
Automating the Detection of Snapshot Isolation Anomalies

Sudhir Jorwekar
I.I.T. Bombay

sudhirj@cse.iitb.ac.in

Alan Fekete
University of Sydney

fekete@it.usyd.edu.au

Krithi Ramamritham
I.I.T. Bombay

krithi@cse.iitb.ac.in

S. Sudarshan
I.I.T. Bombay

sudarsha@cse.iitb.ac.in

ABSTRACT
Snapshot isolation (SI) provides significantly improved concurrency
over 2PL, allowing reads to be non-blocking. Unfortunately, it can
also lead to non-serializable executions in general. Despite this, it
is widely used, supported in many commercial databases, andis in
fact the highest available level of consistency in Oracle and Post-
greSQL. Sufficient conditions for detecting whether SI anomalies
could occur in a given set of transactions were presented recently,
and extended to necessary conditions for transactions without pred-
icate reads.

In this paper we address several issues in extending the earlier
theory to practical detection/correction of anomalies. Wefirst show
how to mechanically find a set of programs which is large enough
so that we ensure that all executions will be free of SI anomalies,
by modifying these programs appropriately. We then addressthe
problem of false positives, i.e., transaction programs wrongly iden-
tified as possibly leading to anomalies, and present techniques that
can significantly reduce such false positives. Unlike earlier work,
our techniques are designed to be automated, rather than manually
carried out. We describe a tool which we are developing to carry
out this task. The tool operates on descriptions of the programs
either taken from the application code itself, or taken fromSQL
query traces. It can be used with any database system. We have
used our tool on two real world applications in production use at
IIT Bombay, and detected several anomalies, some of which have
caused real world problems. We believe such a tool will be invalu-
able for ensuring safe execution of the large number of applications
which are already running under SI.

1. INTRODUCTION
Databases provide different isolation levels to meet different con-

currency and consistency requirements. The highest isolation level
(serializable) ensures the highest level of consistency i.e., serializ-
ability. However, lower isolation levels provide significantly better
concurrency, and are widely used, even though they can lead to a
reduced level of consistency.

Snapshot isolation (SI) is an attractive optimistic concurrency
control protocol, which is widely implemented and widely used.

Permission to copy without fee all or part of this material isgranted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘07,September 23-28, 2007, Vienna, Austria.
Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3/07/09.

Among its attractive features are that under SI, reads are always
non-blocking, and it avoids some of the common types of anoma-
lies. However, as pointed out in [2], SI is vulnerable to an anomaly
called write-skew, as well as a related situation involvingphan-
toms. Thus, transactions running under snapshot isolationcan lead
to non-serializable schedules (anomalies) and can cause database
inconsistency.

Despite this, not only is SI widely supported, it is also the high-
est level of consistency supported by widely used systems such as
Oracle and PostgreSQL, which in fact use SI even if the user re-
quests serializable level of isolation. Many organizations use these
databases for running their applications, and so they are potentially
at risk of corrupted data.

It was observed in [6] that transactions in many applications,
such as those in the TPC-C benchmark [12], have certain prop-
erties that ensure serializable executions even if run under SI. In
fact in many applications, SI anomalies either do not occur because
data items that are read are also updated, or the SI anomaly results
in violation of an integrity constraint, such as primary key, and so
rollback eliminates the anomaly. As a result, consistency problems
are not widely seen.

However, it is not a wise idea to assume that an application issafe
just because consistency problems have not been observed, since
isolation problems are often hard to detect and to reproduce. In
one of the applications in use at IIT Bombay, for example, financial
auditors twice found problems with accounts which could be traced
back to problems with SI in one of the cases, and to bad transaction
boundaries in the other. Even after such problems are found,it is
non-trivial to find their cause, since race conditions are extremely
hard to reproduce.

Fekete et al. [6] and Fekete [5], provide a theory for determin-
ing which transactions among a given set of transactions canbe
run under SI, and which must be run under 2PL, to ensure serial-
izable executions. The theory is based on analyzing read-write and
write-write conflicts between transactions, and identifying a set of
“pivot” transactions; if the pivot transactions are run under 2PL (or
by using other techniques described in Section 2), all executions
are guaranteed to be serializable.

The theory of [5] assumes that transactions work on prespeci-
fied data items, whereas real world transactions are programmed as
SQL statements containing predicates. Moreover, analysismust be
done at an abstract level where the SQL statements are parametrized,
and actual parameter values are not available to the analysis tool.
Fekete et al. [6] do consider parametrized SQL statements with
predicates, but their analysis is applied manually to provethat trans-
actions in the TPC-C benchmark could all be run under SI, while
guaranteeing serializability. They do not address the automation of
such analysis.

1263

Our Contributions : In this paper we describe the architecture of a
tool we have developed to analyze application transactionsand au-
tomatically detect SI anomalies. In the process we also address sev-
eral issues in extending the earlier theory (described in Section 2)
to practical detection/correction of SI anomalies.

1. We describe (in Section 3) a syntactic analysis technique,
which combines the pivot detection technique of [5] with the
column-based analysis of [6] to flag a set of transactions as
those that could cause anomalies if run under SI.

2. The syntactic analysis technique is conservative, and may
over-approximate the set of transactions that could cause ano-
malies if run under SI; in other words, the technique may re-
sult in false positives. We therefore present (in Section 4)
three sufficient conditions to determine whether transactions
are safe (i.e. cannot cause anomalies). We make use of in-
formation about updates/deletes present in the transaction, or
database integrity constraints, either of which can sometimes
ensure that the transactions cannot run concurrently with cer-
tain other transactions. Using these techniques, we are able
to significantly reduce the incidence of false positives.

We also note that the above analysis takes into account the
presence of artificially introduced conflicts orselect for up-
date statements, which are used to avoid some anomalies
in SI. Thus, if an application is analyzed, found to contain
anomalies, and the anomaly is (manually) fixed by introduc-
ing conflicts or by usingselect for updatestatements, our
analysis can be run on the modified program to detect if it is
indeed safe.

3. We develop a tool to automate the analysis of applications.
The tool (described in Section 5), can automatically ana-
lyze a given set of transactions and report all transactions
that could result in SI anomalies, and can be used with any
database system.

A challenge in building such a tool lies in identifying the
set of transactions in a given application. In our analysis,
as in [6], we assume that each transaction is a sequence of
(parametrized) SQL statements, including queries, updates,
inserts and deletes. Transactions are usually coded in the
form of programs with control structures like loops and con-
ditional branches, but as described in [6], such transactions
can be split into multiple straight-line transactions, onerep-
resenting every possible execution. (Since our analysis deals
with parametrized SQL statements, the number of iterations
of a loop is not relevant, so the above set is finite.)

It is difficult to automatically analyze transaction code con-
taining control flow statements and generate all possible trans-
actions, as described above. This step can be done manually,
and the resultant transactions provided to our tool. However,
our tool supports an alternative mode, where execution traces
(i.e., sequences of SQL statements generated by the applica-
tion) are collected, and the tool processes these to extract
parametrized transactions. While it is hard to ensure that all
possible transactions are captured, this approach can be used
as a way to test, if not verify, the safety of an application.

We have used our tool on two real world applications in use at
IIT Bombay, and detected several transaction programs that
could result in executions with anomalies; these could cause
(and some have caused) real world problems. We believe
such a tool will be invaluable for ensuring safe execution of
the large number of applications which are already running

account(accno, balance, acctype)
customer(id, name, address);
owner(id, accno)
txn(txnid, txntype, accno, id, amount, timestamp)
batchaudit(bid, starttimestamp, endtimestamp, inamount, outa-
mount)

Figure 1: Schema for mini banking system

under SI. We present a summary of results obtained using
our tool; our tool was able to detect several instances where
anomalies are possible in these applications. The techniques
from Section 4 were successful in eliminating several false
positives. We also ran our tool on the TPC-C benchmark,
which was shown to be free of anomalies in [6] using manual
analysis. Our tool was able to come to the same conclusion,
automatically.

