Eddies. Continuously Adaptive Query Processing

RonAvnur

JosephM. Hellerstein

University of California, Berkeley
avnur@cohera.conimh@cs.berkley.edu

Abstract

In largefederatechindshared-nothingatabasesesourcesan
exhibit widely fluctuatingcharacteristicsAssumptionamade
at the time a queryis submittedwill rarely hold throughout
thedurationof queryprocessingAs aresult,traditionalstatic
queryoptimizationandexecutiontechniquegreineffective in
theseenvironments.

In this paperwe introducea query processingnechanism
called an eddy which continuouslyreordersoperatorsin a
queryplan asit runs. We characterizéhe momentsof sym-
metry during which pipelinedjoins can be easily reordered,
andthe syndironizationbarriers thatrequireinputsfrom dif-
ferentsourcedo be coordinated.By combiningeddieswith
appropriatgjoin algorithms,we meige the optimizationand
executionphasesf queryprocessingallowing eachtuple to
have aflexible orderingof thequeryoperatorsThis flexibility
is controlledby a combinationof fluid dynamicsanda simple
learningalgorithm. Our initial implementationrdemonstrates
promisingresults,with eddiesperformingnearly as well as
a static optimizer/eecutorin static scenariosand providing
dramaticimprovementsn dynamicexecutionervironments.

1 Introduction

Thereis increasinginterestin query enginesthat run at un-
precedentedcale bothfor widely-distritutedinformationre-
sourcesandfor massvely paralleldatabaseystems.We are
building a systemcalled Telegraph,which is intendedto run
queriesover all the dataavailableon line. A key requirement
of a large-scalesystemlike Telegraphis that it function ro-
bustly in an unpredictableand constantlyfluctuatingerviron-
ment. This unpredictabilityis endemidn large-scalesystems,
becaus®f increasedompleity in anumberof dimensions:

Hardware and Workload Complexity: In wide-areaervi-
ronmentsyariabilitiesarecommonlyobserablein the bursty
performancef senersandnetworks[UFA98]. Thesesystems
often sene large communitiesof userswhoseaggregate be-
havior canbehardto predict,andthehardwaremix in thewide
areais quite heterogeneousl.arge clustersof computerscan
exhibit similar performancevariations,due to a mix of user
requestsand heterogeneoukardvare evolution. Evenin to-
tally homogeneousrvironments,hardware performancecan
be unpredictablefor example,the outertracksof a disk can
exhibit almosttwice the bandwidthof innertracks[Met97].

Data Complexity: Selectvity estimationfor static alphanu-

R S T

Figurel: An eddyin apipeline.Dataflowsinto theeddyfrom
inputrelationsR, S andT. The eddyroutestuplesto opera-
tors;theoperatorsun asindependenthreadsreturningtuples
to theeddy The eddysendsa tuple to the outputonly when
it hasbeenhandledby all the operators.The eddyadaptvely
choosesnorderto routeeachtuplethroughthe operators.

meric datasetsis fairly well understoodandtherehasbeen
initial work on estimatingstatisticalpropertiesof staticsetsof
datawith complex types[Aok99] and methodgBO99]. But
federateddataoften comeswithout ary statisticalsummaries,
andcomple non-alphanumeridatatypesarenow widely in
usebothin object-relationatlatabaseandontheweh Inthese
scenarios- andevenin traditionalstaticrelationaldatabases
selectvity estimatesreoftenquiteinaccurate.

User Interface Complexity: In large-scalesystems mary
queriescanrun for a very long time. As aresult, thereis in-
terestin Online Aggregation and othertechniqueghat allow
usersto “Control” propertiesof querieswhile they execute,
basedn refiningapproximateesultss HACT99].

For all of thesereasonsye expectqueryprocessingparam-
etersto changesignificantlyover time in Telegraph,typically
mary timesduringasinglequery As aresult,it is not appro-
priateto usethetraditionalarchitectureof optimizinga query
and then executing a static query plan: this approachdoes
not adaptto intra-queryfluctuations. Instead,for theseen-
vironmentswe want query executionplansto be reoptimized
regularly during the courseof queryprocessingallowing the
systemto adaptdynamicallyto fluctuationsin computingre-
sourcesgatacharacteristicsanduserpreferences.

In this paperwe presenta queryprocessingperatorcalled
aneddy which continuouslyreordersthe applicationof pipe-

lined operatorsn a queryplan, on a tuple-by-tuplebasis.An
eddyis ann-arytuplerouterinterposedetweem datasources
andasetof queryprocessingperatorstheeddyencapsulates
the orderingof the operatorsby routing tuplesthroughthem
dynamically(Figurel). Becausahe eddyobserestuplesen-
tering and exiting the pipelined operators,it can adaptvely
changats routingto effect differentoperatororderings.In this
papemwe presentnitial experimentatesultsdemonstratinghe
viability of eddies:they canindeedreordereffectively in the
faceof changingselectvities and costs,and provide benefits
in the caseof delayeddatasourcesaswell.

Reoptimizinga queryexecutionpipelineon thefly requires
significantcarein maintainingqueryexecutionstate.We high-
light queryprocessingtagealledmoment®fsymmetrydur-
ing which operatorcanbeeasilyreorderedWe alsodescribe
syndironizationbarriers in certainjoin algorithmsthatcanre-
strict performanceo the rate of the slower input. Join algo-
rithms with frequentmomentsof symmetryand adaptve or
non-«istentbarriersarethusespeciallyattractve in the Tele-
graphenvironment. We obsere that the Ripple Join family
[HH99] provides efficiengy, frequentmomentsof symmetry
and adaptve or noneistent barriersfor equijoinsand non-
equijoinsalike.

Theeddyarchitecturas quitesimple,obviating theneedfor
traditionalcostandselectvity estimationandsimplifying the
logic of planenumeration Eddiesrepresenbur first stepin a
larger attemptto do away with traditionaloptimizersentirely,
in thehopeof providing bothrun-timeadaptvity andareduc-
tion in codecompleity. In this paperwe focuson continuous
operatomreorderingin a single-sitequeryprocessorwe leave
otheroptimizationissuego our discussiorof futurework.

1.1 Run-Time Fluctuations

Threepropertiescanvary during query processingthe costs
of operatorstheir selectvities, andthe ratesat which tuples
arrive from the inputs. The first and third issuescommonly
occurin wide areaervironments asdiscussedn theliterature
[AFTU96, UFA98, IFFT99]. Theseissuesmnaybecomemore
commonin cluster (shared-nothingsystemsas they “scale
out” to thousand®f nodesor more[Bar99].

Run-timevariationsin selectvity have notbeenwidely dis-
cussedefore but occurquitenaturally They commonlyarise
dueto correlationshetweenpredicatesandthe orderof tuple
delivery. For example,consideran emplgyeetable clustered
by ascendingage,anda selectionsal ary > 100000; age
andsalaryareoftenstronglycorrelated.nitially the selection
will filter out mosttuplesdelivered, but that selectvity rate
will changeasever-olderemplo/eesare scanned.Selectvity
overtime canalsodependn performancédluctuations:e.g.,in
aparallelDBMS clusteredelationsareoftenhorizontallypar
titioned acrossdisks,andthe rate of productionfrom various
partitionsmay changeover time dependingon performance
characteristicand utilization of the differentdisks. Finally,
Online Aggregation systemsexplicitly allow usersto control
the orderin which tuplesare deliveredbasedon dataprefer
encedRRH99], resultingin similar effects.

1.2 Architectural Assumptions

Telegraphis intendedto efficiently andflexibly provide both
distributedqueryprocessingcrosssitesin thewide area,and
parallelqueryprocessingn a large shared-nothingluster In

this paperwe narrav our focus somevhatto concentrateon
the initial, alreadydifficult problemof run-time operatorre-
orderingin a single-sitequeryexecutor;thatis, changingthe
effective orderor “shape”of a pipelinedqueryplantreein the
faceof changesn performance.

In our discussionwe will assumethat someinitial query
plan treewill be constructedduring parsingby a naiwve pre-
optimizer This optimizerneednot exercisemuchjudgement
sincewe will bereorderingthe plantreeon thefly. However
by constructinga queryplanit mustchoosea spanningreeof
thequerygraph(i.e. a setof table-pairgo join) [KBZ86], and
algorithmsfor eachof thejoins. Wewill returnto thechoiceof
join algorithmsin Section2, anddeferto Section6 thediscus-
sionof changingthe spanningreeandjoin algorithmsduring
processing.

Westudyastandardingle-nodebject-relationatjuerypro-
cessingystemwith theaddedcapabilityof openingscansand
indexesfrom externaldatasets.Thisis becomingavery com-
mon basearchitecture availablein mary of the commercial
object-relationalsystems(e.g., IBM DB2 UDB [RPK'99],
Informix Dynamic Sener UDO [SBH98]) and in federated
databasesystems(e.g., Cohera|[HSC99]). We will referto
thesenon-residentablesas external tables We malke no as-
sumptiondimiting thescaleof externalsourceswhichmaybe
arbitrarily large. Externaltablespresenimary of the dynamic
challengeslescribedabore: they canresideover a wide-area
network, facebursty utilization, andoffer very minimal infor-
mationon costsandstatisticalproperties.

