table 1: Results for Academic System (Acad.), Financial Aplp
cation (Finance), TPC-C benchmark (TPC-C), and simplified
banking application (Bank)

updates a summary table, and inserts records into a trphsari
ble. There were several other transactions, each of whidateg
a single row of one table with values provided by the userctvhi
appeared to be pivots, but were found to be MPR since the only r
that they read was the row that they updated.

The financial system is used to track all payments and rexeipt
starting from creation of bills, approval of bills and paym¢post-
ing) of bills, budget management, payroll management, ameig
ation of a large number of reports. For the case of the financia
application, we (manually) executed a test suite of traisas,
and used the corresponding transaction logs. One transaetirth
mentioning is the end-of-day transaction, which aggregattor-
mation about all bills that were paid or money received in thegy,
and moves data about all such transactions from a currgntatite
to a history table. This transaction conflicts with all tracsons
related to payment or receipt of money. There were seveanbir
actions that created new bills or purchase orders which feoened
as false positives.

Table 1 shows the results of running our tool on 4 differeqiap
cations: the academic system and the financial applicavitich
are live systems in use at IIT Bombay), as well as TPC-C and the
simplified banking application used in our examples.

As can be seen from Table 1, our tool detected a fair number
of pseudopivots, some of which were subsequently foundlas fa
positives and eliminated using MPR analysis, New Identiien-
eration analysis and Existence Check before Insert Test.thHeo
case of the academic system, our automated analysis was quit
successful in finding and removing false positives. For thgec
of the financial application, the tool did eliminate someséapos-
itives, but a number of potential anomalies remained for uain
examination, since the queries were too complex for ourertrr
implementation (they contained outer joins and subquevitasch
our current implementation does not handle). We don't haee t
full application code for financial system, and hence do raseh
enough semantic information to know which of the potentiabts
can be eliminated.

However, it is important to note that the tool did in fact firels
eral cases which turned out to be real pivots. Some of thesecay
unlikely to occur in practice and could be ignored. Otherd ta
be fixed, in particular the end-of-day and end-of-semesamistc-
tions mentioned earlier were potentially dangerous. Astioead
in Section 1, financial auditors at IIT found a problem witham

Figure 9: CSDG for TPC-C

count, which we eventually traced to an S| anomaly. Our toas w
able to detect this problem, as well as some other probleefisiriy
us to fix them, and it allowed us to ignore several other caises s
it found them to be false positives.

The set of transactions in TPC-C were obtained in the form of
parameterized SQL queries by analyzing the proceduresitd s
ting at the control structures (if, while, goto etc.) mamyalWe in-
cluded the splitting opaymentandostattransactions, which were
skipped in [6] based on manual analysis showing they were not
relevant.) All thenon-readonlytransactions were found to be MPR
with respect to all the other transactions, matching theuakbanal-
ysis in [6]. The results obtained are shown in Table 1, whike t
CSDG obtained by our tool is shown in Figure 9.

Table 1 also lists results for our banking example, whettgsilhy
all the transactions were detected as syntactic pseudspivds-
ing the techniques to find false positives, we narrowed ddven t
set of pivots (Figure 8). The remaining pivots are real and ca
cause anomalies. For e.§AW; andShWW 2 can cause write skew
anomaly wherea& O D can cause a phantom anomaly.

In all cases our tool executed in less than 1 minute on thewpetra
rized transaction programs described above. The task adrgen
ing parametrized transaction programs from large SQL saea
be somewhat slower, and took less than 5 minutes for 16000 SQL
statements. These overheads are clearly still acceptatites ben-
efits provided.

6. IMPLEMENTATION ISSUES IN AVOID-

ING ANOMALIES

We will now discuss various issues in using some of the tech-
nigues for modifying transaction programs to avoid anoeslas
mentioned in Section 2.4.