4. We discuss practical issues in ensuring serializability(in Sec-
tion 6). We show that there may be multiple ways of choos-
ing which transactions to modify, to ensure serializability.
We discuss the problem of finding a minimum-sized set of
such transactions to minimize the efforts required. See Sec-
tion 6 for details.

The rest of the paper is organized as follows. Section 2 pro-
vides a background of snapshot isolation testing includingtypes of
anomalies, and a theory for detecting anomalies and techniques for
avoiding anomalies. Section 3 describes the syntactic analysis tech-
nique. Section 4 addresses the problem of reducing false positives.
Section 5 presents an overview of various steps involved in snap-
shot isolation testing tool. It explains the basic approachfor getting
a set of transaction programs, and performing a conservative analy-
sis. Section 6 discusses issues in using various methods to remove
anomalies. Section 7 contains discussion related to miscellaneous
issues in developing an SI testing tool.

2. BACKGROUND
In this section we briefly recap the existing knowledge about

snapshot isolation anomalies. To illustrate the various concepts,
we use a simplified banking application as the running example in
this paper. The schema for this application is shown in Figure 1
while Figure 2 shows the different kinds of transactions supported
by this application.

2.1 Snapshot Isolation (SI)
Snapshot Isolation is an extension of multiversion concurrency

control. It was first defined in [2] as follows:

DEFINITION 2.1. Snapshot Isolation. A transaction T1 exe-
cuting with Snapshot Isolation always reads data from a snapshot
of committed data valid as of the (logical) time T1 started, called
the start-timestamp. (The snapshot could be any point in logical
time before the transactions first read.) Updates of other transac-
tions active after T1 started are not visible to T1. When T1 isready
to commit, it is assigned a commit-timestamp and allowed to com-
mit if no other concurrent transaction T2 (i.e., one whose active
period [start-timestamp, commit-timestamp] overlaps with that of
T1) has already written data that T1 intends to write; this iscalled
the First-committer-wins rule to prevent lost updates. 2

In fact, most implementations use exclusive locks on modified
rows, so that instead of First-Committer-wins, a First-Updater-wins

1264

Creation of new account: A new account is created for a
customer using this transaction. If customer is opening hisfirst
account in bank, his personal information is also saved incus-
tomerrelation. A new customer id (resp. a new account num-
ber) is generated by finding the maximum value of the column
id in the customerrelation (resp. the column accno in theac-
countrelation), and adding one.
Update of contact information of customer: Personal infor-
mation of a customer is updated using this transaction.
Deposit: The specified amount is deposited in the specified ac-
count number by updating the account balance. The transaction
is recorded in the relationtxn.
Withdrawal: A withdrawal is permitted from an account pro-
vided the sum of balances of all accounts belonging to the user
remains non-negative. Overdraft beyond this is allowed, but
with a penalty of 1 unit. The transaction updates the account
balance and records the transaction in the relationtxn.
End-of-the-day audit: At the end of each day an au-
dit batch is formed. These batches are stored in relation
batchaudit. These batches define non overlapping intervals
[starttimestamp,endtimestamp). Each batch identifies
all transactions listed intxn that havestarttimestamp ≤
timestamp < endtimestamp. The sums of the amounts de-
posited and withdrawn by transactions in the batch are calcu-
lated and stored, for each batch.

Figure 2: Transaction Types in the Simplified Banking Appli-
cation

policy is applied. The distinction is not important, the keyimpact
of either policy is that one can’t have two transactions thatare con-
current (overlapping in time) and modify the same data item.This
means that the “lost-update” anomaly can’t occur. Similarly, the
way all reads by a transactionT see the same set of complete trans-
actions (those that committed beforeT started), and they see no
effects of incomplete transactions, means that SI preventsthe “in-
consistent read” anomaly.

2.2 Snapshot Isolation Anomalies
Even though SI avoids all the classically known anomalies such

as lost update or inconsistent read, there are some non-serializable
executions that can occur. Two types of anomalies have been iden-
tified in a set of transactions running using SI [2]. Write skew is a
very common anomaly, illustrated by the example below, which is
not detected by thefirst-committer-winspolicy of SI.

EXAMPLE 2.1. Write skew. A personP owns two bank ac-
counts. Let X and Y be the balance in these accounts. This bank
provides a facility whereM units can be withdrawn from any of the
two accounts as long asX + Y ≥ M . LetX = 100 andY = 0.
Consider a scenario whereP initiates two withdrawal transactions
(T1, T2) on the different accounts simultaneously, both trying to
withdraw100 units.

T1 : r1(X, 100) r1(Y, 0) w1(X, 0) c1

T2 : r2(X, 100) r2(Y, 0) w2(Y,−100) c2

Snapshot Isolation allows both these withdrawals to commit. Thus
P is able to withdraw200 units and the final sum of balance is
−100. This is not possible in any serial execution of the two trans-
actions. 2

Write skew can also happen between reads and inserts, as illus-
trated later in Example 4.4.

Fekete et al. [7] also describe another kind of anomaly that they
call a read-only-transaction anomaly. This involves a reader seeing
a state that could not occur in any serial execution that leads to the
actual final state of the interleaved execution.

2.3 Theory of Anomaly Detection
The starting point for understanding how transactions can pro-

duce anomalies under SI is the theory of multiversion serializabil-
ity. There are several variants of this theory ([1, 3, 8]), but all define
a serialization graph for a given execution, with nodes for the trans-
actions, and edges reflecting conflicts or dependencies. Forexam-
ple, there can be an edge fromTi to Tj if Ti reads a version of an
item andTj produces a later version of the same item; this is called
a rw-edge. The key theorem is that when the serialization graph
is acyclic, then the execution is serializable, and no anomalies can
occur.

For the DBA or application developer, the real concern is not
whether a given execution is serializable, but rather whether every
possible execution is serializable (that is, whether or notanomalies
are possible). There are two different sources for the variation be-
tween different executions of a single system. The system ismade
of programs, each of which can execute in different ways, depend-
ing on inputs (such as different parameter values) or by making
control flow decisions based on the values read in earlier database
accesses. Also, there can be many executions as the transactions
interleave in different orders, based on non-deterministic outcomes
of process scheduling and lock contention. Earlier work [6]has es-
tablished some important conditions on a set of applications, that
guarantee that every execution of these applications is serializable
when SI is the concurrency control mechanism.

The main intellectual tool in [6] is a graph called thestatic de-
pendency graph(SDG). This can be drawn for a given collection of
application programs A. The nodes of SDG(A) are the programsin
the collection. An edge is drawn fromP1 to P2 if there is some ex-
ecution of the system, in whichT1 is a transaction that arises from
running programP1, andT2 arises from runningP2, and there is a
dependency fromT1 to T2. Of special importance are edges called
vulnerable edges. An edge fromP1 to P2 is vulnerable if there
is some execution of the system, in whichT1 is a transaction that
arises from running programP1, andT2 arises from runningP2,
and there is a read-write dependency fromT1 to T2, andT1 and
T2 are concurrent (that is, they overlap in execution time). India-
grams, vulnerable edges are shown specially (as dashed arrows).

Within the SDG, certain patterns of edges are crucial in deter-
mining whether or not anomalies might occur. [6] defines adan-
gerous structurein the graph SDG(A) to be where there are pro-
gramsP , Q andR, which may not all be distinct, such that there
is a vulnerable edge fromR to P , there is a vulnerable edge from
P to Q, and there is a path fromQ to R (or elseQ = R). We
can call a programP with the properties above apivot program in
the collectionA. Note that the definition includes the possibility of
a pivot with a vulnerable self-loop (thenP = Q = R), and also
of a pair of pivots with vulnerable edges in each direction between
them.

The main theorem of [6] shows that if the collection of programs
A has SDG(A) without pivots, then every execution of the pro-
grams in A, all running on a DBMS with SI as concurrency control
mechanism, is serializable.

