
MULTI -QUERY OPTIMIZATION
AND

APPLICATIONS

Submitted in partial fulfillment of the requirements

for the degree of

DOCTOROF PHILOSOPHY

by

PRASAN ROY

Department of Computer Science and Engineering

Indian Institute of Technology - Bombay

2000

Approval Sheet

The thesis entitled MULTI -QUERY OPTIMIZATION AND APPLICATIONS

by PRASAN ROY

is approved for the degree of DOCTOR OFPHILOSOPHY.

Examiners

Supervisor

Chairman

Date :

Place :

Abstract

Complex queries are becoming commonplace with the growing use of decision support systems.

These complex queries often have a lot of common sub-expressions, either within a single query,

or across multiple such queries. The focus of this work is to speed up query execution by ex-

ploiting these common subexpressions.

Given a set of queries in a batch, multi-query optimization aims at exploiting common sub-

expressions among these queries to reduce evaluation cost.Multi-query optimization has hither-

to been viewed as impractical, since earlier algorithms were exhaustive, and explore a doubly

exponential search space. We present novel heuristics for multi-query optimization, and demon-

strate that optimization using these heuristics provides significant benefits over traditional opti-

mization, at a very acceptable overhead in optimization time.

In online environments, where the queries are posed as a partof an ongoing stream instead of

in a batch, individual query response times can be greatly improved by caching final/intermediate

results of previous queries, and using them to answer later queries. An automatic caching system

that makes intelligent decisions on what results to cache would be an important step towards

knobs-free operation of a database system. We describe an automatic query caching system

calledExchequerwhich is closely coupled with the optimizer to ensure that the caching system

and the optimizer make mutually consistent decisions, and experimentally illustrate the benefits

of this approach.

Further, because the presence of views enhances query performance, materialized views are

increasingly being supported by commercial database/datawarehouse systems. Whenever the

data warehouse is updated, the materialized views must alsobe updated. We show how to find

an efficient plan for maintenance of asetof views, by exploiting common subexpressions be-

tween different view maintenance expressions. These common subexpressions may be mate-

rialized temporarily during view maintenance. Our algorithms also choose additional subex-

pressions/indices to be materialized permanently (and maintained along with other materialized

views), to speed up view maintenance. In addition to faster view maintenance, our algorithms

can also be used to efficiently select materialized views to speed up query workloads.

Contents

1 Introduction 1

1.1 Problem Overview and Motivation 1

1.1.1 Transient Materialization 1

1.1.2 Dynamic Materialization .. . 3

1.1.3 Permanent Materialization 4

1.2 Summary of Contributions 6

1.2.1 Multi-Query Optimization .. . 6

1.2.2 Query Result Caching . 7

1.2.3 Materialized View Selection and Maintenance 9

1.3 Organization of the Thesis 12

2 Traditional Query Optimization 13

2.1 Background . 13

2.2 Design of a Cost-based Query Optimizer 15

2.2.1 Overview . 15

2.2.2 Logical Plan Space . 18

2.2.3 Physical Plan Space . 22

2.2.4 The Search Algorithm . 27

2.2.5 Differences from the Original Volcano Optimizer 30

2.3 Summary . 32

i

ii CONTENTS

3 Multi-Query Optimization 34

3.1 Setting Up The Search Space 36

3.2 Reuse Based Multi-Query Optimization Algorithms 37

3.2.1 Optimization in Presence of Materialized Views 37

3.2.2 The Volcano-SH Algorithm .38

3.2.3 The Volcano-RU Algorithm .41

3.3 The Greedy Algorithm .. 43

3.3.1 Sharability . 46

3.3.2 Incremental Cost Update .. 47

3.3.3 The Monotonicity Heuristic .. . 49

3.4 Handling Physical Properties 50

3.5 Extensions .54

3.5.1 Selection of Temporary Indices 54

3.5.2 Nested Queries . 54

3.6 Performance Study .. 56

3.6.1 Basic Experiments . 57

3.6.2 Scaleup Analysis . 62

3.6.3 Effect of Optimizations .. . 64

3.6.4 Discussion . 65

3.7 Related Work . 66

3.8 Summary . 68

4 Query Result Caching 69

4.1 Cache-Aware Query Optimization 71

4.1.1 Consolidated DAG . 72

4.1.2 Query DAG Generation and Query/Cached Result Matching 73

4.1.3 Volcano Extensions for Cache-Aware Optimization 74

4.2 Dynamic Characterization of Current Workload 75

4.3 Cache Management in Exchequer 76

CONTENTS iii

4.4 Differences from Prior Work 80

4.5 Experimental Evaluation of the Algorithms 82

4.5.1 Test Query Sequences . 82

4.5.2 Metric . 85

4.5.3 List of algorithms compared .. . 85

4.5.4 Experimental Results .. 87

4.6 Extensions .94

4.7 Summary . 95

5 Materialized View Maintenance and Selection 96

5.1 Related Work . 101

5.2 Overview of Our Approach .. . 102

5.3 Setting up the Maintenance Plan Space 104

5.3.1 System Model . 104

5.3.2 Propagation-Based Differential Generation for Incremental View Main-

tenance . 105

5.3.3 Incorporating Incremental Plans in the Query DAG Representation 107

5.4 Maintenance Cost Computation 109

5.5 Transient/Permanent Materialized View Selection 111

5.5.1 The Basic Greedy Algorithm .. 111

5.5.2 Optimizations . 113

5.5.3 Extensions . 114

5.6 Performance Study .. 115

5.6.1 Performance Model . 115

5.6.2 Performance Results .116

5.7 Summary . 123

6 Conclusions and Future Work 124

iv CONTENTS

A TPCD-Based Benchmark Queries 128

A.1 List of Queries Used in Section 3.6 128

A.2 List of View Definitions Used in Section 5.6 131

B List of Logical Transformations 133

C Operator Cost Estimates 135

List of Figures

1.1 Example illustrating benefits of sharing computation 2

1.2 Example illustrating the benefit of caching intermediate results 3

1.3 Example view maintenance plan.Mergerefreshes a view given its “delta”. 5

2.1 Overview of Cost-based Transformational Query Optimization 16

2.2 Logical Query DAG for A1 B 1 C. Commutativity not shown; every join node

has another join node with inputs exchanges, below the same equivalence node. . 19