1.3 Overview

Beforeintroducingeddies,in Section2 we discussthe prop-
ertiesof queryprocessinglgorithmsthatallow (or disallow)
themto befrequentlyreordered We thenpresenthe eddyar-
chitecture,and describehow it allows for extremeflexibility
in operatorordering(Section3). Section4 discussepolicies
for controllingtupleflow in aneddy A variety of experiments
in Section4 illustrate the robustnessf eddiesin both static
anddynamicervironments,and raise somequestiongfor fu-
turework. We surwey relatedwork in Section5, andin Sec-
tion 6 lay outaresearctprogramto carrythis work forward.

2 Reorderability of Plans

A basicchallengeof run-timereoptimizatioris to reordempipe-
lined queryprocessingoperatorswhile they arein flight. To
changea queryplanonthefly, a greatdealof statein thevar
iousoperatoriasto be consideredandarbitrarychangesan
requiresignificantprocessingindcodecompleity to guaran-
tee correctresults. For example,the statemaintainedby an
operatotik e hybrid hashjoin [DKO*84] cangrow aslargeas
the size of aninput relation, and require modificationor re-
computationif the plan is reorderedwhile the stateis being
constructed.

By constrainingthe scenariosn which we reorderopera-
tors,we cankeepthis work to a minimum. Beforedescribing
eddies,we study the statemanagemenof variousjoin algo-
rithms; this discussiormotivatesthe eddy design,andforms
the basisof our approachfor reoptimizingcheaplyand con-
tinuously As aphilosophywefavor adaptivityover best-case
performance In a highly variableervironment,the best-case
scenariorarely exists for a significantlengthof time. Sowe

will sacrificemamginal improvementsin idealizedquery pro-
cessingalgorithmswhenthey preventfrequent.efficient reop-
timization.

2.1 Synchronization Barriers

Binary operatordik e joins often capturesignificantstate. A
particularform of stateusedin suchoperatorsrelatesto the
interleaving of requestgor tuplesfrom differentinputs.

As an example,considerthe caseof a mege join on two
sorted,duplicate-fred@nputs. During processingthe next tu-
ple is always consumedfrom the relation whoselast tuple
hadthelower value. This significantlyconstrainghe orderin
which tuplescanbe consumed:asan extremeexample,con-
siderthe caseof a slowly-deliveredexternalrelationslowlow
with mary low valuesin its join column,andahigh-bandwidth
but large local relationfasthi with only high valuesin its join
column-—theprocessingf fasthi is postponedor alongtime
while consumingmary tuplesfrom slowlow. Usingterminol-
ogyfrom parallelprogrammingywe describehis phenomenon
as a syndonization barrier: one table-scanwaits until the
othertable-scamproducesa valuelargerthanary seenbefore.

In general,barrierslimit concurreng — and henceperfor
mance-whentwo taskstake differentamountf timeto com-
plete(i.e., to “arrive” atthe barrier). Recallthatconcurreng
arisesevenin single-sitequeryengineswhich cansimultane-
ously carryout network 1/O, disk I/O, andcomputation.Thus
it is desirableto minimize the overheadof synchronization
barriersin a dynamic(or even staticbut heterogeneoug)er
formanceervironment.Two issuesaffect the overheadof bar
riersin a plan: thefrequeng of barriers,andthe gapbetween
arrival timesof thetwo inputsatthebarrier We will seein up-
comingdiscussiorthatbarrierscanoften be avoidedor tuned
by usingappropriatgoin algorithms.

2.2 Moments of Symmetry

Note that the synchronizatiorbarrierin memge join is stated
in an orderindependenmanner: it doesnot distinguishbe-
tweenthe inputs basedon ary property other than the data
they deliver. Thusmemgejoin is oftendescribedasa symmet-
ric operatoysinceits two inputsaretreatecuniformly®. Thisis
not the casefor mary otherjoin algorithms.Considerthe tra-
ditional nested-loopgoin, for example. The “outer” relation
in a nested-loopgoin is synchronizedwith the “inner” rela-
tion, but not vice versa: after eachtuple (or block of tuples)
is consumedrom the outerrelation,abarrieris setuntil afull

scanof theinneris completed.For asymmetricoperatordike
nested-loopgoin, performancéenefitscanoftenbe obtained
by reorderingtheinputs.

Whenajoin algorithmreaches barrier it hasdeclaredhe
end of a schedulingdependenc betweenits two input rela-
tions. In suchcasesthe orderof theinputsto thejoin canof-
tenbe changedvithout modifying ary statein the join; when
this is true, we referto the barrierasa momentof symmetry
Let usreturnto theexampleof a nested-loopgoin, with outer
relation R andinnerrelationS. At abarriet thejoin hascom-
pleteda full innerloop, having joined eachtuplein a subset
of R with everytuplein S. Reorderingheinputsat this point
can be donewithout affecting the join algorithm, aslong as

Lif thereare duplicatesin a memge join, the duplicatesare handledby an
asymmetricbut usually small nestedoop. For purposef exposition,we can
ignorethis detailhere.

Figure2: Tuplesgeneratedby anested-loopjoin, reorderedht
two momentof symmetry Eachaxis representshetuplesof
the correspondingelation,in the orderthey aredeliveredby
anaccessnethod. The dotsrepresentuplesgeneratedy the
join, someof which may be eliminatedby the join predicate.
Thenumberscorrespondo the barriersreachedin order cr
andcg arethe cursorpositionsmaintainedoy the correspond-
ing inputsat thetime of thereorderings.

the iterator producingR notesits currentcursorpositioncg.
In thatcase the new “outer” loop on S begins rescannindy
fetchingthefirst tuple of S, and R is scannedrom cg to the
end. This canbe repeatedndefinitely, joining S tupleswith
all tuplesin R from positioncr to the end. Alternatively, at
the endof someloop over R (i.e. ata momentof symmetry),
theorderof inputscanbe swappedagainby rememberinghe
currentpositionof S, andrepeatedlyjoining the next tuplein
R (startingatcr) with tuplesfrom S betweercs andtheend.
Figure 2 depictsthis scenariowith two changesf ordering.
Someoperatordik e the pipelinedhashjoin of [WA91] have no
barrierswhatsoger. Theseoperatorsarein constantsymme-
try, sincethe processingf thetwo inputsis totally decoupled.

Momentsof symmetryallow reorderingof the inputsto a
singlebinary operator But we cangeneralizethis, by noting
thatsincejoins commute atreeof n — 1 binaryjoins canbe
viewed asa singlen-ary join. Onecould easilyimplementa
doubly-nested-loopmin operatorover relationsR, S andT,
andit would have momentsof completesymmetryat the end
of eachloop of S. At thatpoint, all threeinputscould bere-
orderedsayto T' thenR thenS) with astraightforvardexten-
sionto the discussiorebove: a cursorwould be recordedfor
eachinput, andeachloop would go from the recordedcursor
positionto the endof theinput.

The sameeffect can be obtainedin a binary implementa-
tion with two operatorspy swappingthe positionsof binary
operators:effectively the plan tree transformatiorwould go
in steps,from (R 11 S) <0 T 1o (R <2 T) <1 S and
thento (T <2 R) <y S. This approachtreatsan operator
andits right-handinput asa unit (e.g.,the unit <2 T7), and
swapsunits; theideahasbeenusedpreviously in staticquery
optimizationscheme§lK84, KBZ86, Hel98]. Viewing thesit-
uationin this manner we can naturally considerreordering
multiple joins andtheir inputs,evenif thejoin algorithmsare
different.In our query(R 1 S) 2 T', we need[>a; S] and
[<2 T'] to be mutually commutatve, but do not requirethem
to be the samejoin algorithm. We discusshe commutatvity
of join algorithmsfurtherin Section2.2.2.

Note that the combinationof commutatvity and moments
of symmetryallows for very aggressie reorderingof a plan

tree. A singlen-ary operatorrepresentinga reorderableplan
treeis thereforean attractive abstractionsinceit encapsulates
ary orderingthat may be subjectto change.We will exploit
this abstractiordirectly, by interposingan n-ary tuple router
(an“eddy”) betweertheinputtablesandthejoin operators.

2.2.1 Joins and Indexes

Nested-loopgoins cantake adwantageof indexeson thein-
nerrelation,resultingin afairly efficient pipeliningjoin algo-
rithm. An index nested-loopgin (henceforttan“index join™)
is inherently asymmetric,since one input relation hasbeen
pre-indexed. Evenwhenindexesexist on bothinputs,chang-
ing the choiceof innerandouterrelation“on thefly” is prob-
lematié. Hencefor the purpose®f reordering,it is simpler
to think of anindex join asakind of unaryselectionoperator
ontheunindeedinput (asin thejoin of S andU in Figurel).
The only distinctionbetweenanindex join anda selectionis
that— with respecto the unindeed relation— the selectvity
of the join nodemay be greaterthan1. Althoughonecannot
swaptheinputsto asingleindex join, onecanreorderanindex
join andits indexedrelationasa unit amongotheroperatorsn
a plantree. Note that the logic for indexes canbe appliedto
externaltablesthatrequirebindingsto be passedsuchtables
may be gatevaysto, e.g., web pageswith forms, GIS index
systems.DAP senersandsoon [HKWY97, FMLS99].