2.4 Removing Anomalies
Of course, the application developer hopes that analysis using

SDG will show that the set of programs in the system will generate
executions which are all serializable. If there are no pivots, this is

1265

true. But what if there are some pivots? The general approachis
to modify some of the application programs, in ways that do not
alter their business logic, but lead to a new set of programs that has
no pivots. In general, one can make changes to eliminate pivots,
by changing at least one vulnerable edge to be non-vulnerable, in
every dangerous structure. Here we summarize the main known
ways (from [5, 6]) to do this modification; note that most of these
involve modifying the code of the pivot programs. Not all of these
may be applicable to a given program or for given DBMS. Also,
they have different impacts on concurrency.

2.4.1 Strict Two Phase Locking (S2PL) for Pivots
The cleanest modification is to run the pivot programs with true

serializability (using strict-two-phase locking), rather than using
SI. This does not require any change in the code of the program
except for configuration information for the session. As shown in
[5], the above modification ensures serializability as longas the fol-
lowing properties hold for the concurrency control mechanism: (a)
The version of an itemx produced by an SI transactionT must be
protected by an exclusive lock from the time it leaves any private
universe ofT , until (and including the instant when) the version is
installed becauseT commits. The exclusive lock must be obtained
following the normal locking rules. (b) The check against over-
writing a version which was installed while an SI transaction T was
active covers versions produced by locking transactions aswell as
versions produced by SI transactions. These conditions arein fact
met by all implementations of SI whose details we are aware of,
including Oracle, PostgreSQL and Microsoft SQL Server.

Unfortunately, among the widely used database systems as far
as we are aware, only Microsoft SQL Server 2005 and MySQL
with the InnoDB storage manager support both SI and 2PL as con-
currency control choices. On other platforms such as Oracleand
PostgreSQL, asking for a transaction to run with “IsolationLevel
Serializable” actually leads to it running using SI. Thus this ap-
proach to preventing anomalies is often hard to utilize. We can
work around this problem by simulating 2PL in the application and
explicitly obtaining table locks, as discussed further in Section 6.
However, this approach has a significant impact on performance.

2.4.2 Materializing Conflicts
Programmers can explicitly introduce extra conflicts in transac-

tions, in order to prevent the transactions from running concur-
rently. Typically, one introduces a new table, and both the trans-
actions are made to write the same row of this table (for a given
vulnerable edge). This will mean that First-committer-wins is in-
voked, and the transactions won’t run concurrently; thus the edge
becomes non-vulnerable. In many cases, the new data item can
be seen as a materialization of some integrity constraint which is
violated in non-serializable executions.

2.4.3 Promotion
There is sometimes another approach to modify programs, in or-

der to remove the vulnerable nature from an edge in a dangerous
structure. In this approach we change the program at the tailend
of the edge (the one with the read in the read-write conflict) so the
transaction writes the data item involved, or is treated as if it writes
the item. We say that the read ispromotedto a write.

Suppose that the read of interest is a statement “selectT.c from T
where”. Promotion can be done by introducing a statement that
updates the item from its current value to the same value (“updateT
set T.c=T.c where ...”). In some platforms such as Oracle, a similar
effect is obtained by replacing theselectby select for update(we

abbreviate this as SFU)1; the implementation does not do a write,
but anyway it treats all the items read just like writes when checking
for first-committer-winsstrategy. In either of these modifications,
the transaction will not be able to run concurrently with theother
transaction on the (formerly) vulnerable edge, which is writing the
same item.

Note that promotion might apply to the pivotP (on the item
which is read inP and produces a vulnerable edge leaving theP),
or it could apply toP ’s predecessor in the vulnerable structure, by
promoting the read in the predecessor which conflicts with a write
in the pivot programP .

This technique is not usable if the conflict involves a read which
is part of evaluating a predicate (deciding which rows satisfy a
WHERE clause) rather than simply obtaining a value (in the SE-
LECT clause); such a transaction would be vulnerable to the phan-
tom problem [4, 6] even if promotion is used.

3. SYNTACTIC ANALYSIS
The starting point for the tool we have built is a syntactic analysis

based on the names of the columns accessed in the SQL statements
that occur within the transaction. This is similar to (but less subtle
than) the style of argument used in [6], when the TPC-C programs
were manually analyzed for dependencies.

In our column-name based syntactic analysis, our starting point
is a set oftransaction programs, each consisting of a set of SQL
statements. Every execution of the transaction program is assumed
to execute each of these SQL statements. These can be found intwo
ways: by extraction transaction programs from the source code of
the application programs, or by logging the SQL statements sub-
mitted to the database. Each of these has some complex issuesthat
need to be resolved. For example, if an application has control
flow, different executions of an application program may execute
different sets of SQL statements. As in [6], such application level
transactions can be “split” into multiple straight-line transactions.
We discuss these issues further in Section 5.1.

However it is done, we assume that we have the complete set of
transaction programs for our application. In the syntacticanalysis
based on column names, we define, for each transaction program, a
readset and a writeset. Each of these is a set of tablename.column
entries, determined by seeing which names appear in the SQL state-
ments. Note that because SQL allows the tablename to be omitted
if it is deducible from context, our tool must first fill in any missing
table names. For example, in Create new transaction, the SELECT
clause “select max(accno+1) as m from account” is rewrittento
“select max(account.accno+1) as m from account”, and the readset
will contain the entry account.accno.

EXAMPLE 3.1. Determining Transaction Programs. Con-
sider transaction programs for the mini banking application men-
tioned in Figure 2. The Update customer information transaction
does not contain any control structure. Hence, we get only one
transaction programUCI from it. Similarly, Deposit transaction
and End of the day audit transaction are covered with one transac-
tion program each, namelyDEP andEOD. The transaction for
creation of new accounts has two possible execution paths depend-
ing on whether the customer is already recorded in the customer

1SFU in PostgreSQL holds exclusive locks till commit, but does
not prevent a conflicting concurrent transaction from committing
subsequently. Thus, PostgreSQL’s SFU does not promote the reads
to writes. i.e., a transactionT1 does not rollback if the rows updated
by it were concurrently selected by another transactionT2 using
SFU but not modified byT2. Hence, actual updates must be done
to promote read[13].

1266

table or not. LetCAc1 be the program where the customer is al-
ready recorded, andCAc2 be the one where the customer is not
already recorded, and a new customer record has to be created.
Similarly, the withdrawal transaction is covered with two trans-
action programs, one for the case where the resultant balance is
non-negative, and the other for the case where the balance isnega-
tive, requiring an overdraft penalty to be deducted from theaccount
balance. LetShW1 andShW2 denote the respective transactions
programs. Thus, we have seven transaction programs

{UCI, DEP, EOD, CAc1, CAc2, ShW1, ShW2}

in our simplified banking system. 2

Assumption: For the remainder of this paper, we assume for
simplicity that in any SQL SELECT statement, no table is named
in the FROM clause unless some column of that table is mentioned
in the SELECT clause or the WHERE clause or both. The results
in this paper can however, be easily extended to remove this restric-
tion.

DEFINITION 3.1. Syntactic read and write sets.The readset
for syntactic column-name analysis consists of every tablename.col-
umn that appears in the SELECT clause, or in the WHERE clause,
or on the righthandside of the equals in the UPDATE clause. The
writeset consists of every tablename.column that appears on the
lefthandside of the equals in the UPDATE clause, and also every
column in any table that is mentioned in an insert or delete state-
ment. We denote the syntactic readset of transaction program P as
rset(P), and the syntactic writeset as wset(P). 2

EXAMPLE 3.2. Read write sets based on table.column as data
items. The rset and wset for example statementsS and U are
calculated as shown below.

