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Abstract

Comple queriesare becomingcommonplacewith the growing

use of decisionsupportsystems. Thesecomple queriesoften
have a lot of common sub-epressions,either within a single
query or acrossmultiple such queriesrun as a batch. Multi-

gueryoptimizationaimsat exploiting commonsub-epressiongo
reduceevaluationcost. Multi-query optimizationhashitherto been
viewed as impractical, since earlier algorithmswere exhaustve,
andexploreadoubly exponentialsearchspace.

In this paperwe demonstratehat multi-queryoptimizationus-
ing heuristicsis practical, and provides significantbenefits. We
proposethree cost-basecheuristic algorithms: Volcano-SHand
Volcano-RJ, which arebasedon simplemaodificationsto the Vol-
canosearchstratgy, anda greedyheuristic. Our greedyheuristic
incorporatesnovel optimizationsthat improve efficiengy greatly
Our algorithmsare designedo be easily addedto existing opti-
mizers.We presentiperformancetudycomparinghealgorithms,
usingworkloadsconsistingof queriesrom the TPC-Dbenchmark.
The study shawvs that our algorithmsprovide significantbenefits
over traditionaloptimization,at a very acceptabl@verheadn op-
timizationtime.

1 Introduction

Complex queriesare becomingcommonplace especially
due to the adwent of automatictools that help analyze
information from large datawarehouses. Thesecomple
gueriesoften have a lot of commonsub-epressionssince
i) they make extensive use of views which are referred
to multiple times in the query and ii) mary of them
are correlatednestedqueriesin which parts of the inner
subquerymay not dependon the outerqueryvariablesthus
forming a commonsub-epressiorfor repeatednvocations
of theinnerquery

The scopefor finding commonsub-epressionsgncreases
greatly if we considera set of queriesexecutedas a
batch. For example,SQL-3 storedproceduresnay invoke

several queries,which can be executedas a batch. Data
analysis/reportingften requiresa batch of queriesto be
executed. The work of [SHTT99 on using relational
databasefor storing XML data,hasfound that querieson
XML data,writtenin alanguagesuchasXML-QL, needto
betranslatednto a sequencef relationalqueries.Thetask
of updatinga setof relatedmaterializedriews alsogenerates
relatedquerieswith commonsub-epression§RSS98.

In this paper we addresghe problemof optimizing sets
of querieswhich may have commonsub-epressionsthis
problemis referredto asmulti-queryoptimization We note
herethat commonsubepressionsare possibleeven within
a single query; the techniqueswe develop deal with such
intra-querycommonsubepressionaswell.

Traditional query optimizersare not appropriatefor op-
timizing querieswith commonsub expressionssincethey
male locally optimal choices,and may missglobally opti-
mal plansasthe following exampledemonstrates.

Examplel.1 Let ); and@, betwo querieswhoselocally
optimalplans(i.e., individual bestplans)are(R X S) X P
and(R X T') X S respectrely. The bestplansfor )1 and
> donot have ary commonsub-&pressions However, if
we choosethe alternatve plan (R X S) X T (which may
not belocally optimal) for @», then,it is clearthatR X S
is acommonsub-epressiorandcanbe computednceand
usedin bothqueries.This alternatve with sharingof R X S
may betheglobally optimalchoice.

Ontheotherhand blindly usingacommonsub-e&pression
may not alwaysleadto a globally optimal strateyy. For ex-
ample,theremay be casesvherethe costof joining the ex-
pressionR X S with T is very largecomparedo the costof
theplan(R X T') X S; in suchcasest maymake no sense
toreuseR X S evenif it wereavailable.O

Examplel.1 illustratesthat the job of multi-query opti-
mization, over and above that of ordinary query optimiza-
tion, is to (i) recanizethe possibilitiesof shared compu-
tation, and (ii) modifythe optimizerseach strategy to ex-
plicitly accountfor shaled computatiorand find a globally
optimalplan.

While therehasbeenwork on multi-query optimization
in the past([Sel88 SSN94 PS88]),prior work hasconcen-



tratedprimarily on exhaustie algorithms. Otherwork has
concentratean finding commonsubepressionsasa post-
phaseto query optimization[Fin82, SV9§, but this gives
limited scopefor costimprovement,or hasconsiderednly

thelimited classof OLAP querieZDNS9§. (We discuss
relatedwork in detailin Section7.) The searchspacefor

multi-query optimizationis doubly exponentialin the size
of the queries,and exhaustve stratgies are thereforeim-

practical;asa result,multi-queryoptimizationwas hitherto
consideredoo expensveto beuseful.

In this papemwe shov how to make multi-queryoptimiza-
tion practical, by developingnovel heuristicalgorithmsand
presenting performanceatudythatdemonstratetheir prac-
tical benefits.

Our algorithmsare basedon an AND-OR DAG repre-
sentationfRou82 GM93] to compactlyrepresentsalterna-
tive queryplans. The DAG representatioensuresghatthey
areextensiblein thatthey caneasilyhandlenew operations
andtransformatiorrules. The DAG can be constructedas
in [GM93], with someextensionsto ensurethat all com-
mon sub-epressionsare detectedand unified. The DAG
constructiomalsotakesinto accountsharingof computation
basedn “subsumption™— examplesof suchsharinginclude
computings 4«5 (E) fromtheresultof o 4<10(E).

The task of the heuristic optimization algorithms is
thento decidewhat subexpressionshouldbe materialized
and shared. Two of the heuristicswe present,Volcano-
SH and Volcano-RJ are lightweight modificationsof the
Volcano optimization algorithm. The third heuristicis a
greedystratgy which iteratively picks the subexpression
that gives the maximum benefit (reduction in cost) if
it is materializedand reused. One of our important
contritutions here lies in three novel optimizations of
the greedy algorithm implementation,that make it very
efficient. Our performancestudiesshav that each of
these optimizationsleadsto a greatimprovementin the
performancef the greedyalgorithm.

In addition to choosingwhat intermediateexpression
resultsto materializeandreuse pur optimizationframework
also choosesphysical properties,such as sort order, for
the materializedresults. Our algorithmsalso handlethe
choiceof what(temporary)ndicesto createon materialized
results/databaselations.

Our algorithmscanbe easily extendedto performmulti-
gueryoptimizationon nestedqueriesaswell asmultiple in-
vocationsof parameterizequerieqwith differentparameter
values). The AND-OR DAG framework we exploit is used
in leasttwo commercialdatabaseystemsfrom Microsoft
and Tandem. Our algorithmscan, however, be extendedto
work with SystemR style bottom-upoptimizers.

We conducteda performancestudy of our multi-query
optimization algorithms, using queriesfrom the TPC-D
benchmarkas well as other queriesbasedon the TPC-D
schema.Our studydemonstratesot only savings basedon
estimatedcost, but also significantimprovementsn actual

runtimesonacommerciadatabase.

