
RDF-3X: a RISC-style Engine for RDF

Thomas Neumann Gerhard Weikum

August 27, 2008

Motivation
RDF is increasingly popular...

• Semantic Web

• Life-Sciences

• seems natural for Social-Networks

... but RDF indexing and query processing is non-trivial:

• no schema, very fine grained data items

• workloads hard to predict and characterize

• physical design difficult

Our solution: RDF-3X

• RISC-style execution engine

• exhaustive compressed indexes

• query optimization techniques

Thomas Neumann RDF-3X: a RISC-style Engine for RDF 2 / 17

Overview

1. Short Introduction to RDF and SPARQL

2. Storage of RDF data

3. Retrieval for SPARQL queries

4. Evaluation

5. Conclusion

Thomas Neumann RDF-3X: a RISC-style Engine for RDF 3 / 17

Short Introduction to RDF and SPARQL
RDF: Resource Description Framework

• conceptually a labeled graph

• each edge represents a fact (triple in RDF notation)

• triples have the form (subject, predicate, object)

Examples:

• (id1, <hasTitle>, ”Sweeney Todd”),

• (id1, <directedBy>, <Tim Burton>),

• (id1, <hasCasting>, id2)

• (id2, <Actor>, id11)

• (id11, <hasName>, ”Johnny Depp”)

RDF data can be seen as a (potentially huge) set of triples.

Thomas Neumann RDF-3X: a RISC-style Engine for RDF 4 / 17

Short Introduction to RDF and SPARQL (2)
SPARQL: SPARQL Protocol and RDF Query Language

SELECT ?title
WHERE {

?m <hasTitle> ?title;
<hasCasting> ?c.

?c <Actor> ?a.
?a <hasName> "Johnny Depp"

}

• queries RDF data by matching patterns in the graph

• query-by-example style, joins are implicit

• set of triple patterns, shortcuts to avoid typing

Note: must produce all valid bindings (might create duplicates)

Thomas Neumann RDF-3X: a RISC-style Engine for RDF 5 / 17

Storage of RDF data

Raw RDF input: triples
Facts

Subject Predicate Object
object214 hasColor blue
object214 belongsTo object352
.

Literals can be very large, contains a lot of redundancy.
First step to reduce the data: dictionary compression

Facts
Subject Predicate Object
0 1 2
0 3 4
.

Strings
ID Value
0 object214
1 hasColor
.

Thomas Neumann RDF-3X: a RISC-style Engine for RDF 6 / 17

Storage of RDF data - RDF-3X

Our approach: Store everything in a clustered B+-Tree

• triples sorted in lexicographical order

• can be compressed well (delta encoding)

• efficient scan, fast lookup if prefix is known

Which sort order to choose?

• index is compressed, we can afford redundancy

• 6 possible orderings, store all of them

• will make merge joins very convenient

Observation: Each SPARQL triple pattern can be answered by a
single range scan.

Thomas Neumann RDF-3X: a RISC-style Engine for RDF 7 / 17

Storage of RDF data - Aggregated Indices

Sometimes we do not need the full triple:

• is there a connection between object4 and object13?

• how many author annotations does object14 have?

Therefore maintain aggregated indexes with (value1, value2, count)

• count is required for SPARQL duplicate semantic

• compressed, too

• much smaller than the full index

We can afford another 6 indexes. And three for (value1, count).

• smaller index ⇒ faster scan

• improves query performance significantly

Thomas Neumann RDF-3X: a RISC-style Engine for RDF 8 / 17

Retrieval of RDF data

• each SPARQL triple pattern becomes an index scan

• patterns with common variables induce joins

• indexes for all orderings, which makes merge joins very attractive

basic strategy: merge joins if possible, hash joins afterwards

• decision cost based, dynamic programming strategy

• order optimization required to infer orderings

A bit different from standard join ordering, though:

• one big ”relation”, no schema

• selectivity estimates are hard

Thomas Neumann RDF-3X: a RISC-style Engine for RDF 9 / 17

Retrieval of RDF data - Selectivity Estimates

Standard single attribute synopses are not very useful:

• only three attributes

• one big ”relation”

• but (?a,?b,"Auckland") and (?a,?b,"1900-01-01")

produce vastly different values for ?a and ?b

Instead: Another six indexes

• aggregate indexes until they fit into one page

• merge smallest buckets (≈ equi-depth)

