Reverse Query Processing

Carsten Binnig Donald Kossmann Eric Lo
University of Heidelberg ETH Zurich ETH Zurich
binnig@informatik.uni-heidelberg.de  kossmann@inf.ethz.ch  eric.lo@inf.ethz.ch

Abstract than a certain sum (the database schema of the application

Generating databases for testing database applications S given in Figure 2a):
(e.g., OLAP or business objects) is a daunting task in prac- . _
tice. There are a number of commercial tools to automati- SELECT orderdate, SUMpri cex(1-discount))
I d b Th | K d b FROM Li neitem Orders WHERE | _oi d=oi d
cally generate test databases. These tools take a databasggqp gy or der dat e
schema (table layouts plus integrity constraints) andeabl Havi NG AVQ( pri cex(1-di scount)) <=100
sizes as input in order to generate new tuples. However,AND SUM pri cex(1-di scount))>=150;
the databases generated by these tools are not adequate for The following tables show a real excerpt of the test data-
testing a database application. If an application query is base generated by a commercial test database generation
executed against such a synthetic database, then the resuliool* for the example application:
H H i i i lid name price discount| |_oid oid orderdate
Of that appllcatlon query IS Ilkely to be empty or contain 103132‘ KclcqzIf ‘810503883‘ 0.7 ‘ 1214077 1214077‘ 1983-01-23
weird results, such as a report on the performance of a sales 126522 hcTpTsud34| 994781460, 0.1 | 1214077 1297288 1995-01-01
. . . 397457| 5SwWn9qg3 | 436001336 0.0 1297288
person that contains negative sales. To solve this problem, ,
this paper proposes a new technique called Reverse Query TableLineitem TableQrders

: : It is obvious that the query above returns an empty result
Processing (RQP). RQP gets a query and a result as input
g (RQP). RQP g query P for that test database because none of the generated tuples

and returns a possible database instance that could have tisfies th lekAVI NG ¢l including diff i
produced that result for that query. RQP also has other ap- satishies the comple N clause (including differen
aggregations on arithmetic functions). Even though some

lications; most notably, testing the performance of DBMS . o :
P Y g P tools allow the user to specify additional rules in order to

and debugging SQL queries. . o
9ging SQL g constrain the generated databases (e.g., constraininigthe
) main ofdi scount ), those constraints are defined on the
1. Introduction base tables only and there are no means to control the query

When designing a completely new database applicationresuns direcFIy. Therefore, thosg topls can hardly de#t wi
or a component of such an application (e.g., some report-the complexity of SQL and application programs; not even
ing functionality) it is necessary to generate a test da@aba with the single SQL query above.
in order to carry out functional tests on the new applica- 10 generate meaningful test databases for applications,
tion logic. There are a number of commercial and acad- this paper proposes to take the application query and the
emic tools [1, 4, 5, 21] which enable the generation of a test desired query result (in addition to the database schema)
database for a given database schema. Beside the databad8 input and to generate a database accordingly. More for-
schema, some tools support the input of the table sizes andnally, given a Queryy and a TableR, the goal is to find a
additional rules used for data instantiation (e.g. siatist DatabaseD (a set of tables) such thgi(D) = R. We call
distributions, value ranges, data repositories). this problemreverse query processingr RQP, for short.

However, these tools often generate test databases whiclRQP turns traditional query processing around. For exam-
do not reflect the semantics of the application logic that Ple, RQP is based on a reverse relational algebra (RRA).
should be tested. In other words, if we pose the SQL Logically, each operator of the relational algebra has a cor
queries of an application against the test database, thdesponding operator of the reverse relational algebra that
SQL queries often return no or non-meaningful results. implements its reverse function. All reverse algebra oper-
An example of that can be shown by the following query ators must respect the integrity constraints of the databas
which is extracted from a reporting application. The query Schema in order to generate correct output. Furthermore,
lists the total sales of ordered line items per day, if the Unlike traditional query processing, iterators in RQP are
discounted price was less than a certain average and mor@ush-based. Thus the whole data processing is started by

*Contact Author: Eric Lo (eric.lo@inf.ethz.ch) 1We do not disclose the name of the tool for legal reasons.




scanning the query result and pushing each tuple down to oo
the leaves (i.e., the base tables) of the query tree. . ouery parser

RQP has several applications. In this paper we focus and Reverse Query Processp
on using RQP to generate a test database based on an in- Transtator

=

Reverse

dividual query of an application program in order to carry query free g run-time

out functional tests (N.B. the generated database is not for Botom-up

testing the correctness of the queries in the application) . fcar}::fg query ode!

For example, consider an application with ifselse block annotation

where thef condition relies on the resuR of a queryQ. lA"”T‘gate’j FormulaLH Instaniation|

Given that queny and different results2 (e.g. oneR for imized | Top-doun

each branch of th#-elseblock), RQP can generate differ- Osi“nfifzyer  daa DatabaseD
ent databases to test all code paths of that applicafion ( mstantiation

can be given by the testers manually or by some code analy- T

sis tools, such as [20]). For some applications, it would be RTable R Parameter values

beneficial to generate one database for all queries within a
single application program and to consider other SQL state-
ments such allPDATE statements (which is not possible (called RTable), find a database instarizsuch that:

for a mock object which simulates the query results). Usu-

ally, RQP can then be applied to each query andNHERE R=Q(D)

clauses oftJPDATE statements individually and the union of andD is compliant withS, and its integrity constraints.

all RQP results can be used as a test database for the whole In general, there are many different database instances

application. For some complex applications, the union of which can be generated for a givénand R. Depending
RQP results may not be adequate and thus we have to MEr98 the application, some of these instances might be better

the RQP generat.ed _databases in order to fully test all thethan others. For functional testing, RQP should generate
facets of an application. Currently, based on the result of