Our performanceresultsshav that our multi-query op-
timization algorithmsgive significant benefitsover single
gueryoptimization,at anacceptabl@&xtra optimizationtime
cost. The extra optimizationtime is morethancompensated
by the executiontime savings. All threeheuristicsbeatthe
basicVolcanoalgorithm,but in generagreedyproducedhe
bestplans followedby Volcano-RJ andVolcano-SH.

We believe thatin additionto our technicalcontrikbutions,
anotherof our contritutionslies in shaving how to engineer
a practicalmulti-query optimizationsystem— one which
can smoothly integrate extensions, such as indexes and
nestedgueries,allowing themto work togetherseamlessly
In summer’99, our algorithmswere partially prototyped
on the Microsoft SQL Sener optimizer and multi-query
optimizationis currently being evaluatedby Microsoft for
possibleinclusionin SQL Sener.

2  Setting Up The Search Space For
Multi-Query Optimization
As we mentionedn Section 1, thejob of amulti-queryop-
timizer is to (i) recognizepossibilitiesof sharedcomputa-
tion (thusessentiallysettingup the searchspaceby identify-
ing commonsub-expressionsand(ii) modify the optimizer
searchstratgy to explicitly accountfor shareccomputation
andfind a globally optimal plan. Both of the above tasks
areimportantandcrucialfor amulti-queryoptimizerbut are
orthogonal In otherwords,the detailsof the searchstrat-
egy do not dependon how aggressiely we identify com-
mon sub-epressiongof course the efficacy of the strateyy
does).We have exploredboth the above tasksin detail, but
chooseto emphasizahe searchstratggy componenbf our
work in this paper for lack of space.However, we outline
the high level ideasandthe intuition behindour algorithms
for identifying commonsub-epresionsin this sectionand
referto thefull versionof the papefRSSB98]for detailsat
theappropriatdocationsin this section.

Beforewedescribeouralgorithmsfor identifyingcommon-
subexpressionsywe describethe AND-OR DAG represen-
tation of queries. An AND-OR DAG is a directedacyclic
graphwhosenodescanbedividedinto AND-nodesandOR-
nodesthe AND-nodeshave only OR-nodesaschildrenand
OR-nodeshave only AND-nodesaschildren.

An AND-nodein the AND-OR DAG correspondgo an
algebraicmperationsuchasthejoin operation(X) or aselect
operation(o). It representshe expressiondefinedby the
operationandits inputs. Hereafter we refer to the AND-
nodesas opetation nodes An OR-nodein the AND-OR
DAG representa setof logical expressionshatgeneratehe
sameresultset;the setof suchexpressionss definedby the
childrenAND nodesof the OR node,andtheir inputs. We
shallreferto the OR-nodessequivalencaodeshenceforth.

Thegivenquerytreeis initially representedirectlyin the
AND-OR DAG formulation. For example,the query tree
of Figurel(a)is initially representeth the AND-OR DAG



(a) Initial Query

(b) DAG representation of query

(Commutativity not shown - every join node has
another join node with inputs exchanged, below
the same equivalence node)

(c) Expanded DAG after transformations

Figurel: Initial QueryandDAG Representations

formulation, as shovn in Figure 1(b). Equivalencenodes
(OR-nodes)are shavn as boxes, while operationnodes
(AND-nodes)areshovn ascircles.

Theinitial AND-OR DAG is thenexpandedby applying
all possibletransformationson every node of the initial
guery DAG representinghe given setof queries. Suppose
the only transformationgossiblearejoin associatiity and
commutatity. ThentheplansA X (B X C) and(A X
C) X B, aswell asseveralplansequivalentto thesemodulo
commutatvity can be obtainedby transformationson the
initial AND-OR-DAG of Figurel(b). Thesearerepresented
in the DAG shown in Figure 1(c). We shall refer to the
DAG after all transformationshave beenapplied as the
expandedAG. NotethattheexpandedAG hasexactlyone
equivalencenodefor every subsetof {4, B, C'}; the node
representall ways of computingthe joins of the relations
in that subset. For lack of spacewe omit details of the
expandedDAG generatioralgorithm;detailsmay be found
in [RSSB9§.

2.1 Extensionsto DAG Generation For Multi-Query
Optimization

To apply multi-query optimizationto a batch of queries,

the queries are representedtogetherin a single DAG,

sharingsubexpressionsTo make the DAG rooted,a pseudo

operationnodeis createdwhich doesnothing, but hasthe

rootequivalencenodesof all thequeriesasits inputs.

We now outline two extensionsto the DAG generation
algorithmto aid multi-queryoptimization.

The first extensiondealswith identificationof common
subepressionslf a querycontaingwo subepressionghat
are logically equialent, but syntactically different, (e.g.,
(A X B) X C,andA X (B X ()) theinitial queryDAG
would containtwo differentequivalencenodesrepresenting
the two subepressions. We modify the Volcano DAG
generationalgorithm so that whenever it finds nodesto be
equialent (after applying join associatiity) it unifiesthe
nodesyreplacingthemby a singleequivalencenode.

The Volcanoalgorithm usesa hashingschemeto detect
repeatedierivations,and avoids creatingduplicateequiva-
lencenodesdueto cyclic derivations(e.g.,expressiorel is
transformedo e2, which is thentransformedbackto el).
Our modificationadditionally usesthe hashingschemeto
detectand unify duplicateequivalencenodesthat were ei-
therpre-«isting or got createdvy transformationgrom dif-
ferentexpressions.Details of unificationmay be found in
[RSSB98].

Thesecondxtensionis to detectandhandlesubsumption
For example, supposetwo subexpressionsel: oa<5(E)
and e2: oa<10(E) appearin the query The result of
el canbe obtainedfrom the resultof e2 by an additional
selectionj.e.,ca<5(F) = ca<s(da<10(E)). To represent
this possibilitywe addan extra operationnodec 4«5 in the
DAG, betweenel ande2. Similarly, givene3: o4=5(E)
anded: oa=19(E), we canintroducea nen equvalence
nodee5: oa—sva—10(E) and add nev derivationsof e3
ande4 from e5. The new noderepresentshe sharingof
accessedetweenthe two selection. In general,given a
numberof selection®n anexpressionk, we createa single
new noderepresentinghe disjunctionof all the selection
conditions.Similar derivationsalsohelp with aggreyations.
For example, if we have €6: 4noGsum(sar)(E) and e7:
ageGsum(sar) (E), We canintroducea new equivalencenode
8. dno,ageFsum(sar) (F) andaddderivationsof e6 ande7?
from equivalencenodee8 by further groupbyson dno and
age.

The idea of applying an operation(suchas 4«5 on
one subepressionto generateanotherhas beenproposed
earlier [Rou82 Sel88 SV9§. Integrating such options
into the AND-OR DAG, as we do, clearly separateghe
spaceof alternatve plans (representedby the DAG) from
the optimization algorithms. Thereby it simplifies our
optimization algorithms, allowing them to avoid dealing
explicitly with suchderivations.