2.3 Logical Plan Space Generation for A1 B 1 C. 20

2.4 Algorithm for Logical Query DAG Generation 21

2.5 Physical Query DAG forA 1 B . 24

2.6 Algorithm for Physical Query DAG Generation 26

2.7 The Search Algorithm .. . 28

3.1 The Volcano-SH Algorithm 40

3.2 The Volcano-RU Algorithm 42

3.3 The Greedy Algorithm .. 45

3.4 Incremental Cost Update 48

3.5 Example Showing Cost Propagation through Physical Equivalence Nodes 52

3.6 Optimization of Stand-alone TPCD Queries 58

3.7 Execution of Stand-alone TPCD Queries on MS SQL Server 59

3.8 Optimization of Batched TPCD Queries 61

3.9 Optimization of Scaleup Queries 63

v

vi LIST OF FIGURES

3.10 Complexity of the Greedy Heuristic 63

4.1 Architecture of the Exchequer System 70

4.2 (a) CDAG forf A 1 C 1 D, A 1 C1 E g (b) Unexpanded A1 B 1 C inserted

into CDAG (c) A1 B 1 C expanded into CDAG 73

4.3 The Greedy Algorithm for Cache Management 78

4.4 Distribution of distinct intermediate results generated during the processing of

the CubePoints and CubeSlices workloads 84

4.5 Performance on 900 Query CubePoints/Zipf-0.5 Workload. 88

4.6 Performance on 900 Query CubePoints/Zipf-2.0 Workload. 89

4.7 Performance on 900 Query CubeSlices/Zipf-0.5 Workload. 89

4.8 Performance on 900 Query CubeSlices/Zipf-2.0 Workload. 90

5.1 The Greedy Algorithm for Selecting Views for Transient/Permanent Materializa-

tion . 112

5.2 Effect of Transient and Permanent Materialization 117

5.3 Effect of Adaptive Maintenance Policy Selection 120

5.4 Scalability analysis on increasing number of views 122

C.1 Constants . 136

C.2 Cost Formulae Parameters 136

Chapter 1

Introduction

Complex queries are becoming commonplace, especially due to the advent of automatic tools

that help analyze information from large data warehouses. These complex queries often have

several subexpressions in common since i) they make extensive use of views which are referred

to multiple times in the query and ii) many of them are correlated nested queries in which parts

of the inner subquery may not depend on the outer query variables, thus forming a common

subexpression for repeated invocations of the inner query.

1.1 Problem Overview and Motivation

The focus of this thesis is to speed up query processing by sharing computation within or across

queries by materializing intermediate results. This can bedone at three levels: transient, dynamic

and permanent.

1.1.1 Transient Materialization

Given a batch of queries to be executed, the results computedduring the execution can be materi-

alized on the disk as they are computed when refered for the first time, reused on later references

instead of being recomputed, and discarded at the end of the execution. This is termed transient

materialization.

2 CHAPTER 1. INTRODUCTION

1010 10 10 10 10B C DA B C

100 100

100 100

10 10 10B C D

100 10 10

100

10B C

Total Cost = 460

A B C B C D B C DA B C

100

10A

Total Cost = 370
(b) Execution with BC shared(a) Traditional execution: No sharing

Figure 1.1: Example illustrating benefits of sharing computation

Example 1.1.1 Consider a batch of two queriesf(A 1 B 1 C); (B 1 C 1 D)g. A tradi-

tional system will execute each of these queries independently using the individual best plans as

suggested by the query optimizer; let these best plans be as shown in Figure 1.1(a). The base

relationsA, B, C andD each have a scan cost of 10 units.1 Each of the joins have a cost of

100 units, giving a total execution cost of 460 units. On the other hand, in the plan shown in

Figure 1.1(b), the intermediate result(B 1 C) is first computed and materialized on the disk at

a cost of 10. Then, it is scanned back twice – the first time to join with A in order to compute(A 1 B 1 C), and the second time to join with D in order to compute(B 1 C 1 D) – at

a cost of 10 per scan. Each of these joins have a cost of 100 units. The total cost of thiscon-

solidatedplan is thus 370 units, which is about 20% less than the cost ofthe traditional plan of

Figure 1.1(a), demonstrating the benefit of sharing computation during query processing.2
The expression(B 1 C) that is common between the two queries(A 1 B 1 C) and(B 1 C 1 D) in the above example is termed as acommon subexpression. We address the

problem of finding the cheapest execution plan for a batch of queries, exploiting transiently

materialized common subexpressions; this is termedmulti-query optimization. Section 1.2.1

provides further details of our work on multi-query optimization.

Multi-query optimization is an important practical problem. For instance, SQL-3 stored pro-

cedures may invoke several queries, which can be executed asa batch. Further, data analy-

sis/reporting often requires a batch of queries to be executed. Recent work on using relational

databases for storing XML data, has found that queries on XMLdata, written in a language
1The actual unit of measure is not relevant to this example

1.1. PROBLEM OVERVIEW AND MOTIVATION 3

Cost = 120Cost = 230Cost = 230 Cost = 120

Cost = 130

10 10 10B C D

100

100

B C D

1010 10A B C

100

100

A B C

10 10B C

10B C

10 D

B C D

100

B C 10

10 A

A B C

100

B C 10

100

(b) BC cached during execution of BCD
 reused during execution of ABC

(a) Execution without query caching

Figure 1.2: Example illustrating the benefit of caching intermediate results

such as XML-QL and containing regular path expressions, aretranslated into a batch of rela-

tional queries; these queries have a large amount of overlapand can benefit significantly from

multi-query optimization.

1.1.2 Dynamic Materialization

In online environments, where the queries are posed as a partof an ongoing stream instead

of in a batch as above, individual query response times can begreatly improved by caching

final/intermediate results of previous queries, and using them to answer later queries.

Given a sequence of queries arriving individually, each executed on arrival, dynamic mate-

rialization involves materializing, in a limited-size cache, results computed during the execution

of individual queries. These results are used to compute queries appearing later in the sequence,

and may be discarded at a later point of time when they lose their utility.