2.2.2 Physical Properties, Predicates, Commutativity

Clearly, a pre-optimizers choiceof anindex join algorithm
constrainghe possiblejoin orderings.In the n-ary join view,
anorderingconstraintmustbeimposedsothatthe unindexed
join input is orderedbefore (but not necessarilydirectly be-
fore) the indexed input. This constraintarisesbecauseof a
physicalproperty of aninput relation: indexescanbe probed
but not scannedand hencecannotappearbeforetheir cor-
respondingprobing tables. Similar but more complex con-
straintscanarisein preservingthe orderedinputsto a meige
join (i.e., preservind‘interestingorders”).

Theapplicability of certainjoin algorithmsraisesadditional
constraintsMary join algorithmswork only for equijoins,and
will notwork on otherjoins like Cartesiarproducts.Suchal-
gorithmsconstrainreorderingson the plantreeaswell, since
they alwaysrequireall relationsmentionedin their equijoin
predicatedo be handledbeforethem. In this paper we con-
siderorderingconstraintgo be aninviolable aspecif a plan
tree, and we ensurethat they always hold. In Section6 we
sketchinitial ideason relaxingthis requirementby consider
ing multiple join algorithmsandquerygraphspanningrees.

2.2.3 Join Algorithms and Reordering

In orderfor aneddyto bemosteffective, we favor join algo-
rithmswith frequentmomentsof symmetry adaptve or non-
existentbarriers,and minimal orderingconstraints:theseal-
gorithmsoffer the mostopportunitiesfor reoptimization. In
[AH99] we summarizethe salientpropertiesof a variety of
join algorithms.Our desireto avoid blockingrulesouttheuse
of hybrid hashjoin, andour desireto minimize orderingcon-
straintsandbarriersexcludesmergejoins. Nestedoopsjoins

2|n unclusteredndexes,theindex orderingis notthesameasthe scanorder
ing. Thusafterareorderingof theinputsit is difficult to ensurethat— usingthe
terminologyof Section2.2—lookupsontheindex of thenew “inner” relation R
produceonly tuplesbetweerc g andtheendof R.

have infrequentmomentsof symmetryandimbalancedarri-
ers,makingthemundesirableaswell.

The other algorithmswe considerare basedon frequent-
ly-symmetricversionsof traditionaliteration,hashingandin-
dexing schemesi.e., the Ripple Joins[HH99]. Notethatthe
original pipelinedhashjoin of [WA91] is a constrainedver-
sion of the hashripple join. The externalhashingextensions
of [UF99, IFF+99] are directly applicableto the hashrip-
ple join, and [HH99] treatsindex joins as a specialcaseas
well. For non-equijoinsthe block ripple join algorithmis ef-
fective, having frequentmomentsof symmetry particularly
at the beginning of processingHH99]. Figure 3 illustrates
block, index and hashripple joins; the readeris referredto
[HH99, IFFT99, UF99 for detaileddiscussion®f theseal-
gorithms and their variants. Thesealgorithmsare adaptve
without sacrificingmuchperformance{UF99] and[IFF T 99]
demonstratscalableversionsof hashripple join thatperform
competitvely with hybrid hashjoin in the staticcase;[HH99]
shaws that while block ripple join canbe lessefficient than
nested-loopgoin, it arrives at momentsof symmetrymuch
more frequently than nested-loopgoins, especiallyin early
stageof processingln [AH99] we discusghe memoryover-
headsof theseadaptve algorithms,which canbe larger than
standardoin algorithms.

Ripple joins have momentsof symmetryat each“corner”
of arectangularipple in Figure3, i.e., whene&er a prefix of
the input streamR hasbeenjoined with all tuplesin a prefix
of inputstreamS andvice versa.For hashripple joins andin-
dex joins, this scenaricoccursbetweereachconsecutie tuple
consumedrom a scannednput. Thusripple joins offer very
frequentmomentsof symmetry

Ripple joins are attractive with respecto barriersaswell.
Ripple joins were designedo allow changingratesfor each
input; thiswasoriginally usedto proactivelyexpendmorepro-
cessingon theinputrelationwith morestatisticalinfluenceon
intermediateesults.However, thesamemechanisnallowsre-
activeadaptvity in thewide-areascenarioabarrieris reached
at eachcorner andthe next cornercanadaptvely reflectthe
relative ratesof the two inputs. For the block ripple join, the
next corneris chosenuponreachingthe previous corner;this
canbe doneadaptvely to reflectthe relative ratesof the two
inputsovertime.

The ripple join family offers attractive adaptvity features
at a modestoverheadin performanceand memoryfootprint.
Hencethey fit well with our philosophyof sacrificingmaiginal
speedfor adaptability and we focus on thesealgorithmsin
Telegraph.

3 Rivers and Eddies

The above discussiorallows us to considereasilyreordering
queryplansat momentsof symmetry In this sectionwe pro-
ceedto describethe eddy mechanismfor implementingre-
orderingin a naturalmannerduring query processing. The
techniguesve describecanbe usedwith ary operatorshut al-

gorithmswith frequentmomentsof symmetryallow for more
frequentreoptimization.Beforediscussingddieswe first in-

troduceour basicqueryprocessingrvironment.

3.1 River

We implementededdiesin the context of River [AATT99], a
shared-nothingarallel query processingramevork that dy-

= £ QQ

oo - - oo

oo "y & - [Cus (o ln}

ao Py - o8 [s}s]

oo - R = =1 0] [s}s]

o0 e - & o OO

o0 Py - CO0000000000C00

a0 0000000000000 0 o0Q0C0O0C00000C00

o0 0000000000000 0 000000000000 0OD0

alial SO0 0000000000 QOO0 0O0O0000CO0000

00 0000000000000 O0 000000000000 00

o000 QO00000000 o000 0000000000 QOO0 0O0O0000CO0000
00QO00OOCDODOD 0000000000000 0 0000000000000 0

Block Index Hash

Figure3: Tuplesgeneratedby block,index, andhashripple join. In blockripple, all tuplesaregeneratedby thejoin, but somemay
be eliminatedby the join predicate. The arravs for index andhashripple join representhe logical portion of the cross-product
spacechecled sofar; thesgoins only expendwork on tuplessatisfyingthe join predicatg(blackdots). In the hashripple diagram,

onerelationarrives3x fasterthanthe other

namicallyadaptgo fluctuationsn performancendworkload.
River hasbheenusedto robustly producenearrecord perfor

manceon |/O-intensive benchmarkdik e parallel sortingand
hashjoins, despiteheterogeneitieanddynamicvariability in

hardware and workloadsacrossmachinesin a cluster For

moredetailson River'sadaptvity andparallelismfeaturesthe
interestedeaderis referredto the original paperon the topic

[AATH99]. In Telegraph,we intendto leveragethe adaptabil-
ity of River to allow for dynamicshifting of load (both query
processinganddatadelivery) in a shared-nothingarallelen-
vironment. But in this paperwe restrict oursehesto basic
(single-site)featuresof eddies;discussionof eddiesin par

allel riversaredeferredto Section6.

Since we do not discussparallelismhere, a very simple
overview of the River framework sufices. Riveris a dataflav
queryengine analogousn mary waysto GammaDGS+90],
Volcano [Gra90] and commercialparallel databaseengines,
in which “iterator”-style modules(query operators)}commu-
nicatevia a fixed dataflav graph(a queryplan). Eachmod-
ule runsasanindependenthread,andthe edgesn the graph
correspondo finite messageueues. When a producerand
consumerrun at differing rates,the fasterthreadmay block
on the queuewaiting for the slower threadto catchup. As
in [UFA98], River is multi-threadedand can exploit barrier
free algorithmsby readingfrom variousinputs at indepen-
dentrates. The River implementatiorwe usedderives from
the work on Now-Sort [AA C*97], and featuresefficient 1/O
mechanisméncluding pre-fetchingscans avoidanceof oper
ating systembuffering, and high-performanceiserlevel net-
working.

3.1.1 Pre-Optimization

Althoughwe will useeddiesto reordertablesamongjoins,
a heuristicpre-optimizemustchoosehow to initially pair off
relationsinto joins, with the constraintthateachrelationpar
ticipatesin only onejoin. Thiscorrespond choosingaspan-
ning treeof a querygraph,in which nodesrepresentelations
and edgesrepresentinary joins [KBZ86]. Onereasonable
heuristicfor picking aspanningreeformsachainof cartesian
productsacrossary tablesknown to be very small (to handle
“star schemasWhenbase-tableardinalitystatisticsareavail-
able);it thenpicksarbitraryequijoinedgegontheassumption

thatthey arerelatively low selectvity), followed by asmary
arbitrary non-equijoinedgesasrequiredto completea span-
ningtree.