2.2 Physical AND-OR DAG

Propertieof theresultsof anexpressionsuchassortorder,
that do not form part of the logical datamodel are called
physicalpropertieJGM93]. Physicalpropertieof interme-
diateresultsareimportant,sincee.g. if anintermediatee-
sultis sortedon ajoin attribute,thejoin costcanpotentially
be reducedby usinga memgejoin. It is straightforvardto
refinethe abose AND-OR DAG representatioto represent
physicalpropertiesandobtaina physicalAND-OR DAG. *
Oursearchalgorithmscanbeeasilyunderstoo@ntheabove
AND-OR DAG representatiofwithoutphysicalproperties),
althoughthey actuallywork on physicalDAGs. Therefore,
for brevity, we do not explicitly considerphysicalproper
tiesfurther; for detailssee[RSSB9§. Our implementation
indeedhandlegphysicalproperties.

3 ReuseBased Multi-Query Optimization
Algorithms

In this sectionwe studya classof multi-queryoptimization
algorithms basedon reusing results computedfor other
parts of the query We presentthese as extensionsof

the Volcano optimization algorithm. Before we describe
the extensions,in Section3.1, we very briefly outline the

basic Volcano optimizationalgorithm, and how to extend
it to find best plans given some nodesin the DAG are
materialized. Sections3.2 and 3.3 then presentwo of our

heuristicalgorithms,Volcano-SHandVolcano-RJ.

3.1 Volcano Optimization Algorithm and
Materialized Views

The Volcano optimization algorithm operateson the ex-
pandedAG generate@arlier It findsthebestplanfor each
nodeby performinga depthfirst traversalof the DAG start-
ing from thatnodeasfollows. Costsare definedfor opera-
tion andequialencenodes.Thecostof anoperatiomodeo
is definedasfollows:
cost(o) = costof executing(o) + Xe; cchitdren(o)cost(€:)
Thechildrenof o (if ary) areequivalencenodes? The cost
of anequialencenodee is givenas
cost(e) = min{cost(o;)|o; € children(e)}
0 if thenodehasno children(i.e.,it is abaserelation).

Volcano also cachesthe best plan it finds for each
equialencenode, in casethe node is re-visited during
the depth first searchof the DAG. A branchand bound
pruningis also performedby carryingarounda costlimit;
for simplicity, we disregardpruningin this paper For lack
of spacewve omit details,but referreadergo [GM93].

Now we considerhow to extend Volcanoto find best
plans,giventhat(expressiongorrespondingo) someequi-
alencenodesn theDAG arematerializedLetreusecost(m)

1For example, an equivalence node is refined to multiple physical
equivalence nodes, one per required physical property in the physical
AND-OR DAG.

2Thecostof executinganoperatiorp alsotakesinto accounthe costof
readingtheinputs,if they arenotpipelined.

denotethe costof reusingthe materializedresultof m, and
let M denotethe setof materializechodes.

To find the costof a nodegiven a setof nodesM have
beenmaterializedwe simply usethe Volcanocostformulae
above, with thefollowing change Whencomputingthe cost
of a operationnodeo, if an input equivalencenodee is
materialized(i.e.,in M), usetheminimumof reusecost(e)
and cost(e) when computingcost(o). Thus, we usethe
following expressiorinstead:
cost(o) = costof executing(o) + X¢, echitdren(o)C(€:)

C(e;) = cost(e;) if e; € M;
min(cost(e;), reusecost(e;)) if e; € M.

3.2 TheVolcano-SH Algorithm

In ourfirst stratgyy, whichwe call Volcano-SHtheexpanded
DAG is first optimizedusingthe basicVolcanooptimization
algorithm.The bestplancomputedor thevirtual rootis the

combinationof the Volcanobestplansfor eachindividual

query

The best plans producedby the Volcano optimization
algorithm may have commonsubepressions;thus nodes
in the DAG may occurin the bestplansof more thanone
guery Theresultsof suchsharechodescanbe materialized
when they are first computed, and reusedlater  Since
materializationof a nodeinvolves storing the resultto the
disk,andwe assum@ipelinedexecutionof operatorsit may
be possiblefor recomputatiorof a nodeto be cheapetthan
the costof materializingandreusingthe node.

The Volcano-SHalgorithm thereforedecidesin a cost
basedmannerwhich of the nodesto materializeandshare,
asoutlinedbelow.

Let us considerfirst a nave (and incomplete)solution.
Consideran equivalencenodee. Let cost(e) denotethe
computationcostof nodee. Let numuses(e) denotethe
numberof timesnodee is usedin courseof executionof
the plan. Let matcost(e) denotethe costof materializing
nodee. As before,reusecost(e) denotethe costof reusing
the materializedesultof e. Then,we decideto materialize
e if cost(e) + matcost(e) + reusecost(e) x (numuses(e) —
1) < numuses(e) x cost(e). The left handside of this
inequalitygivesthecostof materializingheresultwhenfirst
computed,and using the materializedresultthereafterithe
right handsidegivesthe costof the alternatve whereinthe
resultis not materializedout recomputedn every use. The
abovetestcanbesimplifiedto

matcost(e)/(numuses(e) — 1) + reusecost(e) < cost(e) (1)

The problemwith theabove solutionis thatnumuses(e)
and cost(e) both dependon what other nodeshave been
materializedFor instancesupposaodee; is usedtwicein
computingnodee,, andnodee is usedtwice in computing
nodees. Now, if no nodeis materialized e, is usedfour
timesin computinges. If ey is materializede; getsused
twice in computinges, and ey getscomputedonly once.
Thus, materializinge, canreduceboth numuses(e;) and
cost(es).

TheVolcano-SHalgorithmresolhesthis problemheuristi-
cally by traversingthe treebottom-up.As eachequivalence



nodee is encounteredh the traversal,Volcano-SHdecides
whetheror not to materializee. Whenmakinga material-
izationdecisionfor anode the materializatiordecisiondor

all descendantare alreadyknown. Basedon this, we can
computecost(e) for anodee, asdescribedn Section3.1.

To make a materializationdecisionfor a nodee, we also
needto know numuses(e). Sincenumuses(e) depend®dn
thematerializatiorstatusof its ancestorgwhichis notfixed
yet), Volcano-SHusesan underestimateiumuses(e) of
number of usesof e, obtainedby simply counting the
numberof parentsof e in the Volcanobestplan. We use
numuses~ (e) insteadof numuses(e) in equation(1) to
make a consenrative decisionon materializatior?

Letusnow returnto thefirst stepof Volcano-SHNotethat
the basic Volcano optimizationalgorithm will not exploit
subsumptionderivations, such as derving oa<;(E) by
usingo a<s(ca<10(E)), sincethe costof the latterwill be
morethantheformer, andthuswill notbelocally optimal.

To considersuchplans,we performa pre-passchecking
for subsumptionamongstnodesin the plan producedby
the basicVolcanooptimizationalgorithm. If a subsumption
derivationis applicable,we replacethe original derivation
by the subsumptiorerivation. At theendof Volcano-SHif
the sharedsubexpressionis not chosento be materialized,
we replacethe derivation by the original expressions. In
the above example,in the prepasswve replaces 4«5 (E) by
oa<5(0a<10(E)). If ca<10(E) is not materializedat the
end,wereplaces s« (0 a<10(E)) by o a<5(E).