S : select balance from account where accno=100
U : update customer set name=′xyz′ where id=103
I : insert into customer values(102,′ xyz′,′ PQR′)
D : delete from account where accno=104

rset wset

S account.accno, account.balance ∅
U customer.id customer.name
I φ customer.*
D account.accno account.*

2

There is a relationship between these definitions and the actual
read and write sets of the generated transaction instances,where in-
dividual column values are treated as data items (that is, for a gen-
erated transaction instance, we regard the value of one attribute in
a single row as an item). Our calculated syntactic sets are both up-
per bounds for the true sets. That is, the individual database fields
that are read all lie in the columns named in the syntactic readset,
and similarly all the fields written lie in the columns named in the
syntactic writeset. Furthermore, the predicate in any predicate read
operation in a generated transaction instance is computed only on
columns that are part of the syntactic read set.

From these, we define a graph called the column-based syntactic
dependency graph (CSDG), as follows.

DEFINITION 3.2. Column-based Syntactic Dependency Gra-
ph. The nodes of the CSDG consist of the transaction programs
that make up the applications. Given two programsPj and Pk,
there is an edgePj −→ Pk whenever

(rset(Pj) ∩ wset(Pk) 6= ∅) ∨

(wset(Pj) ∩ rset(Pk) 6= ∅) ∨

(wset(Pj) ∩ wset(Pk) 6= ∅)

Figure 3: CSDG for Mini Banking Application. Dashed edges
denotevulnerableedges, and solid edges denotenon-vulnerable
edges. Shaded nodes are Syntactic Pseudopivots.

This edge is marked as pseudovulnerable (written asPj
vul
−−→ Pk,

and shown as a dashed arrow in diagrams) when

rset(Pj) ∩ wset(Pk) 6= ∅

2

Based on CSDG, we identify certain transaction programs as
syntactic pseudopivots.

DEFINITION 3.3. Syntactic Pseudopivot. A transaction pro-
gramPB is a syntactic pseudopivot if there exist transaction pro-

gramsPA and PC (which may be the same), such thatPA
vul
−−→

PB
vul
−−→ PC is a subpath insome cycleof edges in CSDG. 2

EXAMPLE 3.3. CSDG and Syntactic Pseudopivots for Mini
banking application. If we find the syntactic read, write sets and
create the CSDG for transactions in mini banking system, we get
the graph shown in Figure 3. 2

This analysis is safe, that is, there are no false negatives (where
a potential anomaly is not identified). CSDG has an edge when-
ever the true static dependency graph has an edge, and the edge
in CSDG is pseudovulnerable whenever the corresponding edge in
SDG is vulnerable. This means that any pivot is a syntactic pseu-
dopivot and we have a theorem (which follows immediately from
Theorem 3.1 in [6]).

THEOREM 1. Syntactic column-based analysis is safe. If
a set of transaction programs contains no syntactic pseudopivots,
then every execution under SI will in fact be serializable.

One might imagine relying on the first committer wins property
of SI, and propose a stricter definition of pseudovulnerableedges
that has the same form as the definition of exposed edge in [5].That
is, one could consider the alternative definition where the edgePj

to Pk is not labeled as vulnerable unless(rset(Pj) ∩ wset(Pk) 6=
∅)∧(wset(Pj)∩wset(Pk) = ∅). This alternative definition would
not be safe, because the syntactic writeset can be an overapproxi-
mation of the true write set. That is, there are cases where some
generated instances are allowed to execute concurrently because
they are not writing to any common data item (even though their
syntactic write sets do overlap).

1267

4. ELIMINATING FALSE POSITIVES
A false positive is erroneous identification of a threat or danger-

ous condition that turns out to be harmless. In this paper, byfalse
positive we refer to a transaction which is falsely detectedas poten-
tially contributing to an anomaly, for example, a transaction which
is a syntactic pseudopivot but not in fact a pivot.

The analysis done with the syntactic column-name analysis,and
expressed in CSDG, is safe. It never misses noticing the possibility
of anomalies (non-serializable executions). However, it is so con-
servative that it identifies many false positives: in our experience
with some real-world application mixes, almost every transaction
program is a syntactic pseudopivot. In this section we identify some
situations where the syntactic analysis is unnecessarily conserva-
tive, so one can prove that certain transaction programs which are
syntactic pseudopivots are not in fact pivots, based on properties of
the columns and of the programs.

4.1 Modification Protected Readset
The Oracle and PostgreSQL implementations of Snapshot Iso-

lation treat a tuple as the lowest level data item; that is, write sets
identify rows, rather than specific columns of rows, and the first-
committer-wins rule forces that two transaction are not concurrent
if they both commit updates on any columns (not necessarily the
same columns) of some row. This will give us a valuable technique
to argue that certain pseudovulnerable edges are not vulnerable, and
this will sometimes show that some pseudopivot is not a pivot. The
essential property we need to look for, is where a transaction mod-
ifies the rows it selects (or at least, the rows involved in read-write
dependencies). We have seen many cases of this in real applica-
tion code, especially a common coding pattern is to select a row by
primary key before updating or deleting that row.

We will now build up to a fairly broad definition, that covers
a significant number of false positives among the syntactic pseu-
dopivots in the applications we have examined.

DEFINITION 4.1. Stable Predicates. A predicateC used in
transaction programP1 is stable w.r.t. transaction programP2, iff
for every possible scheduleH containing execution instances of
transaction programP1 andP2 asT1 andT2 respectively, the set
of rows identified byC in T1 does not depend on the serialization
order ofT1 andT2. 2

DEFINITION 4.2. Selectwith modification protected rset(MPR-
Select). A select statementS (which could be in a sub-query) in
transaction programP1 is said to be MPR w.r.t. transaction pro-
gramP2, if either

rset(S) ∩ wset(P2) = ∅

or all of following conditions are true

• The WHERE clause predicateC used inS is stable w.r.t.P2.

• P1 contains a statementM , such that

– M is an update or delete statement2

– The WHERE clause predicateD used byM to identify
rows to be modified is such thatC ⇒ D, andD must
be stable w.r.t.P2.

– Whenever the program executesS, it either also exe-
cutesM , or aborts.

2M may also be a SFU, on platforms where SFU is treated like a
modification when it or other transactions do the first-committer-
wins checks.

2

The above condition ensures that whatever rows are selectedby
S in P1 either do not conflict withP2 at all (i.e.P2 does not update
any columns read inS), or the rows are modified subsequently in
P1.

DEFINITION 4.3. Transaction with modification protected rset
(MPR Transaction). A transaction programP1 is said to be MPR
w.r.t. transaction programP2 if

1. every select query as well as every subquery of an insert,
delete or update inP1 is an MPR-Select w.r.t.P2.

2. WHERE clause predicates of every update/delete statement
in P1 are stable w.r.t.P2.

2

THEOREM 2. If transaction programP1 is MPR w.r.t. transac-
tion programP2, and if the DBMS uses row-level granularity for
the first-committer-wins checks, then in SDG, the edge fromP1 to
P2 can not be vulnerable. 2

We omit the proof details, but here is a sketch. SupposeP1 is
MPRw.r.t.P2, T1 arises from executingP1, T2 arises fromP2, and
there is some read-write dependency fromT1 to T2. The definition
shows thatT2 cannot affect a predicate based on whichT1 select
rows, so there is no predicate-read-to-write dependency. Thus the
dependency must be data-item-read-to-write, but whenT1 reads a
row (possibly selected using a predicate), andT2 updates the row
thenT1 andT2 both modify that row, and so the two cannot run
concurrently to commitment.

As we have mentioned, for DBMS’s which applyfirst-committer-
wins at row granularity, the MPR property implies that an edge
in SDG is not vulnerable, even though the corresponding edgein
CSDG might be pseudovulnerable. If enough edges are not ac-
tually vulnerable, a syntactic pseudopivot might not be a pivot at
all, and therefore there is no danger of anomalies. Thus a tool
that adopts the conservative approximation, and reports all syntac-
tic pseudopivots, would be delivering a false positive.