. - L a small D that satisfies the correctness criteria above, so
this work, we are devising a set of formal criteria for such

datab ina: h ting th iteria is b that the running time of tests is reduced. Thus, the physical
atabase merging, Nowever, presenting these criteria s eimplementation of the operators presented in Section ¢ trie
yond the scope of this paper.

o . to generate a minimdD.
Another application of RQP is to generate test databases

in order to test the performance of a RDBMS fory user ~ 2.2. RQP Architecture

defined benchmark querie this application, in addition  Figyre 1 gives an overview of the general architecture to
to allowing the user to specify the target database size likejmplement reverse query processing. It is applicable to all
existing commercial test database generation tools, userkRQp applications such as functional testing or performance

can specify thesize of the query resuleand theselectivity  testing. A query is (reverse) processed in four steps by the
of each predicate. This way, the performance of a RDBMS {q|10wing components.

can be studied thoroughly from a totally different angle. 1. Parser: The SQL query is parsed into a query tree that

There are a few more possible RQP applications. I:Orconsists of operators of the relational algebra. This pgrsi
example, we can use RQP to debug SQL queries, or to gen- b 9 ) P8

; A . . is carried out in exactly the same way as in a traditional SQL
erate databases from different materialized views in order rocessor. What makes ROP special is, that this query tree
to test the confidentiality of the view data [19]. A detailed b T P ' query
discussion of all RQP applications can be found in [3]. is translated into averse query treeln the reverse query

The remainder of this paper is organized as follows: Sec- tree, each operator of the relational algebra is translated

tion 2 defines the problem and gives an overview of RQP. a corresponding pperator of “"?"erse reIa'uqnaI algebra -
The reverse relational algebra is presented in more datail i

Section 3 describes the logical reverse relational algebraS . : - _
. Y . ection 3. In fact, in a strict mathematical sense, the sever
for RQP. Section 4 presents the physical implementation of . . :
relational algebra is not an algebra and its operators dre no

RRA for functional testing. Section 5 describes the results .
X ; : operators because they allow different outputs for the same
of the experiments and Section 6 discusses related work.

) i : input. Nevertheless, we use the terabgebraandoperator
Section 7 contains conclusions and future work. . .
in order to demonstrate the analogies between reverse and

2. RQP Overview traditional query processing.

2. Bottom-up Query Annotation: The bottom-up query

annotation phase in Figure 1 annotates each operator of a
Given an SQL Query), the Schema&'p of a relational reverse query tree with @anput schemas’~ and anoutput

database (including integrity constraints), and a TaBle schemaS®U”. The input and output schema are defined

Figure 1. RQP Architecture

2.1. Problem Statement



by a set of attributes (names and data types), integrity con-2.3. RQP Example

straints, and functional dependencies. RQP considers the

integrity constraints of SQL (primary key, unique, foreign

key, not null, and check) as well as aggregation constraints
[22]. By enhancing [16], this step annotates each operator,

with a set of these integrity constraints that its input and
output must fulfill. It is carried out in a bottom-up fashion,
i.e., the annotation starts from the leaves (tables) updo th
top of the query.S’YN andS®UT are necessary for the top-
down data instantiation (Step 4): in this step, each operato

of the reverse query tree can check, if its input satisfies the
constraints of its subqueries and the database schema (b

STN). Moreover, none of the operatogenerates any out-
put data that violates any constrainfsy S°YT). Due to
space constraints, we explain the details in [3].

3. Query Optimization: In the last step of compilation, the
reverse query tree is transformed intoeuivalentreverse
guery tree that is expected to satisfy a certain optiminatio
goal (e.g., running time and/or database size). Traditiona

query optimization is based on result-equivalence: after a
rewrite the same results should be produced. Query opti-

mization for RQP can be much more aggressive: it is ac-
ceptable to generate a differeidtfor the same input as long
as the criteriom® = Q(D) is fulfilled. As a result, RQP al-
lows more rewrites. More details on query optimization in
RQP can be found in [3]. For example, [3] shows how to
fully unnest nested SQL queries for optimization. More-
over, it shows that it is not important to carry out join re-
ordering because joins in RQP are mostly cheap.

4. Top-down Data Instantiation: At run-time, the anno-
tated reverse query tree is interpreted using the RT&ble

as input. Just as in traditional query processing, there is
a physical implementation for each operator of the reverse

relational algebra that is used for reverse query execution
The physical algebra in this paper is to generate &or
functional testing which tries to be minimal. Generating

paper is fully described in Section 4.

In many applications, queries have parameters (e.g.,With inverseoperators becausap!
bound by a host variable). In order to process such queries

values for the query parameters must be provided as inpu

to Top-down data instantiation. For functional testingsit
possible to generate several test databases with diffeaent

rameter settings derived from the program code in order to
test different code paths. In this case, the first three ghase
of query processing only have to be carried out once, and
the Top-down data instantiation can use the same annotateﬁ

reverse query tree for each set of parameter settings.

t

Figure 2 gives a detailed example of reverse query
processing. Figure 2a shows the database schema (defini-
tion of theLi nei t emandOr der s tables with their in-
tegrity constraints) and an SQL query that asks for the sales
(SUM pri ce) ) byorderdat e. The query is parsed and
optimized and the result is a reverse query tree with opera-
tors of the reverse relational algebra (see Figure 2b). This
tree is very similar to the query tree used in traditionalrgue
processors. The differences are that (1) operators of the re
verse relational algebra (Section 3) are used and (2) that th
Hata flow through this tree is from top to bottom (rather than
from bottom to top).