The algorithm of [SV98] alsofinds bestplansandthen
choosesvhich sharedsubepressionso materialize Unlike
Volcano-SHit doesnotfactorearliermaterializatiorchoices
into the costof computation.

3.3 TheVolcano-RU Algorithm

Consider@; and @, from Example1.1. With the best
plansasshovn in the example,namely(R X S) X P and
(R X T) X S, nosharingis possiblewith Volcano-SH.
However, whenoptimizing @2, if we realizethatR X S is
alreadyusedin the bestplanfor J; andcanbe sharedthe
choiceof plan (R X S) X T maybefoundto bethebestfor
Q.

The intuition behindthe Volcano-RJ algorithmis there-
fore asfollows. Givena batchof queries,Volcano-RJ op-
timizesthemin sequencekeepingtrack of whatplanshave
alreadybeenchoserfor earlierqueriesandconsideringhe
possibility of reusingpartsof the plans. The resultantplan
depend®ntheorderingchoserfor thequerieswe returnto
thisissueafterdiscussinghe Volcano-RJ algorithm.

Let @Q4,--., @, bethe queriesto be optimizedtogether
(and thus underthe samepseudo-rooif the DAG). The
Volcano-RJ algorithm optimizes them in the sequence
Q1,-..,Q,. After optimizing @);, we note equivalence
nodesin the DAG that are part of the bestplan P; for Q;

SWe also developedand tried out a more sophisticatedinderestimate.
We omit it from here for brevity, becauseit only lead to a minor
improvementon performance.

ascandidate$or potentialreusdater We alsocheckif each
nodeis worth materializing,if it is usedonemoretime. If

so,whenoptimizingthe next query we will assumat to be
availablematerialized.

After optimizing all the individual queries,the second
phaseof Volcano-RJ executesVolcano-SHon the overall
bestplanfoundasabove to further detectand exploit com-
mon subexpressions.This stepis essentiakincethe earlier
phaseof Volcano-RJ doesnot considerthe possibility of
sharingcommonsubepressionswithin a single query In-
steadvolcano-SHmalkesthefinal decisiononwhatnodego
materialize.Thedifferencefrom directly applyingVolcano-
SH to theresultof Volcanooptimizationis thatthe plan P
thatis givento Volcano-SHhasbeenchoserntaking sharing
of partsof earlierqueriesinto account,unlike the Volcano
plan.

Note thatthe resultof Volcano-RJ dependson the order
in which queriesareconsideredIn our implementatiorwe
considerthe queriesin the orderin which they are given,
aswell asin the reverseof thatorder, andpick the cheaper
one of the two resultantplans. Note thatthe DAG s still
constructednly once,so the extra costof consideringthe
two ordersis relatively quite small. Consideringfurther
(possiblyrandom)orderingss possibleput theoptimization
time would increasdurther.

4  TheGreedy Algorithm

In this section, we presentthe greedy algorithm, which
provides an alternatve approachto the algorithmsof the
previous section. Our major contribution herelies in how
to efficientlyimplementhe greedyalgorithm,andwe shall
concentrat®n this aspect.

In this section,we presentan algorithmwith a different
optimizationphilosophy Thealgorithmpicksa setof nodes
S to be materializedandthenfinds the optimal plan given
that nodesin S arematerialized. This is thenrepeatecn
differentsetsof nodesS to find the best(or a good)setof
nodesto bematerialized.

As before ,we shallassumehereis avirtual root nodefor
the DAG,; this nodehasasinput a “no-op” logical operator
whoseinputsarethe queries@); - . . Q. Let @ denotethis
virtual rootnode.

For a setof nodessS, let bestcost(Q, S) denotethe cost
of the optimal plan for @) giventhat nodesin S areto be
materialized(this costincludesthe costof computingand
materializingnodesin S). As describedn the Volcano-SH
algorithm,thebasicVolcanooptimizationalgorithmwith an
appropriatalefinitionof the costfor nodesn S canbeused
to find bestcost(Q, S).

To motivate our greedy heuristic, we first describea
simple exhaustve algorithm. The exhaustve algorithm,
iteratesover eachsubsetS of the setof nodesin the DAG,
and choosesthe subsetS,,; with the minimum value for
bestcost(Q, S). Therefore pestcost(Q), Sopt) iS the costof
theglobally optimalplanfor Q).



Procedure GREEDY
Input: Expanded DAG for the consolidated input query @
Output: Set of nodes to materialize and the corresp. best plan
X=¢
Y = set of equivalence nodes in the DAG
while (Y # ¢)
L1: Pick x € Y which minimizes bestcost(Q, {x} U X)
if (bestcost(Q, {x} U X) < bestcost(Q, X) )
Y=Y-x; X=XU{x}
elseY =¢
return X

Figure2: The GreedyAlgorithm

It is easyto seethatthe exhaustve algorithmis doubly
exponentialin the size of the initial query DAG and is
thereforempractical.

In Figure2 we outline a greedyheuristicthatattemptgo
approximateS,,; by constructingt onenodeatatime. The
algorithm iteratively picks nodesto materialize. At each
iteration, the nodex that givesthe maximumreductionin
thecostif it is materializeds choserto beaddedo X .

The greedy algorithm as describedabove can be very
expensve dueto thelargenumberof nodesin thesetY and
thelargenumberof timesthefunctionbestcost is called.We
now presenthreeimportantandnovel optimizationsto the
greedyalgorithmwhich make it efficientandpractical.

1. Thefirst optimizationis basedon the obsenation that
the nodesmaterializedn the globally optimal plan are
obviously a subsetof the onesthat are sharedin some
planfor the query Thereforejt is sufficientto initialize
Y in Figure2, with nodesthataresharedn someplan
for the query We call such nodesshamble nodes
For instance,in the expandedDAG for @; and Q-
correspondingo Examplel.1, R X S is sharablevhile
R X T is not. We presentan efficient algorithm for
finding sharablenodesin Section4.1.

2. The secondoptimization is basedon the obsenration
that there are mary calls to bestcost at line L1 of
Figure2, with differentparametersA simpleoptionisto
proces®achcall to bestcost independensdf othercalls.
However, it makessensefor a call to leveragethe work
doneby apreviouscall. We describeanovelincremental
costupdatealgorithm,in Section4.2, thatmaintainsthe
stateof the optimizationacrosscalls to bestcost, and
incrementallycomputesa new statefrom the old state.

3. Thethird optimization,which we call the monotonicity
heuristic avoidshaving to invoke bestcost(Q, {x}UX),
foreveryz € Y, inline L1 of Figure2. We describehis
optimizationin detailin Sectior4.3.

4.1  Sharability
In this subsection,we outline how to detectwhetheran
equialencenodecanbesharedn someplan.

A sub—DAG of anodex consistsof the nodesbelov
along with the edgesbetweenthesenodesthat arein the
original DAG. For eachnode z of the DAG, and every
equivalencenodez in the sub-DAG rootedat z, we define
the degree of sharing of z in the sub-DAG rooted at z,
El[z][#], asfollows. For all equivalencenodest, E[z][z] is
1. For agivennodez, all other E[z][_] valuesarecomputed
from thevaluesE([y][_] for all childreny of z asfollows.