Example 1.1.2 Consider again the two queries(B 1 C 1 D) and(A 1 B 1 C) of Exam-

ple 1.1.1, this time occurring one after another as a part of aworkload sequence. As earlier,

the queries are on the base relationsA, B, C andD each having a scan cost of 10 each. The

execution of the two queries, when caching is not supported,costs 230 for each query as shown

in Figure 1.2(a), totaling to 460. Contrast this with the execution of the queries as shown in Fig-

ure 1.2(b). In this case, during the execution of(B 1 C 1 D), the intermediate result(B 1 C)
is cached to the disk, at a cost of 10, and reused at a cost of 10 per query; the total execution cost

4 CHAPTER 1. INTRODUCTION

for the two queries is now 370. This illustrates the benefit ofcaching and reusing intermediate

results.2
We use the termquery result cachingto mean caching of final and/or intermediate results of

queries. Query result caching differs from multi-query optimization in that at the moment a given

query is being executed, later queries in the workload sequence are not known. The main issue

in query result caching is thus to dynamically determine theutility of a result, so as to figure out

when to admit it into the cache and when to dispose it in favor of another result. Further details

of our work on query result caching appear in Section 1.2.2.

1.1.3 Permanent Materialization

Permanent materialization involves precomputing resultsand keeping them materialized on the

disk during the execution of the workload. However, unlike transient and dynamic materializa-

tion, these results are never discarded. Permanently meterialized results are also calledmaterial-

ized views.

Materialized views have dependencies on the underlying base relations – when these base

relations get updated, the system needs to refresh these views in order to maintain consistency.

The view can be refreshed by either recomputing it, or by firstcomputing the incremental change

to the view (tuples to be inserted or deleted as a consequenceof the corresponding updates to the

base relations) and then integrating the change into the view. This is termedview maintenance.

In current generation database systems, the system administrator can decide to permanently

materialize a set of views, and the system must keep these views consistent by refreshing them.

Efficient techniques for view maintenance are needed because whereas the amount of data enter-

ing a warehouse, the query loads, and the need to obtain up-to-date responses are all increasing,

the time window available for making the warehouse up-to-date is shrinking.

We address the problem of minimizing the total cost of maintaining the given set of views. In

order to do so, we show how to determine (a) for each materialized view, the best way to refresh

it in face of updates to the base relation; and (b) an additional set of results to materialize, per-

manently or transiently, to speed up the refresh processing. These decisions are interdependent

1.1. PROBLEM OVERVIEW AND MOTIVATION 5

incremental refresh

initial set of materialized views

transiently materialized view

permanently materialized view

incremental refresh

recomputationrecomputation

�
�
�

�
�
�

��
��
��
��

B C

B C

dA dE

merge

D E

D

A B C C D E B C D E

merge

Figure 1.3: Example view maintenance plan.Mergerefreshes a view given its “delta”.

and need to be taken in an interleaved manner. This is termedmaterialized view selection and

maintenance. Further details of our approach for materialized view selection and maintenance is

presented in Section 1.2.3.

Example 1.1.3 Suppose we have three materialized viewsV 1 = (A 1 B 1 C), V 2 = (C 1D 1 E) andV 3 = (B 1 C 1 D 1 E), and relationsA andE are updated. In this example,

we assume that the updates toA andE consist of inserts to the relations, and the other relations

are not changed. This reflects reality in data warehouses, where only a few of the relations are

updated. (However, our techniques do not have any restrictions on what is updated, or what is

the form of the updates.)

If the maintenance plans of the three views are chosen independently, the best view main-

tenance plan (incremental or recomputation) for each wouldbe chosen, without any sharing

of computation. In contrast, as an illustration of the kind of plans our optimization methods

are able to generate, Figure 1.3 shows a maintenance plan forthe views that exploits sharing

of computation. Here,(A 1 B 1 C) is refreshed incrementally, while(C 1 D 1 E) and(B 1 C 1 D 1 E) are recomputed.

Two extra views,(B 1 C) and(D 1 E) have been chosen to be materialized. Of these,(B 1 C) is materializedtransiently, and is disposed as soon as the views are refreshed; this

could happen because there are also updates onB andC which make it expensive to maintain(B 1 C) as a materialized view.

The result(D 1 E) has been chosen to be materializedpermanently, and is itself refreshed

6 CHAPTER 1. INTRODUCTION

incrementally given the updates to the relationE. Its full result is then used to recompute(C 1D 1 E) as well as(B 1 C 1 D 1 E). If an incremental maintenance plan had been chosen

for (B 1 C 1 D 1 E), with recomputation chosen for(C 1 D 1 E), the differential result

of (D 1 E) would have been used in the incremental maintenance plan while the full result of(D 1 E) would be used in the recomputation plan.2
1.2 Summary of Contributions

In this section we give a summary of the main contributions ofthe different chapters of the

thesis. Section 1.2.1 describes our work on multi-query optimization which involves transient

materialization, Section 1.2.2 describes our work on queryresult caching which involves dy-

namic materialization, and Section 1.2.3 describes our work on materialized view selection and

maintenance which involves transient materialization as well as permanent materialization.

In addition to our technical contributions detailed below,another of our contributions lies

in showing, for each of the above problems, how to engineer practical systems by adding just a

few thousand lines of code to existing state-of-the-art query optimizers (in particular, the Volcano

query optimizer engine [23], which forms the core of the Microsoft SQL-Server [22] and Tandem

ServerWare SQL [6] optimizers).

1.2.1 Multi-Query Optimization

In Chapter 3, we address the problem of optimizing a set of queries exploiting the presence of

common subexpressions among the queries; this problem is referred to asmulti-query optimiza-

tion. Common subexpressions are possible evenwithina single query; the techniques we develop

deal with such intra-query common subexpressions as well. Traditional query optimizers are not

appropriate for optimizing queries with common subexpressions, since they make locally optimal

choices, and may miss globally optimal plans.

The job of multi-query optimizer, over and above that of ordinary query optimizer, is to (i)

recognize the possibilities of shared computation, and (ii) modify the optimizer search strategy

1.2. SUMMARY OF CONTRIBUTIONS 7

to explicitly account for shared computation and find a globally optimal plan.

The contributions of this work are as follows:

1. The search space for multi-query optimization is doubly exponential in the size of the

queries, and exhaustive strategies are therefore impractical; as a result, multi-query op-

timization was hitherto considered too expensive to be useful. We show how to make

multi-query optimizationpractical, by developing novel heuristic algorithms.

Further, our algorithms can be easily extended to perform multi-query optimization on

nested queries as well as multiple invocations of parameterized queries (with different

parameter values). Our algorithms also take into account sharing of computation based on

“subsumption” – examples of such sharing include computing�A<5(E) from the result of�A<10(E).
Our algorithms are independent of the data model and the costmodel, and are extensible

to new operators.

2. In addition to choosing what intermediate expression results to materialize and reuse, our

optimization algorithms also choose physical properties,such as sort order, for the ma-

terialized results. By modelling presence of an index as a physical property, our algo-

rithms also handle the choice of what (temporary) indices tocreate on materialized re-

sults/database relations.