The data flow at run-time is shown in Figure 2c. Starting
with an RTable that specifies that two result tuples should
be generated (Table (i) at the top of Figure 2c), each oper-
ator of the reverse relational algebra is interpreted by the
Top-down data instantiation component in order to pro-
duce intermediate results of reverse query processing. In
this phase, RQP uses the decision procedure of a model
checker in order to guess appropriate values (e.g., pessibl
AV pri ce) values which are compliant with the predi-
cate of theHAVI NG clause of the query). Of course, sev-
eral solutions are possible and the decision proceduresof th
model checker chooses possible values that match all con-
straints discovered in the Bottom-up annotation step. The
final result of RQP in this example are possible instantia-
tions for theLi nei t emandOr der s tables. Itis easy to
see that these instantiations meet the integrity conssrain
the database schema and that (forward) executing the SQL
guery using these instantiations gives the RTable as aresul

3. Reverse Relational Algebra

The Reverse Relational Algebra (RRA) is a reverse vari-
ant of the traditional relational algebra [7] and its extens
for group-by and aggregation [10]. Each operator of the re-
lational algebra has a corresponding operator in the revers

: . .relational algebra; the symbols are the same (e.fpr se-
databases for performance testing needs a different physi g ' y (e-bor

cal algebra. As part of this step, a model checker (more
precisely, the decision procedure of a model checker) [6] is
used in order to generate data. The physical algebra in this

lection), but the operators of the RRA are markeaps!
(e.g.,c~1). Furthermore, the following equation holds for
all operators and all valid tables R:

op(op '(R)) = R

However, reverse operators in RRA should not be confused
(op(S)) = S is not
necessarily true for some valid tablés

In the traditional relational algebra, an operator has 0 or
more inputs and produces exactly one output relation. Con-
versely, an operator of the RRA has exactly one input and
produces 0 or more output relations. Just as in the tradi-
tional relational algebra, the operators of the RRA can be
omposed. As shown in Figure 2b, the composition is car-
ed out according to the same rules as for the traditional



CREATE TABLE Order s(
oi d | NTEGER PRI MARY KEY,
orderdat e DATE);

CREATE TABLE Lineitem (
lid | NTEGER PRI MARY KEY,
name VARCHAR( 20),
price FLOAT,
di scount FLOAT
CHECK (1>= di scount >=0),
| _oid | NTEGER REFERENCES Orders);

SELECT SUM pri ce)

FROM Lineitem Orders
WHERE | _oi d=oi d

GROUP BY orderdate

HAVI NG AVQE pri ce) <=100;

(a) Example Schema and Query

(OR—

TSU M (price)

@

(TA‘V"G(prwe) <=100

(i) .

1
orderdate X SUM (price), AV G(price)

Data Flow

(v)

-1
X vid=oid

Lineitem Orders !

(b) Reverse Relational Algeea

SUM(price)
100
120

(i) RTable

orderdate | SUM(price) | AVG(price)
1990-01-02 100 100
2006-07-31‘ 120 60

(ii) Output of 7—*; Input of 0!

orderdate | SUM(price) | AVG(price)

1990-01-02 100 100

2006-07-31 120 ‘ 60
(iii) Output of o~ 1; Input of y ~*

lid | name | price | discount| l.oid | oid | orderdate
1 | productA | 100.00 0.0 1 1 1990-01-02
productB | 80.00 0.0 2 2 | 2006-07-31
productC| 40.00 0.0 2 2 | 2006-07-31

(iv) Output of y~1; Input of x

[ARN)

id | name | price | discount| |_oid oid | orderdate

productA | 100.00 0.0 1

productB | 80.00 0.0 2

productC| 40.00 0.0 2
Lineitem

(c) Input and Output of Operators

1 | 1990-01-02
2 | 2006-07-31
Orders

1
2
3

Figure 2. Example Schema and Query for RRA

relational algebra. As a result, it is very easy to constauct AV pri ce) andSUM pri ce) columns must match so

reverse query plan for RQP by using the same SQL parsetthat the reverse aggregation does not fail (that is why we

as for traditional query processing. need the bottom-up phase to comp&t@”” that includes
The close relationship between RRA and the traditional all the necessary constraints). In this example, there are

relational algebra has two consequences: (1) The reverseo other integrity constraints from the database schenta tha

variants of the basic operators of the (extended) reldtiona must be respected as part of the reverse projection. In gen-

algebra (selection, projection, rename, Cartesian ptpduc eral, such constraints must also be respected in an imple-

union, aggregation, and minus) form the basis of the RRA. mentation of ther—! operator. Ifitis impossible to generate

All other operators of the RRA (e.g., reverse outer joins) values that fulfill all the constraints, it returesror.

can be expressed as compositions of these basic operator . 1

(2) The relational algebra has laws on associativity, commu 3.2, Reverse Selection("')

tativity, etc. on many of its operators. Analogous versions  The simplest operator of the RRA is the reverse selec-

of most of these laws apply to the RRA. Some laws are tion: It either returnserror or a superset (or identity) of

not applicable to the RRA (e.g., applying projections befor its input. The additional tuples not in the input must fulfill

joins). These laws are listed in [16] and must be respectedthe negation of the selection predicakgror is returned if

for RQP optimization (see [3] for details). the input of the reverse select operator does not match the
The remainder of this section defines the seven basic op-selection predicate. For example, if the query asks for all

erators of the RRA The definition of RRA operators is in- e€mployees with a salary greater than 10,000 and the RTable

dependent of the application. A physical implementation of contains an employee with a salary of 1,000, teer is

RRA for generating test databases for functional testing is returned. Another example ef ! is given in Figure 2c. In

described in Section 4. that example no additional tuples are added to the output of

al = No ad
3.1. Reverse Projection£—1) o (Table (il in Figure 2c).

i —1
The reverse projection operator—' generates new 3.3. Reverse Aggregation{™)

columns according to itsutput schema& V", As for all
operators of the reverse relational algebra; —1(R)) = R
must apply for all validR.