If 2 is anoperatiomode

E[z][z] = Sum{E[y][z] | y € children(x)}
andif z is anequivalencenode,

E[z][z] = Maxz{E[y][z] | y € children(z)}
We definethe degreeof sharingof an equivalencenodez in
thefull DAG asE|r][z], wherer is theroot of the DAG. We
canshaw thatthis numberrepresentthe maximumnumber
of occurrencesf z in ary plan. Thus,if anodez hasdegree
of sharingin the full DAG as1, it cannotmorethanonce
in ary plan. Nodeswith degreeof sharing> 1 arecalled
sharmablenodes

In a reasonablémplementationof the above algorithm,
the time compleity of computingthe row E[z] is propor
tional to the numberof non-zeroentriesin E[z] (sayn;)
timesthe numberof childrenof z. However, typically, E is
fairly sparsesincethe DAG is typically “shortandfat” — as
thenumberof queriesgrows, theheightof the DAG maynot
increasehut it becomesvider. Thus,n, is asmallfraction
of thetotal numberof nodesfor mostz, makingthis shara-
bility computationalgorithmfairly efficientin practice. In
fact,for thequerieswe consideredn our performancestudy
(Section6), the computatiortook at mosta few tensof mil-
liseconds.

4.2 Incremental Cost Update

The setswith which bestcost is called successiely at line

L1 of Figure?2 arecloselyrelated. with their (symmetric)
differencebeingvery small. For, line L1 findsthe nodex

with the maximumbenefitwhichis implementedy calling

bestcost(Q, {z} U X), for differentvaluesof z. Thusthe
secondparameteto bestcost changedy droppingonenode
x; andaddinganother; 1. Wenow presenanincremental
costupdatealgorithmthatexploits the resultsof earliercost
computationso incrementallycomputethe new plan.

Let S be the set of nodessharedat a given point of
time, i.e., the previous call to bestcost waswith S asthe
parameterTheincrementatostupdatealgorithmmaintains
the costof computingevery equivalencenode,giventhatall
nodesin S aresharedandno othernodeis shared.Let S’
be the new setof nodesthat are shared,i.e., the next call
to bestcost hasS' asthe parameter The incrementalcost
updatealgorithmstartsfrom the nodesthathave changedn
goingfrom S to S’ (i.e.,nodesin S’ — S andS — S') and
propagateshe changein costfor the nodesupwardsto all
their parentsthesein turn propagateary changesn costto
their parentsf their costchangedandso on, until thereis
no changein cost. Finally, to getthe total costwe addthe
costof computingandmaterializingall thenodesn S'.



If we performthis propagatiorin anarbitraryorderthen
in the worst casewe could propagatethe changein cost
througha nodexz multiple times (for example,oncefrom
a nodey which is an ancestorf anothermodez andthen
from z2). A simple mechanismfor avoiding repeated
propagatiorusegopologicalnumberdor nodesof theDAG.
During DAG generationthe DAG is sortedtopologically
suchthata descendanalways comesbeforean ancestoin
thesortorder, andnodesarenumberedn thisorder Thecost
propagatioris thenperformedaccordingto the topological
numberorderingusing a heapto efficiently find the node
with theminimumtopologicalsorthnumberat eachstep.

In our implementation,we additionally take care of
physicalpropertysubsumption.Details of how to perform
incrementalcost updateon physical DAGs with physical
propertysubsumptioraregivenin [RSSB93].

4.3 TheMonotonicity Heuristic

In Figure 2, the function bestcost will be called oncefor
eachnodein Y, undernormal circumstances. We now
outline how to determinethe nodewith the smallestvalue
of bestcost muchmore efficiently, using the monotonicity
heuristic.

Definebenefit(xz, X) as

bestcost(Q, X) — bestcost(Q, {z} U X).
Notice that, minimizing bestcost in line L1 correspondso
maximizingbenefitas definedhere. Supposéhe benefitis
monotonic Intuitively, the benefitof a nodeis monotonicif
it neverincreaseasmorenodesgetmaterializedmorefor-
mally bene fit is monotonicif VX D Y, benefit(z, X) <
benefit(x,Y).

We associatean upperboundon the benefitof a nodein
Y andmaintaina heapC of nodesorderedon theseupper
bounds? An initial upperboundon the benefitof a node
in Y is computedby multiplying the cost of evaluating
the node(without any materializationsjimesthe degreeof
sharingof the nodeY in the full DAG (which we defined
earlier). The heapC is now usedto efficiently find the
nodez € Y with the maximumbene fit(x, X) asfollows:
Iteratively, the noden at the top C is chosen,its current
benefitis recomputed,and the heapC is reordered. If
n remainsat the top, it is deletedfrom the C heapand
chosento be materializedandaddedto X. Assumingthe
monotonicitypropertyholds,theothervaluesin theheapare
upperbounds andtherefore the noden addedto X above,
is indeedthe nodewith themaximumrealbenefit.

If the monotonicitypropertydoesnot hold, the nodewith
maximumcurrentbenefitmay not be at the top of the heap
C , but we still usethe above procedureasa heuristicfor
finding the nodewith the greatesbenefit. Our experiments
in Section6 demonstratéhat the above proceduregreatly
speedsip the greedyalgorithm. Further for all querieswe
experimentedwith, theresultswereexactly the sameevenif
themonotonicityheuristicwasnot used.

4This cost heapis not to be confusedwith the heapon topological
numberingusedearlier

5 Extensions

In this sectionwe briefly outlineextensiongo i) incorporate
creationand use of temporaryindices,ii) optimize nested
gueriego exploit commonsub-epressionsandiii) optimize
multiple invocationsof parameterizedqueries.

Costsmay be substantiallyreducedby creating(tempo-
rary) indiceson databaseelationsor materializednterme-
diateresults. To incorporateindex selectionwe modelthe
presencef anindex asaphysicalproperty similarto sortor-
der. Sinceour algorithmsareactuallyexecutedon the phys-
ical DAG, they choosenot only whatresultsto materialize
but alsowhat physicalpropertiesthey shouldhave. Index
selectionthenfalls out assimply a specialcaseof choosing
physicalpropertieswith absolutelyno changego our algo-
rithms.

Next we consider nestedqueries. One approachto
handlingnestedqueriesis to use decorrelationtechniques
(see, e.g. [SPL9q). The use of such decorrelation
techniquesresults in the query being transformedto a
set of queries, with temporary relations being created.
Now, the queriesgeneratecby decorrelationhave several
subepressionsin common, and are therefore excellent
candidategor multi-queryoptimization.Oneof the queries
in our performancevaluationbringsout this point.