We believe that in addition to our technical contributions,another of our contributions lies in

showing how to engineer a practical multi-query optimization system — one which can smoothly

integrate extensions, such as indexes and nested queries, allowing them to work together seam-

lessly.

1.2.2 Query Result Caching

In a traditional database engine, every query is processed independently. In decision support

applications, queries often overlap in the data that they access and in the manner in which they

utilize the data, i.e., there are common expressions between queries. A natural way to improve

8 CHAPTER 1. INTRODUCTION

performance is to allocate a limited-size area on the disk tobe used as a cache for results com-

puted by previous queries. The contents of the cache may be utilized to speed up the execution of

subsequent queries. We use the termquery cachingto mean caching of final and/or intermediate

results of queries.

Most existing decision support systems support static viewselection: select a set of views

apriori, and keep them permanently on disk. The selection isbased on either (a) the intuition

of the systems administrator, or (b) recommendation of “advisor wizards” as supported by Mi-

crosoft SQL-Server [1] based on a workload history. The advantage of query caching over static

view selection is that it can cater to changing workloads — the data access patterns of the queries

cannot be expected to be static, and to answer all types of queries efficiently, we need to dynam-

ically change the cache contents.

In Chapter 4, we present the techniques needed (a) for intelligently and automatically manag-

ing the cache contents, given the cache size constraints, asqueries arrive, and (b) for performing

query optimization exploiting the cache contents, so as to minimize the overall response time for

all the queries.

The contributions of this work are:

1. We show how to handle the caching of intermediate as well asfinal results of queries.

Intermediate results, in particular, require careful handling since caching decisions are

typically made based on usage rates, and usage rates of intermediate results are dependent

on whatelseis in the cache. Techniques for caching intermediate results were proposed

in [10], but they are based only on usage rates and would be biased against results that

are currently not in the cache. Our caching algorithms use sophisticated techniques for

deciding what to cache, taking into account what other results are cached. Moreover,

we show how to consider caching indices constructed on the flyin the same way as we

consider caching of intermediate results.

2. We show how to enable the optimizer to take into consideration the use of cached results

and indices, piggybacked on the optimization stepwith negligible overhead. All prior

cache-aware optimization algorithms have a separate cacheresult matching step.

1.2. SUMMARY OF CONTRIBUTIONS 9

3. Our algorithms are extensible to new operations, unlike much of the prior work on caching.

Moreover, prior work has mainly concentrated on cube queries; while cube queries are

important, general purpose decision support systems must support more general queries as

well. Our algorithms can handle any SQL query including nested queries. To the best of

our knowledge, no other caching technique is capable of handling caching of intermediate

results for such a general class of queries.

4. We have implemented the proposed techniques and present aperformance study that clearly

demonstrates the benefits of our approach. Our study shows that intelligent, workload

adaptive intermediate query result caching can be done fastenough to be practical, and

leads to significant overall savings.

In this work, we confine our attention only to the issue of efficient query processing, ignoring up-

dates. Data Warehouses are an example of an application where the cache replacement algorithm

can ignore updates, since updates happen only periodically(once a day or even once a week).

1.2.3 Materialized View Selection and Maintenance

Materialization of views can help speed up query and update processing. Views are especially

attractive in data warehousing environments because of thequery intensive nature of data ware-

houses. However, when a warehouse is updated, the materialized views must also be updated.

Typically, updates are accumulated and then applied to a data warehouse. Loading of updates

and view maintenance in warehouses has traditionally been done at night. While the need to pro-

vide up-to-date responses to an increasing query load is growing and the amount of data that gets

added to data warehouses has been increasing, the time window available for making the ware-

house up-to-date has been shrinking. These trends call for efficient techniques for maintaining

the materialized views as and when the warehouse is updated.

Chapter 5 addresses the problem of efficiently maintaining asetof materialized views. Al-

though the focus of our work is to speed up view maintenance, our algorithms can also be used to

choose extra transient and permanent views in order to speedup a workload containing queries

and updates (that trigger view maintenance).

10 CHAPTER 1. INTRODUCTION

Our contributions are as folows:

1. We show how to exploit transient materialization of common subexpressions to reduce the

cost of view maintenance plans.

Sharing of subexpressions occurs when multiple views are being maintained, since related

views may share subexpressions, and as a result the maintenance expressions may also be

shared. Furthermore, sharing can occur even within the planfor maintaining a single view

if the view has common subexpressions within itself.

The shared expressions could include differential expressions, as well as full expressions

which are being recomputed.

2. We show how to efficiently choose additional expressions for permanent materialization to

speed up maintenance of the given views.

Just as the presence of views allows queries to be evaluated more efficiently, the main-

tenance of the given permanently materialized views can be made more efficient by the

presence of additional permanently materialized views [45, 44]. That is, given a set of

materialized views to be maintained, we choose additional views to materialize in order to

minimize the overall view maintenance costs. The expressions chosen for permanent ma-

terialization may be used in only one view maintenance plan,or may be shared between

different views maintenance plans.

3. We show how to determine the optimal maintenance plan for each individual view, given

the choice of results for transient/permanent materialization.

Maintenance of a materialized view can either be doneincrementallyor by recomputation.

Incremental view maintenance involves computing the differential (“delta”s) of a materi-

alized view, given the “delta”s of the base relations that are used to define the views, and

merging it with the old value of the view. However, incremental view maintenance may

not always be the best way to maintain a materialized view; when the deltas are large the

view may be best maintained by recomputing it from the updated base relations.

1.2. SUMMARY OF CONTRIBUTIONS 11

Our techniques determine the maintenance policy, incremental or recomputation, for each

view in the given set such that the overall combination has the minimum cost.

4. We show how to make the above three choices in an integratedmanner to minimize the

overall cost.

It is important to point out that the above three choices are highly interdependent, and must

be taken in such a way that the overall costs of maintaining a set of views is minimized.

Specifically:� Given a subexpression useful during materialization of multiple views, choosing

whether it should be transiently or permanently materialized is an optimization prob-

lem, since each alternative has its cost and benefit. Transient views are materialized

during the evaluation of the maintenance plan and discardedafter maintenance of the

given views; such transient views themselves need not be maintained. On the other

hand, the permanent views are materialized a priori, so there is no (re)computation

cost; however, there is a maintenance cost, and a storage cost (which is long term in

that it persists beyond the view maintenance period) due to the permanently materi-

alized views.� The choice of additional views must be done in conjunction with selecting the plans

for maintaining the views, as discussed above. For instance, a plan that seems quite

inefficient could become the best plan if some intermediate result of the plan is chosen

to be materialized and maintained.