In Figure 2, m—! creates theorderdate and
AVE price) columns. In order to generate correct val-
ues for these columns;~! needs to be aware of the con-
straints imposed by the aggregatio®J and AVG) and
the HAVI NG clause of the query. That is, the values in the
AVE pri ce) column must be smaller or equal to 100 so returnserror.
that theoc—! does not fail. Furthermore, the value of the Tables (iii) and (iv) of Figure 2c¢ show the input and out-
or der dat e column must be unigue and the values in the put of reverse aggregation of the running example. In that

Like the 7—! operator, the reverse aggregation operator
generates columns. Furthermore, the reverse aggregation
operator possibly generates additional rows in order td mee
all constraints of its aggregate functions. Again, as for al
RRA operators, the goal is to make sure that ! (R)) =
R and that the output is compliant with all constraints of the
output schema (functional dependencies, predicateg, etc.
If this is not possible, then the reverse aggregation faits a



example, the values of tHe d, name, anddi scount child (output) operator and continues processing once the
columns are generated obeying the integrity constraints ofchild operator is ready. Thus, the whole data instantiation
theLi nei t emtable (top of Figure 2a). The value of the is started by scanning the RTable and pushing each tuple
pri ce column is generated using the input (the result of of the RTable one at a time to the children operators of the
the reverse selection) and the intrinsic mathematical-prop reverse query plan. Such a push-based model is required be-
erties of the aggregate functions. The valuek @fi d and cause operators of the RRA can have multiple outputs; the
oi d are generated obeying the constraints imposed by thealternative would be to implement a pull-based model with

join predicate of the query and th@r i mary key con- buffering which is significantly more complex [17]. All iter
straint of theOr der s table. ators have the same interface which contains the following
3.4. Other operators three methods:

. _ e open() prepare the iterator for producing data as in tra-
The reverse join operatos( ') completes the running ditional query processing:

example. It tqkes one relation as input and generates, pushNext(Tuple): (a) receive a tuple, (b) check ift
two output relations. .L|ke all other operators, t_hfe FEVErSe gatisfies the input schentd N of the operator, (c) produce
join makes sure that its outputs meet the specified outpUt, o6 or more output tuples, and (d) for each output tuple,

schemas (the dgtabase schemas fprl_theei temand call thepushNextnethod of the relevant children operators;
O ders tables in the example of Figure 2) and that the , cjose() clean up everything as in traditional query
join of its outputs gives the correct result. If it is not pos- processing.

sible to fulfill all these constraints, arror is raised. The As in traditional query processing, the set of physical
. . . —1 . . )

only thing that is special about the™" operator is thatit  ppa gperators is called the physical reverse relationa-alg
has two outputs. The reverse Cartesian product is a variang, Each logical RRA operator may have different counter-
of the reverse join w|thrue as a10|1n predicate. ) parts in the physical RRA. The choice is application depen-
_ The reverse union operatau{’) takes one relation as  gent. for example, different physical implementations are
input and generates two output relations. According to the used for SQL debugging and for performance testing. This
copstramts of the two c_)utput schemas of the two OUtpUt_re'section presents the physical algebra of SPQR. SPQR is a
lations (computed during the bottom-up query annotation gap prototype for functional testing. The physical algebra
phas_e), the reverse union distributes the tuples of thet_lnpu of SPQR tries to keep the generated database as small as
relation accordingly to one or even to both output relations ,qgjple. This section presents the physical algebra msed |
If the input of a reverse union involves a tuple that does not gpR that generates databases for functional testing which
fu!flll the constraints of any branch, then the reverse union strictly follows the RRA in Section 3.This physical algebra
fails and returnsrror. L ) tries to keep the generated database as small as possible.

The reverse minus operators (") always routes the in- ¢ f5110wing subsections show how the operators produce
put tuples to the left branch or returns an error, if this is no tuples in theirpushNextmethod. All other aspects (e.g.

H H3H H 1
possible. Furthermore, itis possible that the” generates  nenandclose are straightforward so that the details are
additional tuples for both branches. omitted for brevity.

The reverse rename operator has the same semantics a D

in the traditional relationrfl model. Thus, only the output £1. Reverse Projection in SPQR

schema is affected; no data manipulation is carried out. Ex- In SPQR, the reverse project operator produces exactly

amples of all these operators are shown in [3]. one output tuple for each input tuple. In order to generate

. values for new columns, the reverse project operator calls

4. Top-down Data Instantiation the decision procedure of a model checker. The idea is
The Top-down data instantiation component in Figure 1 to create a formula which represents the constraints which

interprets the optimized reverse query execution plan us-have to be satisfied by the output. These constraints repre-

ing an RTableR and possibly query parameters as input. It sent the values known from the input tuple on the one hand

generates a database instaizeas output. The generated and the output schema on the other hand. For example, if

databaseD fulfills the constraints of the database schema the input schema has one columt){the input tuple ig3),

and the overall correctness criterion of RQP. If this is not and the output schema has two columdsad B) and an

possible, themrror is returned. additional constraint thatt + B < 30, then the following
The reverse query execution plan consists of a set ofconstraint formula is generated:

physical RRA operators. As in traditional query process- A =3 & A+B < 30

ing, each operator in the execution plan is implemented asThis constraint formula is passed to the model checker. In

an iterator [11]. Unlike traditional query processing, the SPQR, we treat the model checker as a black box. It takes

iterators are push-based. That is, whenever an operator proa constraint formula as input and returns one of the possi-

duces a tuple, it calls theushNeximethod of the relevant  ble data instantiations on all variables as output (if the-co



m—1.pushNext(Tuple t) instantiateData(Tuple ¢, Schema SOUT)