DEFINITION 4.4. MPR Analysis. We say that a transaction is
found to be a false positive using MPR analysis if

• it is detected as a syntactic pseudopivot, and

• after eliminating vulnerable edges using Theorem 2, the trans-
action is found to not be a pivot.

2

In order to build a tool that does not report many false positives,
we want to automatically identify some cases where transactions
are MPRw.r.t. others. This requires using syntactic sufficient con-
ditions for the concepts defined above.

We wish to show that the set of rows returned by a WHERE
clause are not affected by another program. The rows returned are
filtered from the rows in (a cross product of) some tables, based on
the value of a predicate. Thus we need to consider ways to show
that the set of rows in the cross product doesn’t change, and also
ways to show that the value of the attributes used in the predicate
doesn’t change. This suggests the following definitions.

DEFINITION 4.5. Insert-Delete Stable Table.Tablet is said
to be insert-delete stable w.r.t. transaction programP , if P does
not contain any insert or delete statement which operates ontable
t. 2

1268

DEFINITION 4.6. Syntactically Stable Column. Columnc of
tablet, denoted byt.c, is said to be syntactically stable w.r.t. trans-
action programP , if t.c 6∈ wset(P). 2

Note that, if atablename.column t.c is syntactically stable
w.r.t. P then t.c is not affected byinsert, deleteor updatestate-
ment inP . With the help of Definition 4.6 and Definition 4.5 we
can conservatively identify if a predicate is stablew.r.t. some trans-
action program.

DEFINITION 4.7. Syntactically Stable Predicate.Consider a
predicateC and a transaction programP . If every tablename.column
used inC is stable w.r.t.P and every table on whichC operates
is insert-delete stable w.r.t.P , thenC is syntactically stable w.r.t.
transaction programP . 2

DEFINITION 4.8. Selectwith syntactic modification protected
rset(Syntactically MPR-Select).A select statementS (which could
be in a sub-query) in transaction programP1 is said to be syntac-
tically MPR w.r.t. transaction programP2, if either

rset(S) ∩ wset(P2) = ∅

or all of following conditions are true

• The WHERE clause predicateC used inS is syntactically
stable w.r.t.P2.

• P1 contains a statementM , such that

– M is an update or delete statement3

– The WHERE clause predicateD used byM to identify
rows to be modified is such thatC = (D and D′) for
someD′, andD must be syntactically stable w.r.t.P2.

– Whenever the program executesS, it either also exe-
cutesM , or aborts.

2

Notice that in the preceding definition, we use an easy syntactic
test which ensures thatC ⇒ D. One frequent case is whereC =
D (soD′ is true).

DEFINITION 4.9. Transaction with syntactically modification
protected rset (Syntactically MPR Transaction). A transaction
programP1 is said to be syntactically MPR w.r.t. transaction pro-
gramP2 if

1. every select query as well as every subquery of an insert,
delete or update is a syntactically MPR-Select w.r.t.P2.

2. WHERE clause predicates of every update/delete statement
in P1 are syntactically stable w.r.t.P2.

2

The following theorem expresses that these syntactic judgments
are safe.

THEOREM 3. If S is a select statement in transaction program
P1 such thatS is syntactically MPR w.r.t. transaction programP2,
thenS is MPR w.r.t.P2. 2

We will now try to use the MPR analysis to detect some of the
false positives in our simplified banking application.

EXAMPLE 4.1. Update Customer transaction. Consider the
update customer information transaction programUCI (Figure 4).
3M may also be a SFU, on platforms where SFU is treated like a
modification when it or other transactions do the first-committer-
wins checks.

begin;
select * from customer where id=:id;
update customer set name=?, address=? where id=:id;
commit;

rset={customer.id, customer.name, customer.address}
wset={customer.name, customer.address}

Figure 4: Update Customer InformationProgram

begin;
select currenttimestamp as c;
update account set balance=balance+m

where accno=:a and acctype in (‘current’,‘saving’);
insert into txn values (:a||:c, :a, ‘Deposit’, :id, :m, :c);
commit;

rset={account.accno, account.acctype, account.balance}
wset={account.accno, account.balance, account.acctype,
txn.*}

Figure 5: DepositProgram

Using the column-based syntactic rules mentioned in Definition 3.2,

we getUCI
vul
−−→ UCI . i.e., in CSDG (Figure 3), there is a pseu-

dovulnerable self-loop fromUCI to itself. Thus,UCI satisfies
the definition of syntactic pseudopivot (Definition 3.3). Itis easy
to verify that transactionUCI is a syntactically MPR transaction
program w.r.t. itself. Hence, by Theorem 2 and 3, the edge from
UCI to itself in SDG is not vulnerable. Unless there are some
other exposed edges involvingUCI , we do not haveUCI as a
true pivot. i.e., this is an example of a false positive produced by
over-approximating in the syntactic analysis. 2

EXAMPLE 4.2. Deposit transaction. Consider the deposit
transaction programDEP (Figure 5).DEP has a pseudovulner-
able self-loop in CSDG (Figure 3). It reads the value ofcurrent -
timestamp, but does not modify it. Also, it has an extra write
operation which inserts a new row in relation txn. The updatestate-
ment uses a predicate which is stable w.r.t. itself.

As in Example 4.1,DEP is MPR w.r.t. itself, hence it is a false
positive as long as it doesn’t participate in other vulnerable edges.
2

EXAMPLE 4.3. Promotion and MPR. Consider the shared with-
drawal transaction programShW1 which we used in Example 2.1.
ShW1 is a syntactic pseudopivot due to vulnerable edge in a self-
loop. If we used promotion on the select statements inShW1, then
according to Definition 4.3,ShW1 will become MPR w.r.t. itself.
Thus, if we rerun the analysis after introducing promotion,ShW1
will be detected as false positive. 2

The above examples illustrate how our techniques not only help
to find transactions that could not cause any anomalies but also to
check that the programs are safe after they have been modified.

4.2 Integrity Constraints (ICs)
The database system ensures the preservation of some integrity

constraints which are explicitly declared to the system in the schema
definition, such as uniqueness of primary key and referential in-
tegrity. Some of the SI anomalies are avoided due to the dbms
enforcement of these constraints.

EXAMPLE 4.4. Primary key constraint avoids write skew. Con-
sider two instances(T1, T2) of the create account program (Fig-

1269

begin;
select max(accno)+1 as m from account;
insert into account values (:m, 0, :type);
insert into owner values (:id, :m);
commit;

rset={account.accno}
wset={account.*, owner.*}

Figure 6: Create New Account Program

ure 6) where new accounts are created for existing users. IfT1 and
T2 are executed concurrently, both transactions would try to create
a new account with same account number. However, the account
number is a primary key, and hence duplicates are not allowed.
As a result, only one of the two transaction will be committedby
the database. (In the absence of the primary key constraint,both
transactions would be able to execute concurrently and commit,
resulting in a non-serializable schedule.)

Note that above transaction will be detected as syntactic pseu-
dopivot and is a case of false positive. 2

The pattern ofselect max()+1 asm . . . insert new tuple with
valuem, illustrated in the above example, is commonly used for
assigning a numeric primary key for new tuples.

We therefore explicitly check for the situation where an edge in
CSDG is labeled vulnerableonlybecause of a conflict between one
program which has select max that is used to create the value of
primary key in a subsequent insert, and another program which has
an insert to the same table. We must be careful not to identifyan
edge which has such a conflict but also has other read-write con-
flicts; this edge may be truly vulnerable. Note that our checks also
apply to self-loop edges, that is, the two programs involvedmay be
the same.

DEFINITION 4.10. New Identifier Generation Analysis. We
say that a transaction is found to be a false positive using New
Identifier Generation analysis if

• it is detected as a syntactic pseudopivot, and it is not found
to be a false positive by MPR analysis, and

• after eliminating vulnerable edges created only because ofa
conflict between select-max used to calculate a primary key
for insertion, and insert, the transaction is found not to bea
pivot.