Givenaspanningreeof thequerygraph,the pre-optimizer
needsto choosejoin algorithmsfor eachedge. Along each
equijoinedgeit canuseeitheranindex join if anindex is avail-
able,orahastripplejoin. Along eachnon-equijoinedgeit can
useablockripplejoin.

Thesearesimpleheuristicthatwe useto allow usto focus
onourinitial eddydesign;in Section6 we presentnitial ideas
onmakingspanningreeandalgorithmdecisionsadaptvely.

3.2 An Eddy in the River

An eddyis implementedvia a modulein a river containing
an arbitrary numberof input relations,a numberof partici-
patingunaryandbinary modules,anda singleoutputrelation
(Figure1)®. An eddyencapsulatethe schedulingof its par
ticipatingoperatorstuplesenteringthe eddycanflow through
its operatorsn avariety of orders.

In essencean eddy explicitly memgesmultiple unary and
binary operatorsinto a single n-ary operatorwithin a query
plan, basedon the intuition from Section2.2 thatsymmetries
canbe easilycapturedn ann-ary operator An eddymodule
maintainsafixed-sizeduffer of tuplesthatareto beprocessed
by one or more operators.Eachoperatorparticipatingin the
eddyhasoneor two inputsthatarefed tuplesby the eddy and
anoutputstreamthatreturnstuplesto theeddy Eddiesareso
namedbecaus®f this circulardataflow within ariver.

A tuple enteringaneddyis associateavith atuple descrip-
tor containinga vector of Readybits and Done bits, which
indicaterespectiely thoseoperatorghat are elgibile to pro-
cesghetuple,andthosethathave alreadyprocessethetuple.
Theeddymoduleshipsatupleonly to operatorgor which the
correspondindreadybit turnedon. After processinghetuple,
theoperatorreturnst to theeddy andthecorrespondingone
bit is turnedon. If all the Donebits areon, the tuple is sent
to the eddys output; otherwiseit is sentto anothereligible
operatorfor continuedprocessing.

3Nothing preventsthe useof n-ary operatorsvith n > 2 in aneddy but
sinceimplementation®f theseareatypicalin databaseueryprocessingve do
notdiscusshemhere.

Whenaneddyrecevesa tuplefrom oneof its inputs,it ze-
roesthe Done bits, and setsthe Readybits appropriately In
the simple case,the eddy setsall Readybits on, signifying
thatary orderingof the operatorss acceptable Whenthere
are ordering constraintson the operators the eddy turns on
only the Readybits correspondingo operatorghatcanbe ex-
ecutedinitially. Whenanoperatorreturnsa tupleto theeddy
theeddyturnsonthe Readybit of ary operatoreligible to pro-
cessthe tuple. Binary operatorsgenerateoutput tuplesthat
correspondo combination®of inputtuples;in thesecasesthe
Donebits andReadybits of thetwo inputtuplesareORed.In
this manneran eddy preseresthe orderingconstraintswhile
maximizingopportunitiesfor tuplesto follow differentpossi-
ble orderingsof the operators.

Two propertieof eddiesmeritcomment First, notethated-
diesrepresenthefull classof bushytreescorrespondingo the
setof join nodes- it is possiblefor instancethattwo pairsof
tuplesarecombinedndependentiyoy two differentjoin mod-
ules,andthenroutedto athird join to performthe 4-way con-
catenatiorof thetwo binaryrecords.Secondnotethateddies
do not constrainreorderingto momentsof symmetryacross
the eddyasawhole. A given operatormustcarefully refrain
from fetchingtuplesfrom certaininputsuntil its next moment
of symmetry—e.g.,anested-loopgin would not fetcha new
tuple from the currentouter relation until it finishedrescan-
ningtheinner Butthereis norequirementhatall operatorsn
the eddybe at a momentof symmetrywhenthis occurs;just
theoperatotthatis fetchinganew tuple. Thuseddiesarequite
flexible bothin the shapesf treesthey cangenerateandin
thescenariosn whichthey canlogically reorderoperators.

4 Routing Tuples in Eddies

An eddy module directsthe flow of tuplesfrom the inputs
throughthevariousoperatorgo theoutput,providing theflex-
ibility to allow eachtuple to be routedindividually through
the operatorsTheroutingpolicy usedin the eddydetermines
the efficiengy of the system. In this sectionwe study some
promisinginitial policies;we believe thatthisis arich areafor
future work. We outline someof the remainingquestionsin
Section6.

An eddys tuple buffer is implementedas a priority queue
with a flexible prioritization scheme. An operatoris always
giventhehighest-prioritytuplein thebuffer thathasthecorre-
spondingReadyhbit set. For simplicity, we startby considering
avery simplepriority schemetuplesenterthe eddywith low
priority, andwhenthey arereturnedio the eddyfrom anoper
atorthey aregivenhigh priority. This simplepriority scheme
ensureghat tuplesflow completelythroughthe eddy before
new tuplesare consumedrom the inputs, ensuringthat the
eddydoesnotbecome‘clogged” with new tuples.

4.1 Experimental Setup

In orderto illustratehow eddieswork, we presensomeinitial
experimentsn this section;we pausebriefly hereto describe
our experimentalsetup. All our experimentswererun on a
single-processabunUltra-1 workstationrunning Solaris2.6,
with 160MB of RAM. We usedthe Euphratesmplementation
of River[AAT+99]. We syntheticallygeneratedelationsasin
Table1, with 100bytetuplesin eachrelation.

To allow usto experimentwith costsandselectvities of se-
lections,our selectionmodulesare (artificially) implemented

Table | Cardinality | valuesin columna
10,000 500- 5500
80,000 0-5000

10,000 N/A

50,000 N/A

cHwnx

Table 1: Cardinalitiesof tables; valuesare uniformly dis-
tributed.

250

200

—e— sl before s2
— -A— - s2 before s1
---m-- Naive
—-+— Lottery

150+

completion time (secs)

100+

50 .

cost of sl.

Figure4: Performancef two 50% selectionss2 hascost5,
s1 variesacrossuns.

as spin loops correspondingo their relative costs,followed

by arandomizedelectiondecisionwith theappropriateselec-
tivity. We describethe relative costsof selectionsn termsof

abstract'delay units”; for studyingoptimization,the absolute
numberof cyclesthroughaspinloop areirrelevant. We imple-

mentedhesimplestversionof hashripplejoin, identicalto the

original pipelininghashjoin [WA91]; ourimplementatiornere
doesnot exert ary statistically-motvatedcontrolover disk re-

sourceconsumptior(asin [HH99]). We simulatedindex joins

by doing randoml|/Os within afile, returningon averagethe

numberof matchesorrespondingo a pre-programmedelec-
tivity. Thefilesystemcachewasallowedto absorbsomeof the

index I/Os afterwarmingup. In orderto fairly comparesddies
to staticplans,we simulatestaticplansvia eddiesthatenforce
a static orderingon tuples(setting Readybits in the correct
order).

4.2 Naive Eddy: Fluid Dynamics and Operator Costs

To illustrate hov an eddy works, we considera very simple
single-tableguerywith two expensve selectiorpredicatesyn-
der the traditional assumptiorthat no performanceor selec-
tivity propertieschangeduring execution. Our SQL queryis
simply thefollowing:

SELECT *

FROM U

WHERE s1() AND s2();
In ourfirstexperimentwe wishto seehow well a“naive” eddy
canaccountfor differencesn costsamongoperators We run
the query multiple times, always settingthe costof s2 to 5
delayunits,andthe selectvities of both selectiongo 50%. In
eachrun we usea differentcostfor s1, varying it between
1 and 9 delay units acrossruns. We comparea naive eddy
of the two selectionsagainsthoth possiblestaticorderingsof

60

50—

—e— sl before s2
— -4— - s2 before s1
---m--- Naive
—-+— Lottery

completion time (secs)

30 T T T
0.0 0.2 0.4 0.6 0.8 1.0

selectivity of s1

Figure5: Performancef two selectionof cost5, s2 has50%
selectvity, s1 variesacrossuns.

the two selectiongand againsta “lottery”-basededdy about
which we will saymorein Section4.3.) Onemightimagine
thattheflexible routingin the nave eddywould deliver tuples
to the two selectionsequally: half the tupleswould flow to

s1 befores2, andhalf to s2 befores1, resultingin middling

performancever all. Figure4 shavs thatthis is not the case:
thenaie eddynearlymatcheshebetterof thetwo orderingsn

all caseswithoutary explicit informationabouttheoperators’
relative costs.