(1) //lInstantiate output data Output:

(2) (I, count): =i nstanti ateData(t, SOUT) -instantiation I //data instantiation

(3) IF(I=NULL) //no instantiation found -int n //lnumber of tuples for aggregation

(4) RETURN error (1) //nunber of tuples for aggregation
(5) ELSE (2) IF tincludes COUNT of aggregation
(6)  tous: =createTupl e(I, SOUT, 1) (3)  count, maxcount: =COUNT val ue in t

(7) // push down the new tuple tout
(8) next Oper at or . pushNext (tout) 5) count: =1; mazcount: =USER THRESHOLD

(4) ELSE //USERTHREHOLD=1 if no aggregation
(
(9) ENDIF (6) END IF
(
(

7) FOR(n=count TO mazcount)
8) //Create constraint formula L

Figure 3. Method pushNext of 7! (9)  L:=createConstraint(t, SOUT, n)
(10) I: =deci si onProcedure( L)
. . . g . 11 I F( 1! =NULL) RETURN ( I,
straint formula is satisfiable). In this example, the model Elzi END(FOR ,,TZi al .andé”zz
checker would return, sayl = 3, B = 20 and these values (13) RETURN (NULL, 0)

would be used to generate an output tuple.
Figure 3 shows the pseudocode of howthe operator

generates an output tuple from an input tuple. The mostim-today’s publicly available model checkers have not been de-
portant statement is the call of thestantiateDataunction signed for aggregation so that this guessing must be carried
(Line 2) which does the actual work. Since this function is out as part of thénstantiateDatafunction in a trial-and-
also used by the implementation of the' operator, ithas  error phase (Lines 7 to 12). The guessing iteratively tries
two return parameters: one which defines the instantiateddifferent values oh (the number of tuples aggregated) and
data (variable, value pairs) and another which indicates ho calls the decision procedure for each value until the degisi
many tuples are used to solve aggregations which might beprocedure of the model checker was successful to instanti-
part of the formula (see below). The second return value is ate data.

only needed for the;~! operator so that it can be ignored Continuing the example in Figure 2 for the sec-
for the moment. If the call tnstantiateDatavas success-  ond tuple of the RTableSUM price) = 120), the

ful (i.e., I # NULL in Line 3), then a new output tuple is  following formula is generated forn = 1:2
created according to the output schema of thé opera- sumpri ce=120 & _
tor and passed to the next reverse operator (Lines 6 to 8). ©f der date! =19900102 & avg.price<=100 &

h . . d (Line 4 sumpri ce=pricel & avg._price=sumprice/1l
Otherwisegrror is returned (Line 4). This formula is given to the decision procedure of the model

The pseudocode of a simplified version of thetanti-  checker and obviously, the model checker cannot find val-
ateDatafunction is shown in Figure 4. This function cre- a5 for the variablesr i cel andavg_pri ce that meetall

ates a constraint formula (Line 9) following the semantics  -ynstraints. In the second attempt for= 2, the following
of the reverse operator and executes the decision procedurg,my|a is passed to the decision procedure:

of the model checker o (Line 10). As part of the cre- sumprice=120 &

ation of the constraint formula, restrictions of the model orderdate! =19900102 & avg.price<=100 .

checker need to be taken into account. For example, the SUMPrice=pricel+price2 & avgprice=sumprice/2 Son:
model checker used in the performance experiments (Sec:r Dﬁlﬂf’?fﬁzeo disgsg?cgggedure finds an instantiation:
tion 5) does not support SQL numbers and dates. AS @ price1=80, price2=40, '

result, all SQL numbers and dates must be converted into order dat e=20060731

(long) integers and the constraints must be adjusted accordFrom this instantiation, the values obrderdate,

Figure 4. Function i nst ant i at eDat a

ingly. Furthermore, arithmetic expressions (e.4.;+ B) avg.price,andsumpri ce are used in order to generate
which might appear in the input and output schemas of thethe output tuple of the reverse project operator. In the SPQR
reverse projection must be taken into account. prototype, the maximum number of attemptsdzcount in

deals with the generation of columns that involve aggrega-Sure that the whole process does not run for ever. More-
tions. In Figure 2, for example, the~! operator needs  OVer, all the guessing is not necessary, if the query inglve
to generate values for th&VG( pri ce) column. In or- a COUNT aggrega'tion, because thg values (or constraints)
der to generate correct values, thetantiateDatafunction ~ ©Of the correspondin@OUNT column in the tuplet) can be
gregate function; for instance, two tuples are aggreg@®ed f ~2the constraint owr der dat e is generated because der dat e is
the second tuple of the RTable in Figure 2. The two tu- the primary key of the output schema and, thus, a diffeoenter dat e
p|es are generated by the—l operator, but ther—! oper- value must be generated for tf®M price) = 120 than for the

. : SUM price) = 100 tuple. 19900102 is the integer representation for
ator which Only generates ‘?”e output tuDle per input tuDle the date January 2, 1990, theder dat e value of theSUM pri ce) =
must be aware of this fact in order not to generate valuesi g typle.
that cannot be matched by tiye ! operator. Unfortunately, 320060731 is the integer representation of the date July(6.20




x~!.pushNext(Tuple t) does not involve calls to the model checker. So these oper-

(1) //lnstantiate data 1 —1

(2) (I count) - =1 netant 1 at eDat a( #, SOUT) ators are much cheaper than* andy . .