As we have seen in Section 2.4.1, running pivots with stwett
phase locking (S2PL) will avoid all anomalies. This can baelo
on platforms like Microsoft SQL Server. However Oracle and®
greSQL do not provide an isolation level that uses S2PL. We ca
useselect for updateo partially simulate S2PL, but this does not
protect against phantoms. We can simulate the effect oé+tabl
granularity S2PL on Oracle, or on PostgreSQL, by explicsdy-
ting locks. Note that table-granularity locking means thatre are

1272

no phantoms or anomalies due to predicate-read-to-writéicts.
But, the table-granularity locks also reduce concurrerreatly. To
simulate S2PL on these platforms, the programmer can udelthe
lowing approach.

1. Declare the pivot transaction T to have Isolation Leved&g
Committed” (so each read or write sees the latest committed
data at the time it is executed);

2. Then, explicitly LOCK Table (in appropriate mode) for eyve
table read or written, before tlselector updatdinsertdelete
statement is executed.

Note that this does not properly simulate S2PL if the pivoisrat
isolation level "serializable” (i.e. Snapshot) becausentiselects
use older data from the transaction snapshot, rather thaentu
data as required of S2PL. This is a surprising situation,revhais-
ing the declared isolation level actually introduces aniggsa

The promation technique uses row level locks and has a lower
impact on concurrency than using table locks. When appteal t
transaction’, promotion is supposed to convert the outgoing vul-
nerable edges frof into non-vulnerable edges.

It may not suffice use the promotion technique in some trans-
actions where the conflict is between a predicate read andte, wr
because it does not prevent phantoms.

begin;

select max(endtimestamp) as s, currémtestamp as ¢
from batchaudit;

select sum(amount) as d from txn where type=‘Deposit’;

select sum(amount) as w from txn
where type="Withdraw’;

insert into batchaudit(starttimestamp, endtimestamp,
inamount, outamount) values (:s,:e,:d,:w);

commit;

Figure 10: End of day audittransaction

ExamMPLE 6.1. Example where promotion is not sufficientCon-
sider the End-of-the-day audit transactioR@Q D) shown in Fig-
ure 10. The batches created O D are supposed to be non-
overlapping. In Figure 8,EOD is detected as syntactic pseu-
dopivot due to vulnerable edge to itself. One might thinksdfigi
promotion to convert this self vulnerable edge to non-wahke
edge. Now consider two execution instané&sgnd 1) of EOD
modified to use promotion. If predicate locks are not sumgably
DBMS, promotion used ift; would only check rows from its own
snapshot for first-committer-wins policy and miss the rowotw-
rently inserted byT» and vice versa. i.e. if; and 7, execute
concurrently, they both will read same value of max(enditarap)
and would create overlapping batches and both will be alldwe
commit. This indicates that the self vulnerable edg€©ofD is not
converted to non-vulnerable by promotion. a

We can use the MPR test to decide whether usproiotion
can convert a vulnerable edge into non-vulnerable edgesiGen

avulnerable edg@4 2ul, pp. Let P/, be the modified transaction
program after applying promotion tB4. If P} is MPRw.r.t. Pg
then according to Theorem 2, the edge fréth to P can not be
vulnerable.

The overheads of promotion can be expected to be signifinant i
the presence of contention, since promotion prevents someuc-
rency. As aresult, we seek to minimize the use of promotighao
necessary to ensure serializable executions.

Figure 11: Example

Consider the case of two transaction prografsand Pz, with
Py 2 PpandPp 2L Py, as shown in the following figure:

Both the transactions are syntactic pseudopivots, and todeel
modified to ensure serializability. In case we use the S2RL ap
proach, we would need to run both the pivots under S2PL. How-
ever, in case we use promotion, it is sufficient to modify eitbne
of P4 and P to use promotion. Use of promotion in a pivot re-
places all outgoing vulnerable edges from the pivot, by wnor-
nerable edges. Thus, use of promotion might require modiifica
of a fewer number of transactions than using S2PL.