Correlatedevaluationis usedin other cases,either be-
causeit may be more efficient on the query or becauset
may not be possibleto get an efficient decorrelatedjuery
using standardrelationaloperationdRR98]. In correlated
evaluation,the nestedqueryis repeatedlynvoked with dif-
ferentvaluesfor correlationvariables.Considerthe follow-

ing query

select * froma, b, ¢
where a.x = b.x and b.y = c.y and
a.cost =
(select mn(al.cost) froma al, b bl
where al.x = bl.x and bl.y = c.y)

Oneoptionfor optimizingcorrelatedvaluationof thisquery
is to materializea X b, andshardt with theouterlevel query
andacrossestedjueryinvocations.An index ona X b, on
attributeb.y is requiredfor efficientaccesgo it in thenested
guery sincethereis a selectionon b.y from the correlation
variable. If the bestplan for the outerlevel queryusesthe
join order(a X b) X ¢, materializingandsharinga X b may
provide the bestplan.

In generalpartsof thenestedquerythatdonotdepencdn
the value of correlationvariablescan potentiallybe shared
acrosdnvocationdRR9§. We canextendour algorithmsto
considersuchreuseacrossmultiple invocationsof a nested
query The key intuition is that when a nestedquery is
invoked mary times, benefitsdue to materializationmust
be multiplied by the numberof timesit is invoked; results
thatdependon correlationvariableshowever, mustnot be
consideredor materialization. The nestedquery invariant
optimizationtechniqgue®f [RR98] thenfall out asa special



caseof ours.

Ouralgorithmscanalsobe extendedo optimizemultiple
invocationsof parameterizedueries Parameterizedueries
are queriesthat take parametervalues, which are used
in selectionpredicates;stored proceduresare a common
example. Parts of the query may be invariant, just asin
nestedqueries,and thesecan be exploited by multi-query
optimization.

Theseextensionshave beenimplementedn our system;
detailsmaybefoundin [RSSB9§. Our algorithmscanalso
be usedwith System-Rstyle bottom-upoptimizers,which
usea DAG representatiomplicitly althoughnot explicitly.

6  Performance Study
Our algorithmswere implementedby extendingand mod-
ifying a Volcano-basedjuery optimizerwe had developed
earlier All codingwasdonein C++, with the basicopti-
mizertakingapprox.17,000lines,commonMQOQ codetook
1000 ines, Volcano-SHand Volcano-RJ took around500
lineseach,andGreedytook about1,500lines.

The optimizer rule set consistedof selectpush down,
join commutatvity andassociatiity (to generatdushyjoin
trees) andselectandaggregatesubsumption.

Implementatioralgorithmsincludedsort-basecggrea-
tion, memgejoin, nestedoopsjoin, indexedjoin, indexedse-
lect andrelationscan. Our implementatiorincorporatesall
the techniquediscussedn this paper including handling
physicalproperties(sort orderand presencenf indices)on
baseandintermediateelations unificationandsubsumption
duringDAG generationandthesharabilityalgorithmfor the
greedyheuristic.

Theblock sizewastaken as4KB andour costfunctions
assumeéMB is availableto eachoperatorduring execution
(wealsoconducteaxperimentsith largermemorysizesup
to 128 MB, with similar results).Standardechniquesvere
usedfor estimatingcosts, using statisticsabout relations.
The cost estimatescontainan I1/0 componentand a CPU
componentwith seektime as 10 msec,transfertime of 2
msec/blockfor readand 4 msec/blockfor write, and CPU
costof 0.2 msec/blockof dataprocessed. We assume
that intermediateresults are pipelined to the next input,
using an iterator model asin Volcano; they are saved to
disk only if the resultis to be materializedfor sharing.
The materializatiorcostis the costof writing out the result
sequentially

The tests were performedon a single processor233
Mhz Pentium-1l machinewith 64 MB memory running
Linux. Optimization times are measuredas CPU time
(user+system).

6.1 Basic Experiments

The goal of the basic experimentswas to quantify the
benefitsand cost of the three heuristicsfor multi-query
optimization, Volcano-SH,Volcano-RJ and Greedy with
plain Volcano-styleoptimizationasthe basecase.We used
theversionof Volcano-RJ which considergheforwardand

reverseorderingsof queriego find sharingpossibilities and
choosegheminimumcostplanamongsthetwo.
Experiment 1 (Stand-Alone TPCD):

The workload for the first experimentconsistedof four
gueriesbasecbn the TPCDbenchmarkWe usedthe TPCD
databasatscaleof 1 (i.e., 1 GB total size),with a clustered
index on the primary keys for all the baserelations. The
resultsarediscussedbelon andplottedin Figure3.

TPCD query Q2 hasa large nestedquery andrepeated
invocationsof the nestedqueryin a correlatedevaluation
couldbenefitfrom reusingsomeof theintermediatgesults.
For this query though Volcano-SHand Volcano-RJ do
not lead to ary improvementover the plan of estimated
cost 126 secs.returnedby Volcano, Greedyresultsin a
plan of with significantlyreducedcostestimateof 79 secs.
Decorrelationis analternatve to correlatedevaluation,and
Q2-D is a (manually) decorrelatedversion of Q2 (due
to decorrelation,Q2-D is actually a batch of queries).
Multi-query optimizationalsogivessubstantiabainsonthe
decorrelatedjueryQ2-D, resultingin a planwith estimated
costsof 46 secs.,since decorrelationresultsin common
subepressions. Clearly the bestplan hereis multi-query
optimizationcoupledwith decorrelation.

Obsenre alsothatthe costof Q2 (without decorrelation)
with Greedyis muchlessthanwith Volcano,andis lessthan
even the cost of Q2-D with plain Volcano— this results
indicatesthat multi-query optimizationcan be very useful
in other querieswhere decorrelationis not possible. To
test this, we ran our optimizer on a variant of Q2 where
the in clauseis changedto not in clause,which prevents
decorrelationfrom being introduced without introducing
new internal operatorssuch as anti-semijoin[RR98]. We
alsoreplacedhe correlatedpredicatePS_PARTKEY =
P PARTKEY by PS. PARTKEY # P PARTKEY.
For this modifiedquery Volcanogave a planwith estimated
costof 62927secs.while Greedywasableto arriveataplan
with estimateaost7331,animprovementy almostafactor
of 9.

We next consideredhe TPCDqueriesQ11andQ15,both
of which have commonsubepressionsandhencemake a
casefor multi-query For Q11,eachof our threealgorithms
leadto a planof approximatelyhalf the costasthatreturned
by Volcano.Greedyarrivesatsimilarimprovementgor Q15
also, but Volcano-SHand Volcano-RJ do not lead to ary
appreciabldenefitfor this query

Overall, Volcano-SHandVolcano-RJ take the sametime
and spaceas Volcano. Greedytakes more time thanthe
othersfor all the queries,but the maximumtime taken by
greedyoverthefour querieswvasjustunder2 secondsyersus
0.33secondsakenby Volcanofor thesamequery Theextra
overheadof greedyis negligible comparedto its benefits.
The total spacerequiredby Greedyrangedfrom 1.5t0 2.5
timesthat of the other algorithms,and againthe absolute
valueswerequite small(up to just over 130KB).