(3) IF(I=NULL) //no instantiation found The other operators of the reverse relational algebra (re-

(9 e erren verse selection, rename, minus, and union) are trivial to im

(6)  FOR(n=1 TO count) plement. For example, the reverse selection can be imple-

(7) tout :=createTupl e(I, SOUT, n) . . . .

(8)  nextQperator. pushNext ( tour) mented as the identity function. Due to space constraints,

((lg; gl iR the implementation details for these operators are given in

[3]. [3] also contains some fine points on the implemen-

Figure 5. Method pushNext of y~! tation of the reverse projection and aggregation operator.

Moreover, [3] also shows that there is a limitation on imple-

to avoid the guessing, several optimizations can be appliedmenting some physical RRA operators: If the same data-
(Section 4.5). These optimization techniques work very base table is referenced multiple times in a reverse query
well so that in practice guessing is eliminated very often; tree, then the physical implementationscof', x~' and
in fact, the experimental results in Section 5 show that all —~' are not allowed to generate additional tuples for this
guessing is eliminated by the proposed optimization for the table. This limitation does not affect the physical RRA in
whole TPC-H benchmark. this paper as these operators generate no additional tuples
The pseudocode of Figure 4 is a simplification for the in order to keepD as small as possible. But this limita-
special case that there are no nested aggregations (e.gtion does affect physical algebras which generate addition
SUM AVG pri ce))) and no joins on aggregated values tuples (e.g., the physical algebra for performance tepting

(e.g., aggregations in several subqueries). However, the4 .4, Processing Nested Queries

code can easily be generalized for all cases. This gener-
R L : In order to reverse process a nested query, SPQR uses
alization is not shown because it is fairly straightforward . : ; :

. . . ) the concept of nested iterations (with spe@gply oper-
SPQR indeed implements such a generalized version of the . o .
) . . ators) which are known from traditional query processing
instantiateDataunction. . .

[9], in a reverse way: The inner subquery can be thought of
4.2. Reverse Aggregation in SPQR as a reverse query tree whose input is parameterized on val-

) i . ues generated for correlation variables of the outer query.
The reverse aggregation operator can be implemented iny ot ‘a5 in traditional query processing, reverse procgssin

an analogous way to the reverse projection. The differenceyt nagteq queries is expensive: it has quadratic complexity
is that while ther—* operator only guesses how many tuples with the size of the RTable.

are potentially involved in an aggregation, the! operator o o
actually generates these tuples. The key idea to use the def-9- Optimization of Data Instantiation
cision procedure of a model checker, however, is the same.  The previous subsections showed that reverse query
Figure 5 shows the pseudo-code. TihetantiateData  processing heavily relies on calls to a model checker.
function is called in the same way as for®. The only dif- Unfortunately, those calls are expensive. Furthermore,
ference is that the return parametetnt is now initialized the cost of a call grows with the length of the formula; in
(Line 2) which defines the number of output tuples. If the the worst case, the cost is exponential to the size of the
instantiateDatafunction was successful, thepunt tuples formula. The remainder of this section lists techniques in
are generated (Lines 6 to 9) using the values returned byorder to reduce the number of calls to the model checker
theinstantiateDataunction. If not, thererror is generated  and to reduce the size of the formulae (in particular, the
(Lines 3 and 4). Again, an example that shows this code innumber of variables in the formulae). The optimizations
action can be seen in Figure 2c (Tables (iii) and (iv)). are illustrated using the example of Figure 2.

4.3. Other Operators in SPQR Definition - Independent attribute: An attribute o is
independentith regard to an output schens#’U”" of an

The reverse join operator can be implemented in differ- operator iff S°U7" has no integrity constraints limiting the

ent ways, depending on the join predicate. The simplestdomain ofa anda is not correlated with another attribute

(and cheapest) implementation is the implementation of ang’ (e.g. bya > «’) which is not independent.

equi-join that involves a primary key or an attribute with o o ]

a unique constraint in the join predicate. Such joins are theDefinition - Constrictive independent attribute:  An

most frequent joins in practice. They can be implemented as2ttributea is constrictive independentf it is independent

a simple projection with duplicate elimination. The imple- With regard to an output schens&”” disregarding certain

mentation of general joins and Cartesian products is more@Ptimization-dependent integrity constraints.

complex; the full algorithms are given in [3]. In any case, The following optimizations use these definitions:

the implementation of reverse joins and Cartesian products



OP 1 - Default-value Optimization: This optimization as- 4. If only COUNT( a) is in the operator’s input schema,
signs a default (fixed) value to an independent attrilaute a can be set using the Default-value optimization (OP
The default value assigned todepends on the type of the 1) because is independent in this case.

attribute.  Attributes which use this optimization are not OP 5 - Count heuristics: Unlike the previous four opti-
included in the constraint formula. An example attribute mizations, this optimization does not find instantiatioims.
which could use this optimization is the attributame of stead, this optimization reduces the number of attempts for
Li nei t em it could use a default value; e.g., “product”.  guessing the number of tuples (n Figure 4) to reverse
OP 2 - Unique-value Optimization: This optimization as- process an aggregation by constraining the value. dthe
signs a unique increment counter value to a constrictive in- heuristics for this purpose are shown below. The theotetica
dependent attribute, which is only bound by unique or  foundations for these heuristics are given in [22].

primary key constraints. Here, the optimization-depebden 1 | SUM a) and AV a) are attributes of the opera-

integrity constraints, which are disregarded by the casistr tor’s input schema, then=SUM a) / AV a) .