The naive eddys effectivenessin this scenariois due to
simplefluid dynamics arisingfrom the differentratesof con-
sumptionby s1 ands2. Recallthatedgesn a River dataflav
graphcorrespondo fixed-sizequeuesThis limitation hasthe
sameeffect ashadk-pressue in afluid flow: productionalong
theinputto ary edgeis limited by the rateof consumptiorat
theoutput. Thelower-costselection(e.g.,s1 attheleft of Fig-
ure 4) canconsumetuplesmore quickly, sinceit spenddess
time per tuple; asa resultthe lower-costoperatorexertsless
back-pressuren theinput table. At the sametime, the high-
costoperatoproduceguplesrelatively slowly, sothelow-cost
operatorwill rarely be requiredto consumea high-priority;
previously-seertuple. Thusmosttuplesareroutedto the low-
costoperatoffirst, eventhoughthe costsarenot explicitly ex-
posedor trackedin ary way.

4.3 Fast Eddy: Learning Selectivities

Thenaive eddyworkswell for handlingoperatorswith differ-
entcostsbut equalselectvity. But we have notyet considered
differencesn selectvity. In our secondexperimentwe keep
the costsof the operatorsconstantand equal (5 units), keep
the selectvity of s2 fixed at 50%, andvary the selectvity of
s1 acrossruns. Theresultsin Figure5 arelessencouraging,
shawing the nave eddyperformingaswe originally expected,
abouthalf-way betweenthe bestandworstplans. Clearly our
naive priority schemeandthe resultingback-pressurarein-
sufficientto capturedifferencesn selectvity.

To resolhe this dilemma,we would lik e our priority scheme
to favor operatorshasedon both their consumptiorand pro-
ductionrate.Notethattheconsumptior{input) rateof anoper
atoris determinedy costalone while the production(output)
rateis determinedby a productof costandselectvity. Since
anoperators back-pressurenits input dependsargely onits
consumptiornrate, it is not surprisingthat our nave scheme

100+
80—

60 — *

---m--- Naive
—-+— Lottery

40— \

20 e

cumulative % of tuplesrouted to sl first
| |
]
| |
'
=4
.

T T
0.0 0.2 0.4 0.6 0.8 1.0
Selectivity of s1

Figure 6: Tuple flow with lottery schemefor the variable-
selectvity experiment(Figure).

doesnot capturediffering selectvities.

To track both consumptionand productionover time, we
enhanceur priority schemewith a simplelearningalgorithm
implementedvia Lottery Stheduling[WW94]. Eachtime the
eddy givesa tuple to an operator it creditsthe operatorone
“ticket”. Eachtime the operatorreturnsa tuple to the eddy
oneticketis debitedfrom theeddy’s runningcountfor thatop-
erator Whenaneddyis readyto sendatupleto be processed,
it “holds a lottery” amongthe operatorseligible for receving
the tuple. (The interestedreaderis referredto [WW94] for
a simpleandefficient implementatiorof lottery scheduling.)
An operators chanceof “winning the lottery” andreceving
the tuple correspondso the countof ticketsfor thatoperatoy
which in turn tracksthe relative efficiengy of the operatorat
drainingtuplesfrom the system.By routing tuplesusingthis
lottery schemethe eddytracks(“learns”) an orderingof the
operatorghatgivesgoodoverall efficiencgy.

The “lottery” curwe in Figures4 and5 shav the morein-
telligent lottery-basedouting schemecomparedo the nave
back-pressurschemendthetwo staticorderings.Thelottery
schemehandlesboth scenarioseffectively, slightly improv-
ing the eddyin the changing-coséxperiment,andperforming
muchbetterthannaive in thechanging-seleatity experiment.

To explainthis a bit further, in Figure6 we displaythe per
centof tuplesthat followed the order s1, s2 (as opposedto
s2, s1) in the two eddy schemesthis roughly representshe
averageratio of lottery tickets possessetly s1 and s2 over
time. Note thatthe naive back-pressurgolicy is barelysen-
sitive to changesin selectvity, andin fact drifts slightly in
the wrong directionasthe selectvity of sl is increased.By
contrast,the lottery-basedschemeadaptsquite nicely asthe
selectvity is varied.

In both graphsone can seethat whenthe costsand selec-
tivities are closeto equal(sl = s2 = 50%), the percent-
age of tuplesfollowing the cheaperorder is closeto 50%.
This obsenationis intuitive, but quite significant. Thelottery-
basededdy approacheshe cost of an optimal ordering, but
doesnot concerntself aboutstrictly observingheoptimalor-
dering. Contrastthis to earlierwork on runtime reoptimiza-
tion [KD98, UFA98, IFF+99], wherea traditional query op-
timizer runsduring processingo determinethe optimal plan
remnant. By focusingon overall costratherthan on finding

theoptimalplan,thelottery schemeprobabilisticallyprovides
nearly optimal performancewith much lesseffort, allowing
re-optimizatiorto bedonewith anextremelylightweighttech-
niguethatcanbe executedmultiple timesfor every tuple.

A relatedobsenationis thatthelottery algorithmgetscloser
to perfectrouting (y = 0%) on the right of Figure 6 thanit
does(y = 100%) ontheleft. Yetin the correspondingerfor
mancegraph(Figure 5), the differenceshetweenthe lottery-
basededdyandtheoptimalstaticorderingdonotchangemuch
in the two settings. This phenomenoris explainedby exam-
ining the “jeopardy” of makingorderingerrorsin eithercase.
Considetthe left sideof the graph,wherethe selectvity of s1
is 10%, s2 is 50%, andthe costsof eacharec = 5 delayunits.
Let e betherateat which tuplesareroutederroneously(to s2
beforesl in this case). Thenthe expectedcostof the query
is(1—e)-1l.lc+e-1.5¢c = .4ec + 1.1c. By contrast,n
theseconcdtasewheretheselectvity of s1 is changedo 90%,
the expectedcostis (1 —e) - 1.5¢ + e - 1.9¢ = .4ec + 1.5¢.
Sincethejeopardyis higherat90%selectvity thanat 10%,the
lottery more aggressiely favors the optimal orderingat 90%
selectvity thanat 10%.

4.4 Joins

We have discussedselectionsaup to this point for easeof ex-
position, but of coursejoins arethe more commonexpensve
operatorin query processing. In this sectionwe study how
eddiesinteractwith the pipeliningripple join algorithms. For
the moment,we continueto studya static performanceervi-
ronment,validating the ability of eddiesto do well even in
scenariosvherestatictechniqguesremosteffective.

We bggin with a simple3-tablequery:

SELECT *

FROM R,S,T
WHERE R.a = S.a
AND Sb=Tb

In our experiment,we constructeda preoptimizedplanwith a
hashripple join betweenR and.S, andanindex join between
S andT'. Sinceour datais uniformly distributed, Table 1 in-
dicatesthat the selectvity of the RS join is 1.8 x 107*; its
selectvity with respecto S is 180%-i.e.,eachS tupleenter
ing the join finds 1.8 matchingR tupleson average[Hel98].
We artificially settheselectvity of theindex join w.r.t. S to be
10% (overallselectvity 1 x 10~5). Figure7 shavstherelative
performanceof our two eddyschemesndthe two staticjoin
orderings. The resultsechoour resultsfor selectionsshaw-
ing the lottery-basededdy performingnearly optimally, and
thenaive eddyperformingin betweerthebestandworststatic
plans.

As notedin Section2.2.1,index joins arevery analogouso
selections Hashjoins have morecomplicatedandsymmetric
behaior, andhencemerit additionalstudy Figure8 presents
performanceof two hash-ripple-onlyversionsof this query
Our in-memory pipelined hashjoins all have the samecost.
We changehedatain R, S andT sothattheselectvity of the
ST join w.r.t. S is 20%in oneversion,and180%in theother
In all runs,the selectvity of the RS join predicatew.r.t. S is
fixed at 100%. As the figure shaws, the lottery-basededdy
continuego performnearlyoptimally.

Figure9 shaws the percentf tuplesin the eddythatfollow
oneorderor the otherin all four join experiments.While the
eddyis not strict aboutfollowing the optimal ordering, it is

200+

[

a

o
|

— Hash First
=== Lottery
mmm Naive
ez Index First

100

execution time of plan (secs)

a
o
|

0

Figure7: Performancef two joins: aselectve Index Joinand
aHashJoin

150+

100
mm 20%, ST before SR
== 20%, Eddy

— 20%, SR before ST
@ 180%, ST before SR
=3 180%, Eddy

C— 180%, SR before ST
504

execution time of plan (secs)

0

Figure 8: Performanceof hashjoins R < S and S > T.
R < S hasselectvity 100%w.r.t. S, theselectvity of S b T’
w.r.t. S variesbetweer20%and180%in thetwo runs.

quite closein the caseof the experimentwherethe hashjoin
shouldprecedethe index join. In this case,the relative cost
of index join is so high that the jeopardyof choosingit first
drivesthe hashjoin to nearlyalwayswin thelottery.