We propose a framework that cleanly integrates the choice ofadditional views to be tran-

siently or permanently materialized, the choice of whethereach of the given set of (user-

specified) views must be maintained incrementally or by recomputation, and the choice of

view maintenance plans.

5. We have implemented all our algorithms, and present a performance study, using queries

from the TPC-D benchmark, showing the practical benefits of our techniques.

12 CHAPTER 1. INTRODUCTION

1.3 Organization of the Thesis

This thesis is organized as follows. Chapter 2 gives a brief background overview of traditional

query optimization. In particular, it describes our version of the Volcano optimization framework;

the work presented in later chapters is based on this framework. Chapter 3 gives the details

of our work on multi-query optimization. This is followed byChapter 4 which addresses the

query result caching problem. Chapter 5 describes how the multi-query optimization framework

is extended to address the materialized view selection and maintenance problem. Finally, the

conclusions of the thesis and directions for future work appear in Chapter 6.

Chapter 2

Traditional Query Optimization

This chapter sets the stage for the work covered in the rest ofthe thesis. Section 2.1 gives a brief

overview of the important concerns and prior work in traditional query optimization. Section 2.2

describes the design and implementation of a query optimizer. Later chapters of this thesis build

on the framework described in this section.

2.1 Background

In this section, we provide a broad overview of the main issues involved in traditional query

optimization and mention some of the representative work inthe area. This discussion will be

kept very brief; for the details we point to the comprehensive, very readable survey by Chaudhuri

[7].

Traditionally, the core applications of database systems have been online transaction pro-

cessing (OLTP) environments like banking, sales, etc. The queries in such an environment are

simple, involving a small number of relations, say three to five. For such simple queries, the in-

vestment in sophisticated optimization usually did not payup in the performance gain. As such,

only join-order optimization and that too in a constrained search space was effective enough. The

seminal paper by Selinger et al. [51] presented a dynamic programming algorithm for searching

optimal left-linear join ordered plans. The ideas presented in this paper formed the basis of most

14 CHAPTER 2. TRADITIONAL QUERY OPTIMIZATION

optimization research and commercial development till a few years back.

However, with the growing importance of online analytical processing (OLAP) environ-

ments, which routinely involve expensive queries, more sophisticated query optimization tech-

niques have become crucial. In order to be effective in such demanding environments, the opti-

mizers need to look at less constrained search spaces without loosing much on efficiency. They

need to adapt to new operators, new implementations of theseoperators and their cost models,

changes in cost estimation techniques, etc. This calls for extensibility in the optimizer architec-

ture. These requirements led to the current generation of query optimizers, of which two rep-

resentative optimizers are Starburst [40] and Volcano [23]. While the IBM DB2 optimizer [20]

is based on Startburst, the Microsoft SQL-Server optimizer[22] is based on Volcano. The main

difference between the approaches taken by the two is the manner in which alternative plans are

generated. Starburst generates the plans bottom-up – that is, best plans for all expressions onk
relations are computed before expressions on more thank relations are considered. On the other

hand, Volcano generates the plans top-down – that is, it computes the best plans for only those

expressions onk relations which are included in some expression on greater thank relations

being expanded.

The need for effective optimization of large, complex queries has brought focus to the inti-

mately related problem of statistics and cost estimation. This is because the cost-based decisions

of an optimizations can only be as reliable as its estimates of the cost of the generated plans.

A plan is composed of operators (e.g. select, join, sort). The cost of an operator is a function

of the statistical summary of its input relations, which includes the size of the relation, and for

each relevant attribute, the number of distinct values of the attribute, the distribution of these

attribute values in terms of an histogram, etc. While the accuracy of these statistics is crucial –

the plan cost estimate may be sensitive to these statistics –the maintenance of these statistics may

be very time consuming. The problem of efficiently maintaining reasonably accurate statistics

has received much attention in the literature; for the details, we refer to the paper by Poosala et

al. [41].

Even if we have perfect information about the input relations, modeling the cost of the oper-

ators could still be very difficult. This is because a reasonable cost model must take into account

2.2. DESIGN OF A COST-BASED QUERY OPTIMIZER 15

the affect of, for example, the buffering of the relations inthe database cache, access patterns of

the inputs, the memory available for the operator’s execution, etc. Moreover, usually the plans

execute in a pipeline – that is, multiple operators may execute simultaneously. Given the system’s

bounded resources like CPU and main memory, the execution ofthese operators may interfere,

affecting the execution cost of the plan. There has been muchresearch on cost modeling; an

authoritative, very comprehensive survey by Graefe [21] provides the details of the prior work in

this area.

2.2 Design of a Cost-based Query Optimizer

In this section, we describe the design of a cost-based transformational query optimizer, based

on the Volcano optimizer [23].

There are two main advantages of using Volcano as the basis ofour work. The first is that

Volcano has gained widespread acceptance in the industry asa state-of-the-art optimizer; the

optimizers of Microsoft SQL Server [22] and Tandem ServerWare SQL Product [6] are based on

Volcano. Our work is easily integrable into such systems. Secondly, the Volcano optimization

framework is not dependent on the data model or on the execution model. This makes Volcano

extensible to new data models (e.g. use of Volcano optimization for object oriented systems was

reported in [4]) and for new transformations, operators andimplementations.

The implementation of this query optimizer worked out to around 17,000 lines of C++ code.

Later chapters in this thesis, describing our work on multi-query optimization, query result

caching and materialized view selection and maintenance, build on the framework described

in this section. Each of these extensions could be implemented in about another 3,000 lines of

C++ code.

2.2.1 Overview

Figure 2.1 gives an overview of the optimizer. Given the input query, the optimizer works in

three distinct steps:

16 CHAPTER 2. TRADITIONAL QUERY OPTIMIZATION

Step 3
Logical Plan Space Generation

(Best Plan)(Input Query)

Physical Plan Space Generation
Step 2

Best Plan Search

Logical Plan Space

Physical Plan Space

Step 1

Q

Q1

Qm

...

Pm2

...

Pmn

Pm1

P12

...

P1k

P11

...