• for each bucket (i.e., triple range) compute statistics

• 6 indexes, pick the best for each triple pattern

Thomas Neumann RDF-3X: a RISC-style Engine for RDF 10 / 17

Retrieval of RDF data - Selectivity Estimates (2)
Example: bucket with (subject,predicate,object) statistics

range (10,2,30) - (10,5,12000)

1 2 3

prefixes of length 1 3 3000

subject predicate object

subject joins with 4000 0 200

predicate joins with 50 400000 200

object joins with 6000 0 9000

Estimations:

• (10,4,?a) ⇒ 1000 triples

• {(10,4,?a),(?a,?b,?c)} ⇒ 2000 triples

Assumes uniformity, independence, etc., but works quite well

Thomas Neumann RDF-3X: a RISC-style Engine for RDF 11 / 17

Retrieval of RDF data - Selectivity Estimates (3)

Still issues with (common) large correlated join patterns:

• navigation: {(?a,[],?b),(?b,[],?c),(?c,[],?d)} (chain)

• selection: {(?a,[],?b),(?a,[],?c),(?a,[],?d)} (star)

Capture common correlations:

• mine the most frequent paths (chains and stars) and count

• exact prediction for these paths, otherwise upper bound

Not as easily applicable as histograms, but very accurate

Thomas Neumann RDF-3X: a RISC-style Engine for RDF 12 / 17

Evaluation
We compare RDF-3X with different competitors:

• MonetDB (column store approach, similar to Abadi et al.,
VLDB07)

• PostgreSQL (triple store approach, similar to Sesame)

• other approaches performed much worse (see the paper)

Three different data sets:

• Barton (same as the VLDB07 paper), library data

• Yago, Wikipedia-based ontology

• LibraryThing (partial crawl), users tag books

Same setup for all competitors:

• all competitors same preprocessing, same dictionary

• equivalent queries (SPARQL for RDF-3X, SQL for others)

Thomas Neumann RDF-3X: a RISC-style Engine for RDF 13 / 17

Evaluation - Barton Data Set [VLDB07]
51M triples, 4.1GB original data, 2.8 GB in RDF-3X

 0

 50

 100

 150

 200

 250

 300

Q1 Q2 Q3 Q4 Q5 Q6 Q7 geo.mean

ex
ec

ut
io

n
tim

e
[s

] (cold caches)
PostgreSQL

(cold caches)
MonetDB

(cold caches)
RDF-3X

sample query (Q5): select ?a ?c where { ?a <origin> <marcorg/DLC>.

?a <records> ?b. ?b <type >?c. filter (?c != <Text>) }

Thomas Neumann RDF-3X: a RISC-style Engine for RDF 14 / 17

Evaluation - Yago
40M triples, 3.1GB original data, 2.7 GB in RDF-3X

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

A1 A2 A3 B1 B2 B3 C1 C2 geo.mean

ex
ec

ut
io

n
tim

e
[s

] (cold caches)
PostgreSQL

(cold caches)
MonetDB

(cold caches)
RDF-3X

sample query (B2): select ?n1 ?n2 where {
?p1 <isCalled> ?n1. ?p1 <bornInLocation> ?city. ?p1 <isMarriedTo> ?p2.

?p2 <isCalled> ?n2. ?p2 <bornInLocation> ?city. }

Thomas Neumann RDF-3X: a RISC-style Engine for RDF 15 / 17

Evaluation - LibraryThing
36M triples, 1.8GB original data, 1.6 GB in RDF-3X

 0.1

 1

 10

 100

 1000

 10000

A1 A2 A3 B1 B2 B3 C1 C2 geo.mean

ex
ec

ut
io

n
tim

e
[s

]

RDF-3X
MonetDB

PostgreSQL

sample query (B3): select distinct ?u where { ?u [] ?b1. ?u [] ?b2. ?u [] ?b3.

[] <english> ?b1. [] <german> ?b2. [] <french> ?b3. }

Thomas Neumann RDF-3X: a RISC-style Engine for RDF 16 / 17

Conclusion

RDF-3X a fast and flexible RDF/SPARQL engine:

• exhaustive but very space-efficient triple indexes

• avoids physical design tuning, generic storage

• few assumptions about data and queries

• fast runtime system, exploits indexes for merge joins

• query optimization has a huge impact

• accurate selectivity estimations essential

RDF-3X is freely available, try it out:
http://www.mpi-inf.mpg.de/~neumann/rdf3x

Thomas Neumann RDF-3X: a RISC-style Engine for RDF 17 / 17

http://www.mpi-inf.mpg.de/~neumann/rdf3x