4.5 Responding to Dynamic Fluctuations

Eddiesshould adaptvely reactover time to the changesin
performancenddatacharacteristicslescribedn Sectionl.1.
Therouting schemeslescribedup to this point have not con-
sideredhow to achieve this. In particular our lottery scheme
weighsall experiencesqually: obserationsfrom the distant
pastaffectthelottery asmuchasrecentobsenations.As are-
sult, anoperatorthatearnsmary ticketsearlyin a querymay
becomeso wealthythatit will take a greatdealof time for it
to losegroundto thetop achieversin recenthistory.

To avoid this, we needto modify our point schemeto for-
get history to someextent. One simpleway to do this is to
usea windowschemejn which time is partitionedinto win-
dows, and the eddy keepstrack of two countsfor eachop-
erator: a numberof banled tickets, and a numberof escow
tickets. Banked ticketsareusedwhenrunninga lottery. Es-
crow tickets are usedto measureefficiengy during the win-
dow. At the beginning of the window, the value of the es-

100+ —

80— N

60— —= index beats hash

=== hash beats index
mmm hash/hash 20%

40 == hash/hash 180%

20

cumulative % of tuplesrouted to the correct join first

Figure9: Percenbf tuplesroutedin the optimalorderin all of
thejoin experiments.

5000
'g 4000
3
o
s 3000 — |_sffirst
[T} == Eddy
g @ |_fs first
= 2000
§=l
5
8
& 1000

0 /=

Figure10: Adaptingto changingoin costs:performance.

crow accountreplaceshe value of the banked account(i.e.,
banked = escr ow), andtheescrav accounts reset(es-
crow = 0). This schemeensureshat operators‘re-prove
themseles” eachwindow.

We considera scenarioof a 3-tableequijoin query where
two of the tablesare external and usedas “inner” relations
by index joins. Our third relation has30,000tuples. Since
we assumehat the index seners are remote,we implement
the “cost” in our index moduleasa time delay (i.e., whi | e
(gettineofday() < x) ;)ratherthanaspinloop;this
bettermodelsthebehaior of waiting on anexternaleventlike
a network response.We have two phasesdn the experiment:
initially, oneindex (call it I¢,) is fast(no time delay)andthe
other(I,y) is slow (5 secondgerlookup). After 30 seconds
we begin the secondphase,in which the two indexes swap
speeds:the I, index becomesslow, and I,y becomedast.
Both indexesreturna singlematchingtuple 1% of thetime.

Figure 10 shaws the performanceof both possiblestatic
plans,comparedwith an eddyusinga lottery with a window
scheme.As we would hope,the eddyis muchfasterthanei-
ther staticplan. In the first static plan (I beforely,), the
initial index join in the planis slow in thefirst phaseprocess-
ing only 6 tuplesanddiscardingall of them. In theremainder
of therun, theplanquickly discard€99%of thetuples,passing
300to the (now) expensve secondjoin. In the secondstatic

100

80 —

60 —

40 —

20 —

cumulative % of tuplesrouted to Index #L firgt.

T T T 1
o 20 40 60 80 100

% of tuples seen.

Figurell: Adaptingto changingoin costs:tuple movement.

plan (I, beforel,y), theinitial join begins fast, processing
about29,000tuples,andpassingabout2900f thoseto thesec-
ond (slower) join. After 30 secondsthe secondoin becomes
fastandhandlegheremaindenf the 290tuplesquickly, while
thefirst join slowly processetheremainingl,000tuplesat5
secondgertuple. The eddyoutdoeshoth staticplans:in the
first phaset behaesidenticallyto thesecondstaticplan,con-
suming29,000tuplesand queueing290 for the eddyto pass
to I, 5. Justafter phase2 begins, the eddyadaptsts ordering
andpassesuplesto I, —thenew fastjoin —first. As aresult,
the eddy spends30 secondsn phaseone, andin phasetwo
it haslessthen290tuplesqueuedat I,y (now fast),andonly
1,000tuplesto processpnly about10 of which arepassedo
I, (now slow).

A similar, morecontrolledexperimentillustratesthe eddy’s
adaptabilitymore clearly Again, we run a three-tableoin,
with two externalindexesthatreturnamatch10%of thetime.
We read4,000tuplesfrom the scannedable,andtogglecosts
betweenl and 100 costunits every 1000tuples—i.e., three
times during the experiment. Figure 11 shavs that the eddy
adaptscorrectly switching orderswhen the operatorcosts
switch. Sincethe costdifferentialis lessdramatichere, the
jeopardyis lower andthe eddytakesa bit longerto adapt.De-
spitethe learningtime, the trendsare clear— the eddy sends
mostof thefirst 1000tuplesto index #1 first, which startsoff
cheap. It sendsmostof the second1000tuplesto index #2
first, causingthe overall percentagef tuplesto reachabout
50%, asreflectedby the nearlinear drift toward 50% in the
secondquarterof the graph. This patternrepeatsn the third
and fourth quarters,with the eddy eventually displayingan
evenuseof thetwo orderingsover time — alwaysfavoring the
bestordering.

For brevity, we omit herea similar experimentin which
we fixed costsand modified selectvity over time. The re-
sultsweresimilar, exceptthatchangingonly the selectvity of
two operatorgesultsin lessdramaticbenefitsfor anadaptve
scheme. This can be seenanalytically for two operatorsof
costc whoseselectvitesareswappedrom low to hi in aman-
neranalogouso our previousexperiment.To lower-boundthe
performanceof either static ordering, selectvities shouldbe
toggledto their extremeg100%and0%) for equalamountof
time — sothathalf then tuplesgo throughboth operatorsEi-
therstaticplanthustakesnc+1/2nc time,whereagnoptimal

200

[

a1

o
|

C— RS First
== Eddy
eza ST First

100+

execution time of plan (secs)

NN

0

Figure12: Adaptingto aninitial delayon R: performance

100
80 —

60 —

cumulative % of tuplesrouted to ST first

% of Stuples seen.

Figure13: Adaptingto aninitial delayon R: tuplemovement.

dynamicplantakesnc time, aratio of only 3/2. With moreop-
erators,adaptvity to changesn selectvity canbecomemore
significant,howvever.

4.5.1 Delayed Delivery

As afinal experimentwe studythecasewhereaninputrela-
tion suffersfrom aninitial delay asin [AFTU96, UFA98]. We
returnto the 3-tablequeryshavn in theleft of Figure8, with
the RS selectvity at100%,andthe ST selectvity at20%. We
delaythe delivery of R by 10 secondsthe resultsareshavn
in Figure12. Unfortunately we seeherethatour eddy— even
with a lottery and a window-basedforgetting scheme- does
not adaptto initial delaysof R aswell asit could. Figure13
tells someof the story: in the early part of processingthe
eddyincorrectlyfavorsthe RS join, eventhoughno R tuples
arestreamingn, andeventhoughthe RS join shouldappear
secondn a normalexecution(Figure8). The eddydoesthis
becausé obseresthatthe RS join doesnotproduceary out-
put tupleswhengiven S tuples. So the eddy awvardsmost.S
tuplesto the RS join initially, which placeshemin aninternal
hashtableto be subsequentlyoinedwith R tupleswhenthey
arrive. The ST join is left to fetch andhashT tuples. This
wastesresourceshat could have beenspentjoining S tuples
with 7" tuplesduring the delay and“primes” the RS join to
producealargenumberof tuplesoncethe Rsbegin appearing.

Notethatthe eddydoesfar betterthanpessimally:when R

begins producingtuples(at 43.5 on the x axis of Figure 13),

the S valuesbottled up in the RS join burst forth, and the

eddy quickly throttlesthe R.S join, allowing the ST join to

processmosttuplesfirst. This scenarioindicatestwo prob-

lemswith our implementation.First, our ticket schemedoes
not capturethe growing selectvity inherentin a join with a

delayednput. Secondstoringtuplesinsidethe hashtablesof

asinglejoin unnecessarilpreventsotherjoins from process-
ing them; it might be concevable to hashinput tupleswithin

multiple joins, if careweretakento preventduplicateresults
from beinggeneratedA solutionto thesecondoroblemmight

ohviate the needto solwe thefirst; we intendto explore these
issuedurtherin futurework.

For brevity, we omit herea variationof this experiment,in
which we delayedthe delivery of S by 10 secondsnsteadof
R. In this casethe delayof S affectsboth joins identically
and simply slows down the completiontime of all plansby
about10 seconds.

5 Related Work

To ourknowledge this paperepresentthefirst generabuery
processingchemefor reorderingin-flight operatorswithin a
pipeline, though [NWMN99] considersthe special case of
unaryoperatorsOurcharacterizatioof barriersandmoments
of symmetryalsoappears$o benew, arisingasit doesfrom our
interestin reoptimizinggenerapipelines.