Results on Microsoft SQL-Server 6.5:
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To study the benefitsof multi-query optimizationon a
real databasewe testedits effect on the queriesmentioned
above, executedon Microsoft SQL Sener 6.5, runningon
WindowsNT, ona333Mhz Pentium-limachinewith 64MB
memory We usedthe TPCDdatabasatscalel for thetests.
To do so, we encodedhe plansgeneratedy Greedyinto
SQL. We modeledsharingdecisionsby creatingtemporary
relations, populating, using and deleting them. If so
indicatedby Greedywe createdndexeson theseemporary
relations. We could not encodethe exact evaluation plan
in SQL since SQL-Serer doesits own optimization. We
measuredhetotal elapsedime for executingall thesesteps.

The resultsare shovn in Figure 4. For query Q2, the
time taken reducedfrom 513 secs.to 415 secs. Here,
SQL-Serer performeddecorrelatioron the original Q2 as
well as on the result of multi-query optimization. Thus,
the numbersdo not matchour cost estimatesput clearly
multi-query optimizationwas useful here. The reduction
for the decorrelatedrersion Q2-D was from 345 secs.to
262 secs;thusthe bestplan for Q2 overall, even on SQL-
Sener, was using multi-query optimizationas per Greedy
on a decorrelatedquery The query Q11 speededup by
just under50%, from 808 secsto 424 secs.andQ15from
63 secs.to 42 secs.using planswith sharinggeneratedy
Greedy

The resultsindicate that multi-query optimizationgives
significanttime improvementson a real system. It is im-
portantto notethatthe measuretenefitsareunderestimates
of potentialbenefits,for the following reasons.(a) Due to
encodingof sharingin SQL, temporaryrelationshadto be
storedandre-readevenfor thefirst use. (b) The opera-
tor setfor SQL-Sener 6.5 doesnot supportsort-megejoin.
Our optimizer at timesindicatedthat it wasworthwhile to
materializethe relationin a sortedordersothatit could be
cheaplyusedby a memge-joinor aggrejationover it, which
we couldnotencoden SQL/SQL-Serer. If multi-queryop-
timizationwereproperlyintegratedinto thesystemtheben-
efitsarelik ely to be significantlylarger, andmoreconsistent
with our estimates.
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Figure4: Executionof Stand-alonefPCD Querieson MS
SQL Sener

Experiment 2 (Batched TPCD Queries):

In the secondexperiment,the workloadmodelsa system
whereseveral TPCD queriesare executedas a batch. The
workload consistsof subsequencesf the queriesQ3, Q5,
Q7, Q9 and Q10 from TPCD; none of thesequerieshas
arny commonsubepressionithin itself. Eachquerywas
repeatedwice with differentselectiorconstantsComposite
guery BQi consistsof thefirst i of the above queries,and
we usedcompositequeriesBQ1to BQ5in our experiments.
Likein Experimentl, weusedhe TPCDdatabasatscaleof
1 andassumedhatthereareclusteredndicesontheprimary
keys of thedatabaseelations.

Notethatalthougha queryis repeatedvith two different
valuesfor a selectionconstantwe found that the selection
operationgenerally lands up at the bottom of the best
Volcanoplantree,andthetwo bestplantreesmay not have
commonsubepressions.

Theresultson the abore workloadareshavn in Figure5.
Acrossthe workload, Volcano-SHandVolcano-RJ achieve
up to only about 14% improvementover Volcano with
respectto the cost of the returnedplan, while incurring
negligible overheads Greedyperformsbetter achievzing up
to 56% improvementover Volcano,andis uniformly better
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thanthe othertwo algorithms.

As expected,Volcano-SHand Volcano-RJ have essen-
tially the sameexecutiontime and spacerequirementsas
Volcano.Greedytakesaboutl0second®nthelargestquery
in the set, BQ5, while Volcanotakes about0.7 secondon
the same. However, the estimatedcostsazings on BQ5 is
260secondswhichis clearlymuchmorethanthe extra op-
timizationtime costof 10 secs.Similarly, thespaceaequire-
mentsfor Greedywere more by abouta factor of threeto
four over Volcano,but the absolutedifferencefor BQ5 was
only 60KB. The benefitsof Greedy therefore,clearly out-
weighthecost.

6.2 Scaleup Analysis
To seehow well our algorithmsscaleup with increasing
numbersof queries,we defineda new setof 22 relations
PSP, to PSPy, with anidenticalschemg P, SP, NUM)
denoting part id, subpartid and number Over these
relations,we defineda sequencef 18 componenijueries
S@Q; to SQ1s: componenguery SQ; wasa pair of chain
gueriesonfive consecutrerelationsPSP; to PSP; 4, with
the join condition being PSP;.SP = PSP;;,.P, for
j = i..i + 3. Oneof the queriesin the pair SQ; hada
selectionPSP;.NUM > a; while theotherhada selection
PSP, NUM > b; wherea; andb; arearbitraryvalueswith
a; 75 bi.

To measurescaleupwe usethe compositequeriesC'Q
to CQs5, whereC'Q); is consistf queriesSQ; 10 SQ4;—s.
Thus, CQ; usesdi + 2 relationsPSP; to PSP,;42, and

has32i — 16 join predicate®nd8; — 4 selectiornpredicates.

Query CQ5, in particular is on 22 relationsand has 144
join predicatesand 36 selectpredicates. The size of the
22 baserelationsPSP;, ..., PSPy, variedfrom 20000to
40000tuples(assignedandomly)with 25 tuplesper block.
No index wasassumean thebaserelations.

The costof the plan and optimizationtime for the above
workload is shavn in Figure 6. The relatve benefits
of the algorithms remainssimilar to that in the earlier
workloads, except that Volcano-RJ now gives somavhat
better plans than Volcano-SH. Greedy continuesto be

the best, althoughit is relatvely more expensve. The
optimizationtime for Volcano, Volcano-SHand Volcano-
RU increasedinearly. Theincreasen optimizationtime for
Greedyis alsopracticallylinear, althoughit hasavery small
supetlinear component. But even for the largest query
CQ5 (with 22 relations, 144 join predicatesand 36 select
predicates}he time taken was only 30 seconds. The size
of the DAG increasedinearly for this sequencef queries.
Fromthe abore, we canconcludethat Greedyis scalableto
quitelargequerybatchsizes.

We alsoran Greedyon querieswith larger numbersof
relationsto testits scaleup the size of a singlequery The
guerieswere repeatedwice to make every subexpression
shared. The DAG sizeis, as expected,exponentialin the
numberof relations. For chain and star patternsof joins,
Greedyscaledup nicely at 2™, but in the casewhereevery
relationhasajoin predicatewith every other, the scaleupof
Greedywasworse,at around22”. Greedyshouldtherefore
beusedwith careonquerieswith alargenumberof relations.