2

It is common practice to test whether an identifier is in use, be-
fore inserting a tuple with that identifier. Such a select statement
can’t be in conflict with anyinsertto the table in a concurrent trans-
action, because if they are dealing with different key values there
is no conflict, and if they are dealing with the same key value,then
both will try to insert and one must fail to maintain the primary key
uniqueness. If this situation is the only reason for an edge from
P, that edge is not in fact vulnerable. If however there are other
read-write conflicts as well, the edge should be kept as vulnerable

EXAMPLE 4.5. Check for existence before inserting. Con-
sider a new account creation transaction with provision to prespec-
ify desired account number (Figure 7). The programmer triesto
make sure that specified account number is not already assigned.
Note that this program will be detected as syntactic pseudopivot
and is a false positive. 2

begin;
select accno as found from account where accno=:m;
if(found==null)
insert into account values (:m, 0, :type);

else
print ‘Error: Requested account number is already in use’;

endif
commit;

rset={account.accno}
wset={account.*}

Figure 7: Create New Account With Desired Account Number

Figure 8: CSDG for simplified banking application after re-
moval of false positives. Shaded nodes are the remaining syn-
tactic pseudopivots.

DEFINITION 4.11. Existence Check before Insert Analysis.
We say that a transaction is found to be a false positive usingExis-
tence Check before Insert analysis if

• it contains a select using equality on primary key and also
does insert with that same primary key value in the same
table whenever the select returns zero rows.

• it is detected as a syntactic pseudopivot, and it is not found
to be a false positive by MPR analysis, and

• after eliminating vulnerable edges created only because of
a conflict between select that uses an equality predicate on
primary key and insert, the transaction is found not to be a
pivot.

2

Extending the above idea to more general classes of programs,
and to other integrity constraints, such as foreign key constraints,
is an area of future work.

EXAMPLE 4.6. Reducing False Positives for the Mini Bank-
ing Application. The transactionsDEP, CAc1, CAc2 andUCI

were found as false positives in the simplified banking application,
from Example 3.1 using the MPR analysis and the New Identifier
Generation analysis. The Figure 8 shows the resulting CSDG.2

1270

5. ARCHITECTURE OF SI TESTING TOOL
We have built a tool for analyzing application programs, with the

goal of identifying possible anomalies, using the theory presented
in the earlier sections. In this section we outline the architecture of
the tool, detailing the steps taken to analyze an application.

5.1 Extracting Transactions
The first step in analysis is to extract the set of transactionpro-

grams that can be generated by the application. As mentionedin
Section 3, we can get transaction programs either by analyzing
application code, or by getting traces of queries submittedto the
database.

If we have access to the source code of the application programs,
we can try to extract every SQL statement found in the program.
The extracted SQL statements are parametrized by the inputsto the
application. Not all SQL statements in an application program may
be executed on every invocation of the application. For example,
in a program of the form “W; if C then X else Y; Z” either X or
Y is executed but not both. Following [6], we can “split” such a
program into two straight-line transactions: “if not(C) abort; W;
X; Z” and “if C abort; W; Y; Z”. For the case of loops, we could
consider all possible unrollings of the loop, but this wouldbe in-
efficient. Since SQL statements are parametrized anyway, and du-
plicates can be ignored for analysis, we can get finite transaction
programs even in the presence of loops. However, in additionto
being hard to automate, this may be difficult (or even impossible) if
the programs construct the SQL statement dynamically, for exam-
ple by concatenating string fragments. We therefore assumethat if
extraction from source code is required, it is done manually. For
example, we did this to analyze the programs in the TPC-C bench-
mark.

The other way to obtain transaction programs is to capture the
SQL statements submitted to the database during execution.This
might be done while the system is executing normally, with trans-
action identifiers or session information used to link together the
statements that form each separate transaction. Alternatively, we
may execute the application programs serially, each with a wide
variety of parameter values.

The drawback of using traces of SQL statements submitted to
the database to obtain transaction programs is that one cannot be
sure that every significant path of control flow has been exercised.
If some path does not get executed during testing, the correspond-
ing transaction instances will not be considered by the tool, and
as a result some anomalies may escape detection. If a good test
suite is available, which exercises all parts of the application code,
we can use it to generate a set of transactions with good coverage.
In this case, the tool is still of great value as a testing tool, even
though it cannot be a verification tool. It is possible to augment
these transactions with transactions generated by manual analysis
of the application logic, to ensure complete coverage.

Our tool supports the extraction of transaction programs from
logs of SQL statements collected from the database. The toolpara-
metrizes the SQL statements and eliminates duplicates, which al-
lows a large set of transactions to be compacted to a much smaller
set of transaction programs.

In our experiments we obtained logs containing SQL statements
by using theauditing feature provided by Oracle, or thestatement
logging feature of PostgreSQL.

Our tool parses the SQL statements using the JavaCC parser gen-
erator with the SQL grammar available at [11], and extracts the syn-
tactic read and write sets. The tool also extracts predicates for anal-
ysis, using the expression parser provided by [10]. The CSDGis
displayed in the graphical form using graph layout product Dot[14]

where each transaction is a node in the graph. If a query includes
the select for updateclause, and the platform treats these rows as
modified when doing first-committer-wins checks, then the con-
tents of the read set are moved to the write set, leaving the read
set empty. This reflects the effect ofselect for updateon snapshot
isolation.

5.2 Steps in Analysis
The analysis begins with the syntactic column-name analysis

from Section 3. Our tool then eliminates false positives dueto MPR
transactions, using the theory from Section 4, as follows:

For each syntactic pseudopivotP detected through the analysis

1. Consider any cycle in CSDG containing a subpathR
vul
−−→

P
vul
−−→ Q. If for every such cycle,P is MPR with respect

Q, then declareP as a false positive.

2. If P is not found as a false positive by the previous test, ap-
ply the New Identifier Generation protection test and the Ex-
istence Check before Insert Test (Section 4.2). If either test
succeeds, declareP as a false positive.

The output of the tool consists of a CSDG, with highlighting
on all pseudopivots that are not found as false positives. Transac-
tions in CSDG are identified by transaction identifiers, and we also
provide a list of all transactions with their identifiers andtheir con-
tents, that is, the (parametrized form of the) statements executed
by the transactions. These can be used to locate the corresponding
transactions in the application code, and we can use the techniques
described in Section 2.4 to avoid anomalies.

Here is a summary of the flow of activities in the tool, when
applied on an application:

1. Step 1: Find the set of transaction programs for the applica-
tion.

2. Step 2: Use conservative analysis for creating the column-
based syntactic dependency graph (CSDG). Use CSDG to
detect syntactic pseudopivots in the application.

3. Step 3: Reduce false positives present in the set of syntactic
pseudopivots obtained in step 2.

4. Step 4: Select appropriate techniques to avoid anomalies for
the set of potential pivots remaining after step 3. This step
is not currently implemented in the tool and must be carried
out manually, using techniques described in [6] (outlined in
Section 2.4).

5.3 Experimental Results
We used our tool to analyze two applications, a financial appli-

cation which runs on Oracle 10g, and an academic system which
runs on PostgreSQL 8.1.4, which are in use at IIT Bombay.

The academic system is used to automate various academic ac-
tivities, including course registration, online course feedback, grade
allocation, modification of courses, faculty information and stu-
dent information, and generation of numerous reports such as grade
cards and transcripts. For the case of the academic system wein-
strumented the live database, and collected logs of all transactions
that were executed in one day and supplemented with seasonal
transactions, such as registrations, that were not active when we
collected the logs.