Recentpapersconsiderreoptimizingqueriesat the endsof
pipelineslUFA98, KD98, IFF+99], reorderingoperatorsonly
aftertemporaryresultsarematerialized [IFFt99] obserantly
notesthat this approachdatesback to the original INGRES
querydecompositiorschemgSWK76]. Theseinter-pipeline
techniquesrenotadaptve in thesensaisedn traditionalcon-
trol theory(e.qg.,[Son98])or machindearning(e.qg.,[Mit97]);
they make decisionswithout ary ongoingfeedbackirom the
operationghey areto optimize,insteadperformingstaticop-
timizationsat coarse-grainettenalsin the queryplan. One
canview theseefforts ascomplementaryo our work: eddies
canbeusedto do tuple schedulingwithin pipelines,andtech-
niqueslike thoseof [UFA98, KD98, IFF99] canbe usedto
reoptimizeacrosspipelines. Of coursesucha marriagesac-
rifices the simplicity of eddies,requiring both the traditional
compleity of costestimatiorandplanenumeratiomlongwith
theideasof this paper Therearealsosignificantquestionson
how bestto combinethesetechniques- e.g.,how mary mate-
rializationoperatorgo putin aplan,which operatorgo putin
which eddypipelines etc.

DEC Rdb (subsequentlyOracle Rdb) usedcompetitionto
chooseamongdifferentaccessnethod§AZ96]. Rdb briefly
obseredtheperformancef alternatve accessnethodsatrun-
time, and then fixed a “winner” for the remainderof query
execution.This bearsaresemblancéo samplingfor costesti-
mation(see[BDF*97] for asurwy). More distantlyrelatedis
thework on“parameterizedor “dynamic” queryplans,which
postponesomeoptimizationdecisionsuntil the beginning of
queryexecution[INSS97,GC94.

The initial work on Query Scrambling[AFTU96] studied
network unpredictabilitiesin processingqueriesover wide-
areasources.This work materializedremotedatawhile pro-
cessingwas blocked waiting for other sources,an ideathat
canbe usedin concertwith eddies. Note that local material-
ization amelioratesut doesnot remore barriers: work to be

donelocally aftera barriercanstill be quite significant. Later
work focusedon reschedulingunnablesub-plangduring ini-

tial delaysin delivery [UFA98], but did not attemptto reorder
in-flight operatorsaaswe do here.

Two out-of-coreversionsof the pipelined hashjoin have
beenproposedecently[IFFT99, UF99. The X-Join [UF99]
enhancethepipelinedhashjoin notonly by handlingtheout-
of-corecase hut alsoby exploiting delaytime to aggressiely
matchpreviously-receved (and spilled) tuples. We intendto
experimentwith X-Joinsandeddiesin futurework.

The Control project[HACT 99] studiesinteractve analysis
of massie datasets,usingtechniquedik e online aggreation,
online reorderingand ripple joins. Thereis a natural syn-
ey betweerinteractve andadaptve queryprocessingonline
techniguego pipelinebest-efort answersare naturallyadap-
tive to changingperformancescenarios. The needfor opti-
mizing pipelinesin the Control projectinitially motivatedour
work on eddies. The Control project[HACT99] is not ex-
plicitly relatedto the field of control theory[Son98],though
eddiesappearso link thetwo in someregards.

The River project[AATT99] wasanothemnain inspiration
of this work. River allows modulesto work asfastasthey
can,naturallybalancingflow to whichever modulesarefaster
We carriedthe River philosophyinto theintial back-pressure
designof eddies,and intend to return to the parallel load-
balancingaspect®f the optimizationproblemin future work.

In additionto commerciaprojectslike thosein Sectionl.2,
therehave beennumerousesearctsystemdor heterogeneous
dataintegration,e.g.[GMPQ*97, HKWY97, IFF+99], etc.

6 Conclusions and Future Work

Queryoptimizationhastraditionallybeenviewed asa coarse-
grained,staticproblem. Eddiesarea queryprocessingnech-
anismthat allow fine-grained,adaptve, online optimization.
Eddiesare particularly beneficialin the unpredictablequery
processingervironmentsprevalentin massve-scalesystems,
andin interactve online queryprocessing.They fit naturally
with algorithmsfrom the Ripple Join family, which have fre-
guentmomentof symmetryandadaptve or non-eistentsyn-
chronizatiorbarriers.Eddiescanbeusedasthe soleoptimiza-
tion mechanisnin a query processingsystem,obviating the
needfor muchof the complex coderequiredin a traditional
query optimizer Alternatively, eddiescan be usedin con-
certwith traditionaloptimizersto improve adaptabilitywithin
pipelines.Our initial resultsindicatethateddiesperformwell
undera variety of circumstancesthoughsomequestionse-
main in improving reactiontime andin adaptvely choosing
join orderswith delayedsources.We aresuficiently encour
agedby theseearlyresultsthatwe areusingeddiesandrivers
asthebasisfor queryprocessingn the Telegraphsystem.

In orderto focusour enegiesin this initial work, we have
explicitly postponech numberof questionsn understanding,
tuning, and extendingtheseresults. One main challengeis
to develop eddy“ticket” policiesthat canbe formally proved
to corverge quickly to a nearoptimal executionin staticsce-
narios,andthatadaptvely corverge whenconditionschange.
This challengels complicatedby consideringboth selections
andjoins, including hashjoins that“absorb” tuplesinto their
hashtablesasin Sectior4.5.1.We intendto focuson multiple
performancemetrics, including time to completion,the rate

of outputfrom a plan,andtherateof refinemenfor onlineag-

gregationestimatorsWe have alsobegunstudyingschemeso

allow eddiesto effectively orderdependenpredicatesbased
onreinforcementearning[SB98]. In arelatedvein, wewould

like to automaticallytune the aggressienesswith which we

forget pastobsenrations, so that we avoid introducinga tun-

ing knobto adjustwindow-lengthor someanalogousonstant
(e.g.,ahysteresigactor).

Anothermaingoalis to attackthe remainingstaticaspects
of our scheme: the “pre-optimization” choicesof spanning
tree,join algorithms,andaccessnethods.Following [AZ96],
we believe that competitionis key here: one canrun multi-
ple redundanjoins, join algorithms,andaccessnethodsand
track their behaior in an eddy adaptvely choosingamong
themover time. The implementationchallengein that sce-
nario relatesto preventing duplicatesfrom being generated,
while the efficiengy challengecomesin notwastingtoo mary
computingresource®n unpromisingalternatves.

A third major challengeis to harnesshe parallelismand
adaptvity availableto usin rivers.Massvely parallelsystems
are reachingtheir limit of manageabilityeven as datasizes
continueto grow very quickly. Adaptive techniquedike ed-
diesandriverscansignificantlyaid in the manageabilityof a
new generatiorof massiely parallelqueryprocessorsRivers
have beenshavn to adaptgracefullyto performancechanges
in largeclustersspreadingjueryprocessingoadacrossiodes
andspreadingdatadelivery acrossdatasources.Eddiesface
additionalchallengeso meetthe promiseof rivers:in particu-
lar, reoptimizingquerieswith intra-operatoparallelismentails
repartitioningdata,which addsan expenseto reorderingthat
wasnot presentn our single-siteeddies.An additionalcom-
plicationariseswhentrying to adaptvely adjustthe degreeof
partitioningfor eachoperatorin a plan. On a similar note,we
would like to explore enhancingeddiesandriversto tolerate
failuresof sourcer of participantsn parallelexecution.

Finally, we areexploringtheapplicationof eddiesandrivers
tothegenericspaceof dataflav programmingincludingappli-
cationssuchasmultimediaanalysisandtranscodingandthe
compositionof scalablereliableinternetserviceyGWBC99.
Ourintentis for riversto sene asa genericparalleldataflav
engine,andfor eddiesto be the main schedulingmechanism
in thatervironment.

Acknowledgments

VijayshankaRamanprovided muchassistancén the course
of thiswork. RemziArpaci-Dusseaukric AndersorandNoah
TreuhaftimplementedEuphratesand helpedimplemented-
dies.Mike Franklinasledhardquestionsandsuggestedirec-
tionsfor futurework. StuartRussell,ChristosPapadimitriou,
Alistair Sinclair, Kris Hildrum andLakshminarayanaBubra-
manianall helpedusfocuson formalissues.Thanksto Navin

KabraandMitch Cherniackfor initial discussionsn run-time
reoptimizationandto thedatabasgroupat Berkeley for feed-
back. StuartRussellsuggestedheterm“eddy”.

This work wasdonewhile bothauthorswereat UC Berke-
ley, supportedby a grantfrom IBM Corporation,NSF grant
11S-9802051 anda SloanFoundationFellowship. Computing
andnetwork resourcesor thisresearchvereprovidedthrough
NSFRI grantCDA-9401156.

References

[AACT9T7]

[AATT99]

[AFTU96]

[AH99]

[Aok99]

[AZ96]
[Bar99]

[BDF197]

[BO99]

[DGST90]

[DKOT84]

[FMLS99]

[GCo4]

[GMPQt97]

[Gra90]

[GWBC99]

[HACt99]

[Helog]

A. C.Arpaci-DusseauwR. H. Arpaci-Dussealb. E. Culler, J.M.
Hellerstein,andD. A. Patterson.High-Performanceortingon
Networks of Workstations. In Proc. ACM-SIGMOD Interna-
tional Confelenceon Managementof Data, TucsonMay 1997.