6.3 Effect of Optimizations
In this seriesof experiments,we focus on the effect of
individual optimizationson the optimizationof the scaleup
gueries. We first considerthe effect of the monotonicity
heuristic addition to Greedy Without the monotonicity
heuristic, beforea nodeis materializedhebenefitavould be
recomputedor all the sharablenodesnot yet materialized.
With the monotonicity heuristic addition, we found that
on an averageonly about 45 benefitswere recomputed
eachtime, acrossthe rangeof CQ1to CQ5. In contrast,
without the monotonicityheuristic,evenat CQ2therewere
about1558benefitrecomputationgachtime, leadingto an
optimizationtime of 77 seconddor the query as against
7 secondswith monotonicity Scaleupis also muchworse
without monotonicity Best of all, the plans produced
with andwithout the monotonicityheuristicassumptiorhad
virtually the samecost on the querieswe ran. Thus, the
monotonicity heuristic provides very large time benefits,
without affectingthe quality of the plansgenerated.

Tofind thebenefitof thesharabilitycomputationwe mea-
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Figure6: Optimizationof ScaleupQueries

suredthe cost of Greedywith the sharabilitycomputation
turnedoff; every nodeis assumedo be potentiallysharable.
Acrossthe rangeof scaleupgueries,we found that the op-

timization time increasedsignificantly For CQ2, the opti-

mizationtime increasedrom 30 secs.to 46 secs. Thus,
sharabilitycomputatioris alsoa very usefuloptimization.

In summary our optimizationsof the implementation
of the greedy heuristic result in an order of magnitude
improvementin its performanceandarecritical for it to be
of practicaluse.

6.4 Discussion

To checkthe effectof memorysizeonourresultswe ranall

the above experimentsincreasingthe memoryavailable to

theoperatorgrom 6MB to 32MB andfurtherto 128MB.We
foundthatthecostestimategor the plansdecreasedlightly,

but therelative gains(i.e., costratio with respecto Volcano)
essentiallyremainedthe samethroughoutfor the different
heuristics.

We stressthat while the costof optimizationis indepen-
dentof the databassize,the executioncostof a query and
hencethebenefitdueto optimization,dependsiponthesize
of the underlyingdata. Correspondinglythe benefitto cost
ratio for our algorithmsincreasemarkedly with the size of
the data. To illustratethis fact, we ran the batchedTPCD
queryBQ5 (consideredn Experimenf) on TPCDdatabase
with scaleof 100(totalsize100GB).Volcanoreturnedaplan
with estimateatostof 106897secondsvhile Greedyobtains
aplanwith costestimater3143secondsanimprovementof
33754 seconds. The extra time spentduring optimization
is 10 secondsasbefore,which is negligible relative to the
gain.

While the benefitsof using MQO shav up on query
workloadswith commonsubexpressionsa relevant issue
is the performanceon workloadswith rare or noneistent
overlaps.To studytheoverhead®f Greedyin acasewith no
sharing,we took a batchcontainingTPCD queriesQ3, Q5,
Q7, Q9 andQ10, andrenamedhe relationsto remove all
overlapsbetweemueries.BasicVolcanooptimizationtook
650msecwhile the Greedyalgorithmtook 820msec.Thus

the overheadwas around25%, but note that the absolute
numbersarevery small. The overheadsaredueto full DAG
expansiorandsharabilitydetection.

To summarizefor very low costquerieswhichtake only
afew secondspnemaywantto useVolcano-RJ, whichdoes
a “quick-and-dirty” job; especiallyso if the queryis also
syntacticallycomplex. For moreexpensve queriesaswell
as‘“canned”queriesthat are optimizedrarely but executed
frequentlyoverlargedatabasest clearlymakessensdo use
Greedy

7 Related Work

The multi-query optimizationproblemhasbeenaddressed
in [Fin82, Sel88 SSN94PS88,ZDNS98 SV9g. Thework
in [Sel88 SSN94,PS88] describeexhaustve algorithms.
They also do not exploit the hierarchicalnatureof query
optimizationproblems,whereexpressiondave subexpres-
sions.

Thework in [SV98] considersharingonly amongsthe
bestplansof eachquery— this is similar to Volcano-SH,
and as we have seen,this often doesnot yield the best
sharing.For the specialcaseof OLAP queries(aggreation
on a join of fact table with dimensiontables)Zhao et al.
[ZDNS9§ considemultiqueryoptimizationto sharescans
andsubepressionsThey do not considematerializatiorof
sharedesultswhichis requiredto handlethe moregeneral
classof SQL queries,which we consider Their Local
Greedyalgorithmis similar in spirit to Volcano-RJ, while
Global Greedyis an extensionthatallows plansfor queries
considereckarlierto bechanged.

The problemof materializedview/index selectionis re-
latedto multi-queryoptmization,but needsto considerup-
datesandview maintenanceosts(seee.g.,[Rou82 RSS96,
Gup91, andin the context of datacubes]GHRU97]). Ser-
eralof thealgorithmsproposedor thisproblemuseagreedy
heuristic, but do not discussefficient implementationand
tight integrationwith the queryoptimizet We arecurrently
working on extendingour techniquego handleview/index
selectiormandmaintenance.

Ourmulti-queryoptimizationalgorithmamplemenguery



optimizationin the presenceof materialized/cachediews,

as a subroutine. By virtue of working on a generalDAG

structure pur techniquesreextensible unlike the solutions
of [CKPS9] and[CR94]. Theproblemof detectingvhether
anexpressiorcanbe usedto computeanothethasalsobeen
studiedin [YL87]; however, they donotaddressheproblem
of query optimizationor of choosingwhat to materialize.
Queryresultcaching[CR94] can be viewed as a dynamic
form of multi-queryoptimization,andwe are currently ex-

tendingour algorithmsto provide betterselectionof inter-

mediateresultsto cache.

Rao and Ross[RR9g considerthe problemof exploit-
ing invariantpartsof a nestedsubquery Multi-query op-
timization on nestedqueriesachiezesthe sameeffect, thus
ourtechniquesremoregeneral.

8 Conclusions

We have describedhreenovel heuristicsearchalgorithms,
Volcano-SHVolcano-RJ andGreedy for multi-queryopti-
mization. We presented a numberof techniquedo greatly
speedup the greedyalgorithm. Our algorithmsare based
on the AND-OR DAG representatiorof queries,and are
therebycanbeeasilyextendedo handlenew operatorsOur
algorithmsalsohandleindex selectiorandnestedjueriesjn
avery naturalmanner We alsodevelopedextensiongo the
DAG generatioralgorithmto detectall commonsubexpres-
sionsandincludesubsumptiorerivations.

Our implementationdemonstratedhat the algorithms
can be addedto an existing optimizer with a reasonably
small amount of effort. Our performancestudy using
queriesbasedon the TPC-D benchmarkdemonstratethat
multi-query optimizationis practicaland gives significant
benefitsat a reasonableost. The benefitsof multi-query
optimization were also demonstratecbn a real database
system.

In conclusionwe believewe havelaid thegroundvork for
practicaluse of multi-query optimization,and multi-query
optimizationwill forma critical part of all queryoptimizes
in thefuture.
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