Among the transactions that caused conflicts was an end-of-sem-
ester summarization transaction, which reads all grades allocated
to each student in the semester, calculates grade point averages,

1271

Acad. Finance TPC-C Bank
Distinct txns 26 34 7 7
Syntactic Pseu-
dopivots detected

25 34 4 7

MPR detected 11 3 4 2
New Identifier
Generation Protec-
tion detected

3 3 0 2

Existence Check
before Insert
Protection detected

2 0 0 0

Remaining Poten-
tial Pivots

9 28 0 3

Verified True Pivots 2 2 0 3

Table 1: Results for Academic System (Acad.), Financial Appli-
cation (Finance), TPC-C benchmark (TPC-C), and simplified
banking application (Bank)

updates a summary table, and inserts records into a transcript ta-
ble. There were several other transactions, each of which updated
a single row of one table with values provided by the user, which
appeared to be pivots, but were found to be MPR since the only row
that they read was the row that they updated.

The financial system is used to track all payments and receipts,
starting from creation of bills, approval of bills and payment (post-
ing) of bills, budget management, payroll management, and gener-
ation of a large number of reports. For the case of the financial
application, we (manually) executed a test suite of transactions,
and used the corresponding transaction logs. One transaction worth
mentioning is the end-of-day transaction, which aggregates infor-
mation about all bills that were paid or money received in that day,
and moves data about all such transactions from a current-day table
to a history table. This transaction conflicts with all transactions
related to payment or receipt of money. There were several trans-
actions that created new bills or purchase orders which werefound
as false positives.

Table 1 shows the results of running our tool on 4 different appli-
cations: the academic system and the financial application (which
are live systems in use at IIT Bombay), as well as TPC-C and the
simplified banking application used in our examples.

As can be seen from Table 1, our tool detected a fair number
of pseudopivots, some of which were subsequently found as false
positives and eliminated using MPR analysis, New IdentifierGen-
eration analysis and Existence Check before Insert Test. For the
case of the academic system, our automated analysis was quite
successful in finding and removing false positives. For the case
of the financial application, the tool did eliminate some false pos-
itives, but a number of potential anomalies remained for manual
examination, since the queries were too complex for our current
implementation (they contained outer joins and subqueries, which
our current implementation does not handle). We don’t have the
full application code for financial system, and hence do not have
enough semantic information to know which of the potential pivots
can be eliminated.

However, it is important to note that the tool did in fact find sev-
eral cases which turned out to be real pivots. Some of these are very
unlikely to occur in practice and could be ignored. Others had to
be fixed, in particular the end-of-day and end-of-semester transac-
tions mentioned earlier were potentially dangerous. As mentioned
in Section 1, financial auditors at IIT found a problem with anac-

Figure 9: CSDG for TPC-C

count, which we eventually traced to an SI anomaly. Our tool was
able to detect this problem, as well as some other problems, helping
us to fix them, and it allowed us to ignore several other cases since
it found them to be false positives.

The set of transactions in TPC-C were obtained in the form of
parameterized SQL queries by analyzing the procedures and split-
ting at the control structures (if, while, goto etc.) manually. (We in-
cluded the splitting ofpaymentandostattransactions, which were
skipped in [6] based on manual analysis showing they were not
relevant.) All thenon-readonlytransactions were found to be MPR
with respect to all the other transactions, matching the manual anal-
ysis in [6]. The results obtained are shown in Table 1, while the
CSDG obtained by our tool is shown in Figure 9.

Table 1 also lists results for our banking example, where initially
all the transactions were detected as syntactic pseudopivots. Us-
ing the techniques to find false positives, we narrowed down the
set of pivots (Figure 8). The remaining pivots are real and can
cause anomalies. For e.g.,ShW1 andShW2 can cause write skew
anomaly whereasEOD can cause a phantom anomaly.

In all cases our tool executed in less than 1 minute on the paramet-
rized transaction programs described above. The task of generat-
ing parametrized transaction programs from large SQL traces can
be somewhat slower, and took less than 5 minutes for 16000 SQL
statements. These overheads are clearly still acceptable for the ben-
efits provided.

6. IMPLEMENTATION ISSUES IN AVOID-
ING ANOMALIES

We will now discuss various issues in using some of the tech-
niques for modifying transaction programs to avoid anomalies, as
mentioned in Section 2.4.

As we have seen in Section 2.4.1, running pivots with strict two-
phase locking (S2PL) will avoid all anomalies. This can be done
on platforms like Microsoft SQL Server. However Oracle and Post-
greSQL do not provide an isolation level that uses S2PL. We can
useselect for updateto partially simulate S2PL, but this does not
protect against phantoms. We can simulate the effect of table-
granularity S2PL on Oracle, or on PostgreSQL, by explicitlyset-
ting locks. Note that table-granularity locking means thatthere are

1272

no phantoms or anomalies due to predicate-read-to-write conflicts.
But, the table-granularity locks also reduce concurrency greatly. To
simulate S2PL on these platforms, the programmer can use thefol-
lowing approach.

1. Declare the pivot transaction T to have Isolation Level “Read
Committed” (so each read or write sees the latest committed
data at the time it is executed);

2. Then, explicitly LOCK Table (in appropriate mode) for every
table read or written, before theselector update/insert/delete
statement is executed.

Note that this does not properly simulate S2PL if the pivot runs at
isolation level ”serializable” (i.e. Snapshot) because then selects
use older data from the transaction snapshot, rather than current
data as required of S2PL. This is a surprising situation, where rais-
ing the declared isolation level actually introduces anomalies.

The promotion technique uses row level locks and has a lower
impact on concurrency than using table locks. When applied to a
transactionT , promotion is supposed to convert the outgoing vul-
nerable edges fromT into non-vulnerable edges.

It may not suffice use the promotion technique in some trans-
actions where the conflict is between a predicate read and a write,
because it does not prevent phantoms.

begin;
select max(endtimestamp) as s, currenttimestamp as c

from batchaudit;
select sum(amount) as d from txn where type=‘Deposit’;
select sum(amount) as w from txn

where type=‘Withdraw’;
insert into batchaudit(starttimestamp, endtimestamp,

inamount, outamount) values (:s,:e,:d,:w);
commit;

Figure 10: End of day audittransaction

EXAMPLE 6.1. Example where promotion is not sufficient. Con-
sider the End-of-the-day audit transaction (EOD) shown in Fig-
ure 10. The batches created byEOD are supposed to be non-
overlapping. In Figure 8,EOD is detected as syntactic pseu-
dopivot due to vulnerable edge to itself. One might think of using
promotion to convert this self vulnerable edge to non-vulnerable
edge. Now consider two execution instances (T1 andT2) of EOD

modified to use promotion. If predicate locks are not supported by
DBMS, promotion used inT1 would only check rows from its own
snapshot for first-committer-wins policy and miss the row concur-
rently inserted byT2 and vice versa. i.e. ifT1 and T2 execute
concurrently, they both will read same value of max(endtimestamp)
and would create overlapping batches and both will be allowed to
commit. This indicates that the self vulnerable edge ofEOD is not
converted to non-vulnerable by promotion. 2

We can use the MPR test to decide whether use ofpromotion
can convert a vulnerable edge into non-vulnerable edge. Consider

a vulnerable edgePA
vul
−−→ PB . LetP ′

A be the modified transaction
program after applying promotion toPA. If P ′

A is MPRw.r.t. PB

then according to Theorem 2, the edge fromP ′

A to PB can not be
vulnerable.

The overheads of promotion can be expected to be significant in
the presence of contention, since promotion prevents some concur-
rency. As a result, we seek to minimize the use of promotion tothat
necessary to ensure serializable executions.

D A B C

E

Figure 11: Example

Consider the case of two transaction programsPA andPB , with

PA
vul
−−→ PB andPB

vul
−−→ PA, as shown in the following figure:

PA PB

Both the transactions are syntactic pseudopivots, and needto be
modified to ensure serializability. In case we use the S2PL ap-
proach, we would need to run both the pivots under S2PL. How-
ever, in case we use promotion, it is sufficient to modify either one
of PA andPB to use promotion. Use of promotion in a pivot re-
places all outgoing vulnerable edges from the pivot, by non-vul-
nerable edges. Thus, use of promotion might require modification
of a fewer number of transactions than using S2PL.