DEFINITION 6.1. Dangerous Structure.[6] A cycle in CSDG
with consecutive vulnerable edges is a dangerous structured

DEFINITION 6.2. Dangerous Edge Pair (DEP)The consecu-
tive vulnerable edges in a dangerous structure form a Damger
Edge Pair. m|

DEFINITION 6.3. CanFix relation. The set of dangerous edge
pairs which can be removed using promotion in a pifis given
by the relationCanFiz(P). |

Every dangerous structure in CSDG identifies some syntactic
pseudopivot transactions. E.g. the dangerous structarEgure
11, identifies pivot transactiod, B, with (DA, AB) and(AB, BC)
as the dangerous edge pair. Al§danFiz(A) = {(DA, AB),
(AB, BC)} andCanFiz(B) = {(AB, BC)}.

Depending upon our goals, we can seek to make changes in a
minimum number of transactions or in a minimum number ofestat
ments.

In order to avoid anomalies, we need to ensure that the sdit of a
dangerous edge pairs are covered By . , CanF'iz(F;), where
P is the subset of set of all transaction programs that are modi
fied by promotion. Suppose we seek to minimize the number of
programs in the seP.

DEFINITION 6.4. DEPs Cover Problem (DEPC).Let G =
(Sp, E) be the Column-based syntactic dependency graph for a set
of transaction programs$'r with a set of static dependency edges
E. Let Spep be the set of DEPs. Given such CSDG, the DEPs
cover problem (DEPC) is to find a set of transaction programs i
Sp such that replacing all vulnerable edges out of them by non-
vulnerable edges results in removal of all dangerous eddes jra
Spep. Inthe DEPs cover optimization problem the task is to find
a DEPs cover which uses the fewest transactions programsQ

In the example shown in Figure 11, @&nFiz(A) covers the
set of all dangerous pairs, it is sufficient to modify trargac A
only. This minimization problem can be shown to be NP-Hard.

1273

We can extend the above model to define another optimization correctness even in the presence of Sl, since insertskpdane
problem to minimize the number of statements to be modified in by one transaction are not visible to other transactionkeirin

given a set of pivots. We will need to define a differéitintCan Fix
relation, which gives the set of dangerous edge pairs rethbye
using promotion in a given statement.

7. DISCUSSION

In this section we discuss some other issues related to #e sn
shot isolation testing tool.

Often, triggers are used to preserve integrity constraii@s).
Under SI, a trigger operates on the same snapshot as thadtiams
invoking it and hence can be vulnerable to Sl anomalies. &theg,
some ICs can not be preserved using triggers which run unider S
unless the trigger itself uses explicit locking, promotionmateri-
alization to protect against anomalies. (In fact we found sach
instance where a trigger failed to preserve an integrityst@aint,
due to SI, in the financial application used at [IT Bombay.)

To detect which triggers need such protection, we can firgit fin
which transactions could invoke each trigger, and augniertrans-
action code with the trigger code. We then run our analysithen
augmented transactions, and wherever an augmented ttiansac
found to be a pivot, we have to protect the transaction usimey o
of the techniques discussed in Section 2.4. Whether doneaghr
explicit table locking, or through additional writes or pnotion,
the overhead will be paid by all transactions that could eabe
trigger to be fired.

Large update transactions are often chopped into smadlesaic-
tions, to reduce the impact on locking and on the size of thigeac
part of the log. Suppose a set of transactiéhkas a pivot. It is
possible that if one of the transactions.$his chopped into two
or more pieces, none of the transactions in the modifieday be
pivots. Given a se$' of transactions, Shasha et al. [9] provide suf-
ficient conditions for chopping of a transacti@hto be safe, in that
the execution will be serializable. These conditions havelso
ensure that there will be no pivots, so using Sl does not caoge
further problems.