... P*

Figure 2.1: Overview of Cost-based Transformational QueryOptimization

1. Generate all the semantically equivalent rewritings of theinput query.

In Figure 2.1,Q1; : : : ; Qm are the various rewritings of the input queryQ. These rewritings

are created by applying “transformations” on different parts of the query; a transformation

gives an alternative semantically equivalent way to compute the given part. For example,

consider the query(A 1 (B 1 C)). The join commutativitytransformation says that(B 1 C) is semantically equivalent to(C 1 B), giving (A 1 (C 1 B)) as a rewriting.

An issue here is how to manage the application of the transformation so as to guarantee that

all rewritings of the query possible using the given set of transformations are generated, in

as efficient way as possible.

For even moderately complex queries, the number of possiblerewritings can be very large.

So, another issue is how to efficiently generate and compactly represent the set of rewrit-

ings.

This step is explained in Section 2.2.2.

2. Generate the set of executable plans for each rewriting generated in the first step.

Each rewriting generated in the first step serves as atemplatethat defines the order in

2.2. DESIGN OF A COST-BASED QUERY OPTIMIZER 17

which the logical operations (selects, joins, aggregates)are to be performed – how these

operations are to be executed is not fixed. This step generates the possible alternative exe-

cution plans for the rewriting. For example, the rewriting(A 1 (C 1 B)) specifies thatA
is to be joined with the result of joiningC with B. Now, suppose the join implementations

supported are nested-loops-join, merge-join and hash-join. Then, each of the two joins can

be performed using any of these three implementations, giving nine possible executions of

the given rewriting.

In Figure 2.1,P11; : : : ; P1k are thek alternative execution plans for the rewritingQ1, andPm1; : : : ; Pmn are then alternative execution plans forQm.

The issue here, again, is how to efficiently generate the plans and also how to compactly

store the enormous space of query plans.

This step is explained in Section 2.2.3

3. Search the plan space generated in the second step for the “best plan”.

Given the cost estimates for the different algorithms that implement the logical operations,

the cost of each execution plans is estimated. The goal of this step is to find the plan with

the minimum cost.

Since the size of the search space is enormous for most queries, the core issue here is

how to perform the search efficiently. The Volcano search algorithm is based on top-down

dynamic programming (“memoization”) coupled with branch-and-bound.

Details of the search algorithm appear in Section 2.2.4.

For clarity of understanding, we take the approach of executing one step fully before moving

to the next in the rest of this chapter. This is the approach that will be extended on in the

later chapters. However, this may not be the case in practice; in particular, the original Volcano

algorithm does not follow this execution order; Volcano’s approach is discussed in Section 2.2.5.

In order to emphasize the “template-instance” relationship between the rewritings and the

execution plans, we hereafter refer to them aslogical plansandphysical plansrespectively.

18 CHAPTER 2. TRADITIONAL QUERY OPTIMIZATION

2.2.2 Logical Plan Space

The logical plan space is the set of all semantically equivalent logical plans of the input query. We

begin with a description of thelogical transformationsused to generate the logical plan space.

The logical plan space is typically very large; a compact representation of the same, called the

Logical Query DAGrepresentation is described next. Further, the algorithm to generate all the

logical plans possible given the set of transformations, compactly represented as a Logical Query

DAG, is presented. Lastly, we give the rationale of choosingVolcano optimization as the basis

of our work.

Logical Transformations

The logical transformations specify the semantic equivalence between two expressions to the

optimizer. Examples of logical transformations are:� Join Commutativity:(A 1 B)! (B 1 A)� Join Associativity:((A 1 B) 1 C)! (A 1 (B 1 C))� Predicate Pushdown:(A 1�^�0 B) ! (A 1� ��0(B)) if all attributes used in�0 are fromB.

The complexity of the logical plan generation step, described below, depends on the given set

of transformations; an unfortunate choice of transformations can lead to the generation of the

same logical plan multiple times along different paths. Pellenkroft et al. [39] present a set of

transformations that avoid this redundancy.

The complete list of logical transformations used in our optimizer is given in Appendix B.

Logical Query DAG Representation

A Logical Query DAG(LQDAG) is a directed acyclic graph whose nodes can be divided into

equivalence nodesand operation nodes; the equivalence nodes have only operation nodes as

children and operation nodes have only equivalence nodes aschildren.

2.2. DESIGN OF A COST-BASED QUERY OPTIMIZER 19

(root equivalence node)

A B C

A B C

A B B C A C

Figure 2.2: Logical Query DAG for A1 B 1 C. Commutativity not shown; every join node has

another join node with inputs exchanges, below the same equivalence node.

An operation node in the LQDAG corresponds to an algebraic operation, such as join (1),

select (�), etc. It represents the expression defined by the operationand its inputs. An equivalence

node in the LQDAG represents the equivalence class of logical expressions (rewritings) that

generate the same result set, each expression being defined by a child operation node of the

equivalence node, and its inputs. An important property of the LQDAG is that there are no two

equivalence nodes that correspond to the same result set. The algorithm for expansion of an input

query into its LQDAG is presented later in this section.

Figure 2.2 shows a LQDAG for the query A1 B 1 C. Note that the DAG has exactly one

equivalence node for every subset offA;B;Cg; the node represents all ways of computing the

joins of the relations in that subset. Though the LQDAG in this example represents only a single

query A1 B 1 C, in general a LQDAG can represent multiple queries in a consolidated manner.

Logical Plan Space Generation

The given query tree is initially represented directly in the LQDAG formulation. For example,

the query tree of Figure 2.3(a) for the query(A 1 B 1 C) is initially represented in the LQDAG

formulation, as shown in Figure 2.3(b). The equivalence nodes are shown as boxes, while the

operation nodes are shown as circles.

The initial LQDAG is then expanded by applying all possible transformations on every node

of the initial LQDAG representing the given query. In the example, suppose the only transfor-

mations possible are join associativity and commutativity. Then the plans(A 1 (B 1 C)) and

20 CHAPTER 2. TRADITIONAL QUERY OPTIMIZATION

A B

C

A B C

A B C

A B

A B C

(c) Expanded DAG after transformations(a) Initial Query (b) DAG representation of query

A B C

A B B C A C

Figure 2.3: Logical Plan Space Generation for A1 B 1 C.((A 1 C) 1 B), as well as several plans equivalent to these modulo commutativity can be ob-

tained by transformations on the initial LQDAG of Figure 2.3(b). These are represented in the

LQDAG shown in Figure 2.3(c).