DEFINITION 6.1. Dangerous Structure.[6] A cycle in CSDG
with consecutive vulnerable edges is a dangerous structure. 2

DEFINITION 6.2. Dangerous Edge Pair (DEP).The consecu-
tive vulnerable edges in a dangerous structure form a Dangerous
Edge Pair. 2

DEFINITION 6.3. CanFix relation. The set of dangerous edge
pairs which can be removed using promotion in a pivotP is given
by the relationCanFix(P). 2

Every dangerous structure in CSDG identifies some syntactic
pseudopivot transactions. E.g. the dangerous structures in Figure
11, identifies pivot transactionA, B, with (DA, AB) and(AB, BC)
as the dangerous edge pair. Also,CanFix(A) = {(DA, AB),
(AB, BC)} andCanFix(B) = {(AB,BC)}.

Depending upon our goals, we can seek to make changes in a
minimum number of transactions or in a minimum number of state-
ments.

In order to avoid anomalies, we need to ensure that the set of all
dangerous edge pairs are covered by

S

Pi∈P
CanFix(Pi), where

P is the subset of set of all transaction programs that are modi-
fied by promotion. Suppose we seek to minimize the number of
programs in the setP .

DEFINITION 6.4. DEPs Cover Problem (DEPC).Let G =
(SP , E) be the Column-based syntactic dependency graph for a set
of transaction programsSP with a set of static dependency edges
E. Let SDEP be the set of DEPs. Given such CSDG, the DEPs
cover problem (DEPC) is to find a set of transaction programs in
SP such that replacing all vulnerable edges out of them by non-
vulnerable edges results in removal of all dangerous edge pairs in
SDEP . In the DEPs cover optimization problem the task is to find
a DEPs cover which uses the fewest transactions programs.2

In the example shown in Figure 11, asCanFix(A) covers the
set of all dangerous pairs, it is sufficient to modify transaction A

only. This minimization problem can be shown to be NP-Hard.

1273

We can extend the above model to define another optimization
problem to minimize the number of statements to be modified in
given a set of pivots. We will need to define a differentStmtCanFix

relation, which gives the set of dangerous edge pairs removed by
using promotion in a given statement.

7. DISCUSSION
In this section we discuss some other issues related to the snap-

shot isolation testing tool.
Often, triggers are used to preserve integrity constraints(ICs).

Under SI, a trigger operates on the same snapshot as the transaction
invoking it and hence can be vulnerable to SI anomalies. Therefore,
some ICs can not be preserved using triggers which run under SI,
unless the trigger itself uses explicit locking, promotion, or materi-
alization to protect against anomalies. (In fact we found one such
instance where a trigger failed to preserve an integrity constraint,
due to SI, in the financial application used at IIT Bombay.)

To detect which triggers need such protection, we can first find
which transactions could invoke each trigger, and augment the trans-
action code with the trigger code. We then run our analysis onthe
augmented transactions, and wherever an augmented transaction is
found to be a pivot, we have to protect the transaction using one
of the techniques discussed in Section 2.4. Whether done through
explicit table locking, or through additional writes or promotion,
the overhead will be paid by all transactions that could cause the
trigger to be fired.

Large update transactions are often chopped into smaller transac-
tions, to reduce the impact on locking and on the size of the active
part of the log. Suppose a set of transactionsS has a pivot. It is
possible that if one of the transactions inS is chopped into two
or more pieces, none of the transactions in the modifiedS may be
pivots. Given a setS of transactions, Shasha et al. [9] provide suf-
ficient conditions for chopping of a transactionT to be safe, in that
the execution will be serializable. These conditions however also
ensure that there will be no pivots, so using SI does not causeany
further problems.

8. CONCLUSIONS & FUTURE WORK
Snapshot isolation, although widely used, can potentiallycause

non-serializable transaction histories. Applications running under
SI are at risk of data inconsistency due to transaction anomalies. A
theory that gives sufficient conditions for these anomalieswas pre-
sented by Fekete et al. [6], and by Fekete [5]. We used this theory
to define a syntactic condition that can be used to over-approximate
the set of transactions that may cause anomalies. We studiedsome
general patterns where a transaction can apparently cause anoma-
lies, but it actually cannot, due to certain actions that thetransaction
performs such as modifying the data that it read. We proposedsuf-
ficient conditions for inferring that certain syntactic pseudopivot
transactions are false positives, and the transactions arethus safe
with respect to serializability. Our conditions take care of phan-
toms. Further, when pivots are detected and fixed using promotion
or S2PL, reapplying the conditions can infer safety (as longas the
conditions are satisfied after the fixes).

We have also developed a tool that can automate the testing of
database applications for safety against SI anomalies. Ourtool has
been used in practice with good effect, identifying some genuine
problems in production code, and also verifying safety for many
transactions.

We are currently working on alternatives to table locks in order
to ensure freedom from phantoms. Our idea is to simulate index
locking by materializing conflicts; the key issue here is to ensure

correctness even in the presence of SI, since inserts/updates done
by one transaction are not visible to other transactions, unlike in
the case of standard index locking. An efficient approximation al-
gorithm for the DEPC optimization problem (Section 6) is another
area of future work.

Yet another area of future work is in developing a theory for in-
cluding workflow constraints (e.g. grading will never run concur-
rently with course registration), and integrity constraints other than
primary keys (such as foreign keys) to reduce false positives.

9. REFERENCES
[1] Atul Adya, Barbara Liskov, and Patrick E. O’Neil.

Generalized isolation level definitions. InICDE, pages
67–78, 2000.

[2] Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton,
Elizabeth O’Neil, and Patrick O’Neil. A critique of ansi sql
isolation levels. InSIGMOD ’95: Proceedings of the 1995
ACM SIGMOD international conference on Management of
data, pages 1–10, New York, NY, USA, 1995. ACM Press.

[3] P. Bernstein and N. Goodman. Mulitversion concurrency
control - theory and algorithms.ACM Transactions on
Database Systems, 8(4):465–483, December 1983.

[4] K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger. The
notions of consistency and predicate locks in a database
system.Commun. ACM, 19(11):624–633, 1976.

[5] Alan Fekete. Allocating isolation levels to transactions. In
PODS ’05: Proceedings of the twenty-fourth ACM
SIGMOD-SIGACT-SIGART symposium on Principles of
database systems, pages 206–215, New York, NY, USA,
2005. ACM Press.

[6] Alan Fekete, Dimitrios Liarokapis, Elizabeth O’Neil, Patrick
O’Neil, and Dennis Shasha. Making snapshot isolation
serializable.ACM Trans. Database Syst., 30(2):492–528,
2005.

[7] Alan Fekete, Elizabeth O’Neil, and Patrick O’Neil. A
read-only transaction anomaly under snapshot isolation.
SIGMOD Rec., 33(3):12–14, 2004.

[8] Y. Raz. Commitment ordering based distributed concurrency
control for bridging single and multiple version resources. In
Proceedings International Workshop on Research Issues in
Data Engineering (RIDE’93), pages 189–199, 1993.

[9] Dennis Shasha, Francois Llirbat, Eric Simon, and Patrick
Valduriez. Transaction chopping: algorithms and
performance studies.ACM Trans. Database Syst.,
20(3):325–363, 1995.

[10] Cayenne (exprerssion parser).http://cayenne.
apache.org/doc/expressions.html.

[11] Javacc.https://javacc.dev.java.net/.
[12] Tpc-c benchmark.http://www.tpc.org/tpcc/,

2006.
[13] Postgresql 8.3devel documentation.

http://developer.postgresql.org/pgdocs/
postgres/transaction-iso.html#
XACT-SERIALIZABLE, 2007.

[14] Dot and dotty.http://hoagland.org/Dot.html,
2006.

1274