tive independent attribute, are unique and primary key 2. If SUM a) andMAX(a) are attributes of the opera-
constraints. Attributes which use this optimization aré¢ no tor's input schema, then > SUM a) / MAX(a) (if
included in the constraint formula. In the running example, SUM a) andMAX(a) > 0;_if SUM a) andMAX( a)
values for thd i d attribute could be generated using this <0Ousen < SUM a) /_MAX( a)).

optimization. If another attribute’ of the same schema ex- 3
ists which is correlated by equality (e.g. = «’ from an
equi-join) anda’ is an independent or a constrictive inde-
pendent attribute which is only bound by unique or primary
key constraints, then attributé is set to the same unique
value as: and constraints involving’ need not be included
in calls to the model checker either.
OP 3 - Single-value Optimization: This optimization can
be applied to a constrictive independent attributehich is
only bound byCHECK constraints. An example of such an
attribute is the attributeli scount of Li nei t em Such
attributes are only included in a constraint formula, th&t fir
time the top-down phase needs to instantiate a value for
them. Afterwards, the instantiated value is reused.
OP 4 - Aggregation-value Optimization: This optimiza-
tion can be applied to constrictive independent attributes
which are involved in an aggregation. If the attributés
used in an aggregation function, e §UM a) and a result
value for the aggregation function is given, then we can use
the following arithmetics to instantiatedirectly:

1. If SUM a) is an attribute in the operator’s input 5. Performance Experiments and Results

schemaM N(a) andMAX(a) are not in the opera- This section presents the results of performance exper-
tor's input schema, and has type float: Instantiate iments with our prototype system SPQR and the TPC-H
a value fora by solving a=SUM a) / n with n the ~ benchmark [2]. We used TPC-H in order to show that SPQR
number of tuples used to solve the aggregation in the can reverse process complex SQL queries and that SPQR
i nstanti at eDat a function. In this case, no vari-  scales for different sizes of generated databases.
ablesay, ay, ..., a, need to be generated and used in  The SPQR system was implemented in Java 1.4 and in-
the constraint formula passed to the model checker.  stalled on a Linux AMD Opteron 2.2 GHz Server with 4 GB
2. Same as (1), buM N(a) or MAX(a) are in the  Of main memory. In all experiments reported here, SPQR
operator’s input schema, and > 3: Use val- was configured to allow O percent tolerance; that is, OP
ues for M N(a) or MAX(a) once to instantiate 6 of Section 4 was disabled. As a backend database sys-
a. Instantiate the other values far by solving tem, PostgreSQL 7.4.8 was used and installed on the same
a=(SUM a) - M N(a) - MAX(a) )/ (n-2). machine. As a decision procedure, Cogent [8] was used.
Cogent is a decision procedure that is publicly available
and has been used in several projects world-wide. For our
purposes, it was configured to generateor, if numerical
overflows occurred.

. If SUM a) andM N(a) are attributes of the opera-
tor's input schema, then < SUM a)/ M N(a) (if
SUM a) andM N(a) > 0; if SUM a) andM N( a)
<Ousen > SUMa)/M N(a)).

OP 6 - Tolerance on precision:Depending on the applica-

tion of RQP, tolerances can be exploited in order to speed

up model checking. That is, rather than, say, specifgng

= 100, a more flexible constrai@0 < a < 110 can

be used. Of course, this optimization is only legal for cer-

tain applications. Our prototype, SPQR has a user-defined

tolerance range which is set to 0 percent by default.

OP 7 - Memoization: Another general optimization tech-

nigue is to cache calls to the model checker. For example,

7~1 andy~! often solve similar constraints and carry out
the same kind of guessing. In Figure 2, for instance, the re-
sults of guessing for the~! operator can be re-used by the

x ! operator. Memoization at run-time has been studied in

[14] for traditional query processing; that work is dirgctl

applied in SPQR.

3. Same as (1), but is of data type integer: Again, we
can directly compute by solvingSUM a) =n; x a1 +
ng X ag, Wherea;=|sum(a)/ n|, ax=[sum(a)/ n|,
ni1=n — ny andn,=( SUM a) nodul o n).