Procedure EXPANDDAG, presented in Figure 2.4, expands the input query’s LQDAG (as in

Figure 2.3(b)) to include all possible logical plans for thequery (as in Figure 2.3(c))in one pass

– that is, without revisiting any node. The procedure applies the transformations to the nodes in

a bottom-up topological manner – that is, all the inputs of a node are fully expanded before the

node is expanded.

In the process, new subexpressions are generated. Some of these subexpressions may be

equivalent to expressions already in the LQDAG. Further, subexpressions of the query may be

equivalent to each other, even if syntactically different.For example, suppose the query contains

two subexpressions that are logically equivalent but syntactically different (e.g.,((R 1 S) 1 T),
and(R 1 (S 1 T))). Before the second subexpression is expanded, the Query DAG would con-

tain two different equivalence nodes representing the two subexpressions. Whenever it is found

that by applying a transformation to an expression in one equivalence node leads to an expression

in the other equivalence node (in the above example, after applying join associativity), the two

equivalence nodes are deduced as representing the same result andunified, that is, replaced by a

single equivalence node. The unification of the two equivalence nodes may cause the unification

of their ancestors. For example, if the query had the subexpressions(A 1 ((R 1 S) 1 T)) and(A 1 (R 1 (S 1 T))), then the unification of the equivalence nodes containing((R 1 S) 1 T)

2.2. DESIGN OF A COST-BASED QUERY OPTIMIZER 21

Procedure EXPANDDAG
Input: eq, the root equivalence node for the initial LQDAG
Output: The expanded LQDAG
Begin

for each unexpanded logical operation node op 2
hild(eq)
for each inpEq 2 input(op)

EXPANDDAG(inpEq)
apply all possible logical transformations to op

/* may create new equivalence nodes */
for each resulting logical expression E

if E 62 LQDAG
add E’s root operation node to
hild(eq)

else if the previous instance E0 2 eq0 where eq0 6� eq
unify eq0 with eq /* may trigger further unifications */

mark op as expanded
End

Figure 2.4: Algorithm for Logical Query DAG Generation

and(R 1 (S 1 T)) will cause the equivalence nodes containing the above two subexpressions

to be unified as well. Thus, the unification has a cascading effect up the LQDAG.

In order to efficiently check the presence of a logical expression in the LQDAG, a hash table

is used. Recall that an expression is identified by a logical operator (called theroot operator) and

its input equivalence nodes; for example, the expression(A 1 (B 1 C)) is identified by the root

operator1 and its two input equivalence nodes corresponding toA and(B 1 C). As such, the

has value of an expression is computed as a function of the type-id of the root operator and the

id of its input equivalence nodes.

A logical space generation algorithm is calledcompleteiff it acts on the initial LQDAG

for a queryQ and expands it into an LQDAG containing all possible logicalplans possible

using the given set of transformations. We end this description with a proof of completeness of

EXPANDDAG.

Theorem 2.2.1 EXPANDDAG is complete.

Proof: Let D0 denote the initial LQDAG for the queryQ. EXPANDDAG acts onD0 and, by

applying the given set of transformations as shown in the pseudocode in Figure 2.4, generates

22 CHAPTER 2. TRADITIONAL QUERY OPTIMIZATION

a final expanded LQDAGDE. Now, consider any complete algorithm, called COMPLETE, that

acts onD0 and generates the LQDAGDC . We show that all plans contained inDC are contained

in DE, thus proving the theorem.

We trace the expansion ofD0 intoDC by COMPLETE as follows:D0 T1�! D1 T2�! D2 T3�! � � � Tn�! Dn � DC
where

Ti�! denotes the application of the transformationTi, transforming a subplanP oldi below

the equivalence nodeei in Di�1 to a new semantically equivalent planP newi belowei, resulting

in Di.
Let k be such that for alli < k, all plans inDi are contained inDE, but there exists a plan inDk, sayP , that is not contained inDE. We show, by contradiction, that such ak cannot exist.

Clearly, the planP newk , generated by the application of transformationTk to the subplanP oldk
of ek during the execution of COMPLETE, is a subplan ofP . Let P 0 denote the plan obtained

by replacing the subplanP newk of P by P oldk ; P 0 is contained inDk�1. But then, by the choice

of k above,P 0 is also contained inDE. This implies that (a) the subplanP oldk is present belowek in DE, and that (b) the subplanP newk is not present belowek in DE – otherwise,P would be

present inDE, which a contradiction due to the choice ofk. Next, we use (b) to contradict (a).

When EXPANDDAG visits ek, it applies all the available transformations, includingTk, to

the plans belowek till no further new plans are generated. SinceP newk is not generated in this

exercise, this implies thatP oldk is also not present belowek after it has been expanded as above.

Now, because EXPANDDAG visits nodes in a bottom-up topological manner, neitherek nor any

of its descendents are visited later during the expansion. This implies thatP oldk is never generated

during the execution of EXPANDDAG and is therefore not present belowek in DE, leading to a

contradiction.2
2.2.3 Physical Plan Space

The plans represented in the Logical Query DAG are only at an abstract, semantic level and,

in a sense, provide “templates” that guarantee semantic correctness for the physical plans. For

2.2. DESIGN OF A COST-BASED QUERY OPTIMIZER 23

instance, the logical plan((A 1 B) 1 C) only specifies the order in which the relations are to be

joined. It does not specify the actual execution in terms of the algorithms used for the different

operators; for example, a1 can be either a nested-loops join, a merge-join, an indexed nested-

loops or a hash-join. As such, the cost for these plans is undefined. Further, the logical plan does

not consider thephysical propertiesof the results, like sort order on some attribute, into account

since results with different physical properties are logically equivalent.

However, the physical properties are important since (a) they affect the execution costs of

the algorithms (e.g., the merge join does not need to sort itsinput if it is already sorted on the

appropriate attribute), and (b) they need to be taken into account when specified in the query

using theORDER BY clause.

In this section, we give the details of how the physical plan space for a query is generated.

Since the physical plan space is very large, a compact representation for the same is needed.

We start with a description of the representation used in ourimplementation, called thePhysical

Query DAG. This representation is a refinement of the Logical Query DAG(LQDAG) represen-

tation for the logical plan space described in Section 2.2.2. This is followed by a description

of the algorithm to generate the physical plan space in the Physical Query DAG representation

given the LQDAG for the input query.