8. CONCLUSIONS & FUTURE WORK

Snapshot isolation, although widely used, can potentdlyse
non-serializable transaction histories. Applicationsning under
Sl are at risk of data inconsistency due to transaction afiema
theory that gives sufficient conditions for these anomalias pre-
sented by Fekete et al. [6], and by Fekete [5]. We used tha@yhe
to define a syntactic condition that can be used to over-appaie
the set of transactions that may cause anomalies. We stsolied
general patterns where a transaction can apparently caoseaa
lies, but it actually cannot, due to certain actions thattiesaction
performs such as modifying the data that it read. We propeséd
ficient conditions for inferring that certain syntactic pgepivot
transactions are false positives, and the transactionthagesafe
with respect to serializability. Our conditions take cafepban-
toms. Further, when pivots are detected and fixed using ptiomo
or S2PL, reapplying the conditions can infer safety (as lasghe
conditions are satisfied after the fixes).

the case of standard index locking. An efficient approxioragl-
gorithm for the DEPC optimization problem (Section 6) is teo
area of future work.

Yet another area of future work is in developing a theory for i
cluding workflow constraints (e.g. grading will never rumcaor-
rently with course registration), and integrity consttaiother than
primary keys (such as foreign keys) to reduce false positive

9. REFERENCES

[1] Atul Adya, Barbara Liskov, and Patrick E. O’'Neil.
Generalized isolation level definitions. IGDE, pages
67-78, 2000.

Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton,

Elizabeth O’Neil, and Patrick O'Neil. A critique of ansi sql

isolation levels. I'SIGMOD '95: Proceedings of the 1995

ACM SIGMOD international conference on Management of

data pages 1-10, New York, NY, USA, 1995. ACM Press.

P. Bernstein and N. Goodman. Mulitversion concurrency

control - theory and algorithm#&CM Transactions on

Database System8(4):465-483, December 1983.

K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger.eTh

notions of consistency and predicate locks in a database

systemCommun. ACM19(11):624-633, 1976.

[5] Alan Fekete. Allocating isolation levels to transaciso In
PODS '05: Proceedings of the twenty-fourth ACM
SIGMOD-SIGACT-SIGART symposium on Principles of
database systempages 206215, New York, NY, USA,
2005. ACM Press.

[6] Alan Fekete, Dimitrios Liarokapis, Elizabeth O’NeilaRick
O’Neil, and Dennis Shasha. Making snapshot isolation
serializable ACM Trans. Database Sys80(2):492-528,
2005.

[7] Alan Fekete, Elizabeth O’Neil, and Patrick O’Neil. A
read-only transaction anomaly under snapshot isolation.
SIGMOD Reg.33(3):12-14, 2004.

[8] Y. Raz. Commitment ordering based distributed conauye

control for bridging single and multiple version resourckes

Proceedings International Workshop on Research Issues in

Data Engineering (RIDE'93)pages 189-199, 1993.

Dennis Shasha, Francois Llirbat, Eric Simon, and Platric

Valduriez. Transaction chopping: algorithms and

performance studieACM Trans. Database Syst.
20(3):325-363, 1995.
[10] Cayenne (exprerssion parsdr).t p: / / cayenne.
apache. or g/ doc/ expressions. htm .

[11] Javacchtt ps://javacc. dev.java. net/.

[12] Tpc-c benchmarkhtt p: //www. t pc. or g/t pcc/,
2006.

[13] Postgresql 8.3devel documentation.
http://devel oper. post gresql . org/ pgdocs/
postgres/transaction-iso. htn#
XACT- SERI ALI ZABLE, 2007.

(2]

(3]

(4]

9]

We have also developed a tool that can automate the testing of[14] Dot and dottyht t p: / / hoagl and. or g/ Dot . ht m

database applications for safety against S| anomaliestd@uhas
been used in practice with good effect, identifying someugen
problems in production code, and also verifying safety fanm
transactions.

We are currently working on alternatives to table locks idesr
to ensure freedom from phantoms. Our idea is to simulatexinde
locking by materializing conflicts; the key issue here is ts@e

2006.

1274