[ I 100M I 1G I 10G | [ Query [ #M-Inv_] MC ] QP ] DB | Total || Total | Total |

Query RTable | Generated|| RTable | Generated RTable Generated 1 4 6:06 12:01 8:42 | 26:51 207:11 2054:19
1 4 600,572 4 6,001,215 4 | 59,986,052 2 44 0:02 | < 1ms 0:21 0:24 0:47 4:02
2 44 220 460 2,300 4,667 23,335 3 1216 18:55 0:14 0:11 | 19:20 183:49 | 1819:48
3 1216 3,648 11,620 34,860 114,003 342,009 4 5 < 1lms 0:05 0:14 0:20 2:26 24:15
4 5 10,186 5 105,046 5 1,052,080 5 10 0:11 | <1ms | < 1ms 0:12 0:12 0:12
5 5 30 5 30 5 30 6 2 01 | <Ims| <1ms | 0:02 0:01 0:01
6 1 1 1 1 1 1 7 8 0:9 | <1ms 0:01 0:10 0:10 0:09
7 4 24 4 24 4 24 8 12 0:13 | < 1ms 0:02 0:15 0:17 0:14
8 2 32 2 32 2 32 9 175 4:17 0:02 0:.03 | 4:23 4:33 10:20
9 175 1,050 175 1,050 175 1,050 10 3767 55:13 0:42 0:37 | 56:33 566:45 5639:13
10 3767 15,068 || 37,967 151,868 || 381,105 | 1,524,420 11 2541 41:43 0:13 0:14 | 42:11 18:15 | 4472:00
11 2541 7,623 1,048 3,144 289,022 867,066 12 3155 6:57 0:16 0:11 7:25 83:09 719:56
12 2 6,310 2 61,976 2 621,606 13 21 | <1ms 1:38 1:16 2:56 27:47 276:05
13 38 162,576 42 | 1,629,964 46 | 16,298,997 14 6 0:07 | < 1ms 0:01 | 0:.08 0:08 0:15
14 1 4 1 4 1 4 15 3 0:03 | <1ms | < 1ms 0:03 0:03 0:04
15 1 2 1 2 1 2 16 0 < 1lms 0:15 0:14 0:29 4:04 36:37
16 2762 23,264 18,314 236,500 27,840 2,372,678 17 2 0:01 | <1ms | < 1ms 0:02 0:02 0:08
17 1 3 1 3 1 3 18 15| <1Ims | <1ms | <1ms | 0:01 0:10 1:54
18 5 15 57 171 624 1,871 19 2 001 | <1lms | <1ms | 0:02 0:02 0:02
19 1 2 1 2 1 2 20 42 0:20 | < 1ms | < 1ms 0:21 3:24 32:27
20 21 105 204 1,020 1,968 9,840 21 465 1:34 0:04 0:05 1:43 14:44 140:47
21 47 2,325 411 20,705 4,009 197,240 22 641 0:23 0:01 0:.01 | 0:26 4:08 42:00
22 7 1,282 7 12,768 7 127,828 a) SF=0.1 b) SF=1 SF=10
Table 1. Size of RTable/Generated D (rows) Table 2. Running Time (mm:ss): Varying SF

The TPC-H benchmark is a decision support benchmarkas small as possible. Huge databases are only generated by
and consists of 22 business oriented queries and a databasgPQR, if the query result explicitly states the size.
schema Wlt.h felght tables. _The gueries have a high degre%.z' Running Time (SF=0.1)
of complexity: all of them include at least one aggregate
function with a complex formula, and many queries involve  Table 2a shows the running times of SPQR for the TPC-
subqueries. Some queries (e.g., Q11) are parametrized andl benchmark with the scaling factor 0.1. In the worst case,
their results and running times depend on random settingsthe Total running time is up to one hour (Query 10). How-
of the parameters. The experiments were carried out in theever, most queries can be reverse processed in a few sec-
following way: First, a benchmark database was generatedonds. Table 2a also shows the cost break-down of reverse
using thedbgenfunction as specified in the TPC-H bench- query processingQP is the time spent processing tuples in
mark. As scaling factors, we used 0.1 (100 MB database;SPQR (e.g., constructing the constraint formulae and call-
860K rows), 1 (1 GB; 8.6 million rows), and 10 (10 GB; ing thepushNextunction). For all queries (except Q1), this
86 million rows). Then, the 22 queries were run, again as time is below a minute. Q1 is an exception, because it gen-
specified in the original TPC-H benchmark. The query re- erates many tuple®B shows the time that is spent by Post-
sults were then used as inputs (RTables) for reverse quengreSQL in order to generate new tuples (processing SQL
processing of each of the 22 queries. We measured the sizé NSERT statements through JDBC). Obviously, this time
of the resulting database instance for each single query ands proportional to the size of the database instance gener-
the running time of reverse query processing. ated as part of SPQR. TIE column shows the time spent
5.1. Size of Generated Databases by the deC|S|_0n_procedur_e of the model checker. It can t_)e

] seen that this time dominates the overall cost of RQP in

Table 1 shows the size of the databases generated bynost cases; in particular, it dominates the cost for the ex-
SPQR for all queries on the three scaling factors. For pensive queries (Q10 and Q11). This observation justifies
queries which include an explicit or implitiCOUNT value  the decision to focus all optimization efforts on calls te th
in R, the size of the generated database for different scalinggecision procedure (Sections 4)M | nv shows the num-
factors depends on that COUNT value. For example, Q1 per of times the decision procedure is invoked. Comparing
generates many tuples (600,572 tuples for SF=0.1) from aine MC and#M | nv columns, it can be seen that the cost
small RTableR because Q1 is an aggregate query where per ca|l varies significantly. Obviously, the decision oc
R explicitly defines big COUNT values for each input tu-  qyre needs more time for long constraints (e.g., Q10) than
ple. For those queries which do not define a COUNT value, to, simple constraints (e.g., Q22). As a future work, we
only a small number of tuples are generated because thﬁhope to find a way to predict the cost per call in order to
trial-and-error phase starts from creating one outputetupl carry out even better optimization.
per input tuple (e.g., Q6). In that case, the size of the gen- e also measured the number of attempts each TPC-H
erated database is independent of the scaling factor. As uery needed for guessing the number of tuples in aggre-
summary, we see that the generated databases are alreadiytions (Section 4). These results are not shown in Table

4Implicit means that the COUNT value can be calculated by thi opt 2, bqt the resu'_ts are encouraging: in fact, n_one Of_the 22
mization ruleOP 5in Section 4.5. required any trial-and-error (because OP 5 in Section 4.5




made it possible to pre-compute the right number of tuples possible applications of RQP as mentioned in the introduc-

for all queries) or trial-and-error was successfulifos 1. tion. Now, we are extending SPQR to support multiple SQL

5.3. Running Time: Varying SF statements for complex applications. In addition, we are

Table 2 (refer to thdotal columns) shows the running also building another RQP system for RDBMS performance
testing.

times of reverse processing the 22 TPC-H queries for the
three different scaling factors. In some cases, due to the
nature of the queries, the running times (and the size of theReferences
generated databases) is independent of the scaling factor;
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