R. H. Arpaci-Dusseauk. Anderson,N. Treuhaft,D. E. Culler,

J. M. Hellerstein,D. A. Patterson,andK. Yelick. Clusterl/O

with River: Making the FastCaseCommon. In SixthWorkshop
on /O in Parallel andDistributed System¢lOPADS’99), pages
10-22 Atlanta,May 1999.

L. Amsalg, M. J. Franklin, A. Tomasic,andT. Urhan. Scram-
bling QueryPlansto CopeWith UnexpectedDelays. In 4th In-
ternational Confeenceon Parallel and Distributed Information
System¢PDIS), Miami Beach,Decembed996.

R. AvnurandJ. M. Hellerstein. Continuousgueryoptimization.
TechnicaReportCSD-99-1078Universityof California,Berke-
ley, November1999.

P. M. Aoki. How to Avoid Building DataBladesThatKnow the
Value of Everythingandthe Costof Nothing. In 11th Interna-
tional Confeenceon Scientificand Statistical DatabaseMan-
agement Cleveland July 1999.

G. Antoshenkv andM. Ziauddin. Query Processingind Opti-
mizationin OracleRdb. VLDB Journal, 5(4):229-2371996.

R. Barnes. ScaleOut. In High PerformanceTransactionPro-
cessinghorkshop(HPTS'99), Asilomar, Septembe999.

D. Barbara,W. DuMouchel, C. Faloutsos,P. J. Haas, J. M.
Hellerstein,Y. E. loannidis,H. V. Jagadish;T. JohnsonR. T.
Ng, V. PoosalaK. A. Ross,andK. C. Sevcik. The New Jersg
DataReductionReport.[EEE Data EngineeringBulletin, 20(4),
Decemberd997.

J. BoulosandK. Ono. CostEstimationof UserDefinedMeth-
odsin Object-RelationaDatabaseSystems. SIGMOD Recod,
28(3):22—28Septembe 999.

D. J. DeWitt, S. GhandeharizadeH). Schneider A. Bricker,
H.-l Hsiao,and R. RasmussenThe Gammadatabasenachine
project. IEEE Transactionson Knowled@ and Data Engineer
ing, 2(1):44—-62Mar 1990.

D. J.DeWitt, R. H. Katz, F. Olken, L. D. Shapiro,M. R. Stone-
braker, and D. Wood. ImplementationTechniquesfor Main
Memory DatabaseSystems. In Proc. ACM-SIGMOD Interna-
tional Confeenceon Managementof Data, pagesl-8, Boston,
Junel984.

D. Florescu,l. Manolescu,A. Levy, and D. Suciu. Query
Optimizationin the Presenceof Limited AccessPatterns. In

Proc. ACM-SIGMODInternationalConfeenceon Management
of Data, Phildelphia, June1999.

G. GraefeandR. Cole. Optimizationof DynamicQueryEvalua-
tion Plans.In Proc. ACM-SIGMODInternationalConfeenceon
Managementof Data, Minneapolis,1994.

H. Garcia-Molina,Y. PapalonstantinouP. QuassA Rajaraman,
Y. Sagy, J.Ullman,andJ. Widom. The TSIMMIS Project:Inte-
grationof HeterogeneoukformationSourcesJournal of Intel-
ligentIinformationSystems8(2):117-132March1997.

G. Graefe. Encapsulatiorof Parallelismin the VolcanoQuery
Processingystem.In Proc. ACM-SIGMODInternationalCon-
ferenceon Managementof Data, pages102—-111 Atlantic City,
May 1990.

S.D. Gribble,M. Welsh,E. A. Brewer, andD. Culler. The Multi-
Space:an EvolutionaryPlatformfor InfrastructuralServices.In
Proceedingsf the 1999 UsenixAnnual Technical Confeence
Montergy, Junel999.

J. M. Hellerstein,R. Avnur, A. Chou, C. Hidber, C. Olston,
V. RamanT. Roth,andP. J.Haas Interactve DataAnalysis: The
Control Project.IEEE Computer 32(8):51-59 August1999.

J. M. Hellerstein. Optimization Techniquesfor Querieswith
Expensve Methods. ACM Transactionson DatabaseSystems
23(2):113-1571998.

[HH99]

[HKWY97]

[HSC99]

[IFFT99]

[IK84]

[INSS97]

[KBZ86]

[KD98]

[Met97]

[Mit97]
[NWMN99]

[RPKT99]

[RRH99]

[SBYS]

[SBH98]

[Son9s]

[SWK76]

[UF99]

[UFA98]

[WA91]

[Ww94]

P. J. Haasand J. M. Hellerstein. Ripple Joinsfor Online Ag-
gregation. In Proc. ACM-SIGMODInternationalConfeenceon
Managemenif Data, pages287—-298 Philadelphia1999.

L. Haas,D. KossmannE. Wimmers,andJ. Yang. Optimizing
QueriesAcrossDiverseData Sources. In Proc. 23rd Interna-
tional Confeenceon Very Large Data Bases(VLDB), Athens,
1997.

J. M. Hellerstein,M. Stonebrakr, andR. Caccia. Open,Inde-
pendentEnterpriseData Integration. IEEE Data Engineering
Bulletin, 22(1), March1999. http://www.cohera.com.

Z.G.Ives,D. FlorescuM. FriedmanA. Levy, andD. S. Weld.

An Adaptive Query ExecutionSystemfor Data Integration. In

Proc. ACM-SIGMODInternationalConfeenceon Management
of Data, Philadelphia1999.

T. Ibaraki and T. Kameda. Optimal Nesting for Computing
N-relational Joins. ACM Transactionson DatabaseSystems
9(3):482-5020ctober1984.

Y. E. loannidis,R. T. Ng, K. Shim,andT. K. Sellis. Parametric
QueryOptimization.VLDB Journal, 6(2):132-1511997.

R. Krishnamurthy H. Boral, and C. Zaniolo. Optimizationof
Nonrecursie Queries. In Proc. 12th International Confeence
onVery Large DatabasegVLDB), pagesl28—-137 August1986.

N. KabraandD. J. DeWitt. Efficient Mid-Query Reoptimization
of Sub-OptimaQueryExecutionPlans.In Proc. ACM-SIGMOD
International Confelenceon Managementof Data, pages106—
117,Seattle;1998.

R. VanMeter Observingthe Effects of Multi-Zone Disks. In
Proceeding®ftheUsenix1997Technical Confeence Anaheim,
Januaryl997.

T. Mitchell. MachineLearning McGraw Hill, 1997.

K. W. Ng, Z. Wang,R. R. Muntz, andS. Nittel. DynamicQuery
Re-Optimization.In 11thInternationalConfeenceon Scientific
and StatisticalDatabaseManagement Cleveland,July 1999.

B. Reinwald, H. Pirahesh@. KrishnamoorthyG. Lapis,B. Tran,
andS. Vora. HeterogeneouQueryProcessing hroughSQL Ta-
ble Functions. In 15th International Confeenceon Data Engi-
neering pages366—-373Sydng, March 1999.

V. Raman,B. Raman,andJ. M. Hellerstein. Online Dynamic
Reorderingor Interactve DataProcessingin Proc. 25thInter-

national Confeenceon Very Large Data Bases(VLDB), pages
709-720Edinkurgh, 1999.

R. S. SuttonandA. G. Bartow. Reinfocement_earning MIT
PressCambridge MA, 1998.

M. Stonebrakr, P. Brown, and M. Herbach. Interoperability
DistributedApplications,andDistributedDatabasesThe Virtual
TableInterface. IEEE Data EngineeringBulletin, 21(3):25-34,
Septembel998.

E. D. Sontag. MathematicalContmol Theory: Deterministic
Finite-DimensionaBystemsSecondEdition. Number6 in Texts
in Applied MathematicsSpringefVerlag,New York, 1998.

M. R. Stonebrakr, E. Wong,andP. Kreps. The Designandim-
plementatiorof INGRES. ACM Transactionson DatabaseSys-
tems 1(3):189-222Septembel 976.

T. UrhanandM. Franklin. XJoin: Getting FastAnswersFrom
Slow andBursty Networks. TechnicaReportCS-TR-3994Uni-
versity of Maryland,February1999.

T. Urhan, M. Franklin, and L. Amsaleg. Cost-BasedQuery
Scramblingfor Initial Delays. In Proc. ACM-SIGMODiInterna-
tional Confeenceon Managementof Data, Seattle Junel998.

A. N. WilschutandP. M. G. Apers. Dataflov QueryExecution
in aParallelMain-MemoryEnvironment.In Proc. FirstInterna-
tional Confelenceon Parallel and DistributedInfo. Sys.(PDIS),
pages$8-77,1991.

C. A. WaldspugerandW. E. Weihl. Lottery scheduling:Flex-

ible proportional-shareesourcemanagement.In Proc. of the
First Symposiunon Operating System®esignand Implemen-
tation (OSDI'94), pagesl-11,Monterey, CA, November1994.
USENIX Assoc.