Physical Query DAG Representation

The Physical Query DAG (PQDAG) is a refinement of the LQDAG. Given an equivalence nodee
in the LQDAG, and a physical propertyp required on the result ofe, there exists an equivalence

node in the PQDAG representing the set of physical plans for computing the result ofe with

exactlythe physical propertyp. A physical plan in this set is identified by a child operationnode

of the equivalence node (called the physical plan’s root operation node), and its input equivalence

nodes.

For contrast, we hereafter term the equivalence nodes in theLQDAG logical equivalence

nodesand the equivalence nodes in the PQDAGphysical equivalence nodes. Similarly, we here-

after term the operation nodes in the physical plans asphysical operation nodesto disambiguate

24 CHAPTER 2. TRADITIONAL QUERY OPTIMIZATION

A.X = B.Y

sort<A.X>

[A B, sort A.X]

sort<A.X> sort<B.Y>[A, sort A.X] [B, sort B.Y]

A B

A B

Nested Loops Join Merge Join

[B, null][A, null]

[A B, null]

Figure 2.5: Physical Query DAG forA 1 B
from the logical operation nodes in the logical plans.

The physical operation nodes can either be (a)algorithmsfor computing the logical opera-

tions (e.g., the algorithm merge join for the logical operation1), or (b)enforcersthat enforce the

required physical property (e.g., the enforcer sort to enforce the physical property sort-order on

an unsorted result).

Figure 2.5 illustrates the PQDAG for(A 1A:X=B:Y B). The dotted boxes are the logical

equivalence nodes, labelled alongside with the corresponding relational expressions. The solid

boxes within are the corresponding physical equivalence nodes for the respective physical prop-

erties stated alongside. The circles denote the physical operators: those within the dotted boxes

are the enforcers (sort operations), while those within thedashed box are the algorithms (nested

loops join and merge join) corresponding to the logical joinoperator as shown.

Physical Property Subsumption. Figure 2.5 shows two physical equivalence nodes corre-

sponding to the result(A 1 B): one representing plans to compute(A 1 B) with no sort order,

and the other representing plans to compute(A 1 B) with the result sorted onA:X. Clearly, any

plan that computes(A 1 B) sorted onA:X can be used as a plan that computes(A 1 B) with

no sort order.

In general, we say that the physical equivalence nodee subsumesthe physical equivalence

2.2. DESIGN OF A COST-BASED QUERY OPTIMIZER 25

nodee0 iff any plan that computese can be used as a plan that computese0; this defines apartial

orderon the set of physical equivalence nodes corresponding to a given logical equivalence node.

While finding the best plan for the physical equivalence nodee (see Section 2.2.4), the pro-

cedure FINDBESTPLAN not only looks at the plans belowe, but also at plans below physical

quivalence nodese0 that subsumee, and returns the overall cheapest plan. To save on expensive

physical property comparisons during the search, the physical equivalence nodes corresponding

to the same logical equivalence node are explicitly structured into a DAG representing the partial

order.

Furthering the terminology, we say that the physical equivalence nodee strictly subsumesthe

physical equivalence nodee0 iff e subsumese0, but e ande0 are distinct. Finally, we say thate
immediately subsumese0 iff e strictly subsumese0 but there does not exist another distinct nodee00 such thate strictly subsumese00 ande00 strictly subsumese0.
Physical Plan Space Generation

The PQDAG for the input query is generated from its LQDAG using Procedure PHYSDAGGEN

listed in Figure 2.6.

Given a subgoal(e; p) wheree is a logical equivalence node in the LQDAG, andp a physical

property, PHYSDAGGEN creates a physical equivalence node corresponding to(e; p) if it does

not exist already, and then populates it with the physical plans that computee with the given

physical property. Depending on the root operation node being an algorithm or an enforcer, the

corresponding physical plan is called analgorithm planor anenforcer planrespectively.

An algorithm plan is generated by taking a logical plan fore as a template and instantiating it

as follows. The algorithma that forms the root of the physical plan implements the logical opera-

tion o at the root of the logical plan, generating the result with the physical propertyp. The inputs

of a are the physical equivalence nodes returned by recursive invocations of PHYSDAGGEN on

the respective input equivalence nodes ofo with physical properties as required bya.

For each enforcerf that enforces the physical propertyp, an enforcer plan is generated withf as the root operation node. The input off is the physical equivalence node returned by a

26 CHAPTER 2. TRADITIONAL QUERY OPTIMIZATION

Procedure PHYSDAGGEN

Input: e, a equivalence node in the Logical Query DAG,p, the desired physical property
Output: np, the equivalence node in the Physical Query DAG for e with physical property p,

populated with the corresponding plans
Begin

if an equivalence node np exists for e with property p
return it

create an equivalence node np
for every operation node o below e

for every algorithm a for o that guarantees property p
create an algorithm node oa under np.
for each input i of e

let oi be the ith input
let pi the physical property required from input i by algorithm a
set input i of oa = PHYSDAGGEN(oi , pi)

for every enforcer f that generates property p
create an enforcer node of under np
set the input of of = PHYSDAGGEN(e, null)

/* null denotes “no physical property requirement” */
return np

End

Figure 2.6: Algorithm for Physical Query DAG Generation

2.2. DESIGN OF A COST-BASED QUERY OPTIMIZER 27

recursive invocation of PHYSDAGGEN on the same equivalence node with no required physical

property.

In the PQDAG of Figure 2.5, the logical equivalence node(A 1A:X=B:Y B) is refined into

the two physical equivalence nodes – one for no physical property and the other for sort order

onA:X. The logical join instantiated as nested loops join forms the root of the algorithm plan

for the former. For the latter, the same logical join instantiated as merge-join forms the root

of the algorithm plan while the sort operator forms the root of the enforcer plan. From the

PQDAG shown, it is apparent that the nested loops join requires no physical property on its input

relationsA andB, while the merge join requires its input relationsA andB sorted onA:X andB:X respectively.

The entire PQDAG is generated by invoking PHYSDAGGEN on the root of the input query’s

LQDAG, with the desired physical properties of the query.

2.2.4 The Search Algorithm

Each plan in the PQDAG has a cost computed recursively by adding the local cost of the physical

operator at the root to the cost of the subplans of each of its inputs.1 This section describes how

Volcano determines the plan with the least cost from the space of plans represented in the Phys-

ical Query DAG generated as above. The search algorithm is based on dynamic programming –

specifically, it uses the technique ofmemoizationwherein the best plans for the nodes are saved

after the first computation, and reused when needed later.

We assume that the set of enforcers being considered are suchthat in any best plan, no

two enforcers can be cascaded together; hence the plans withenforcer cascades need not be

considered while searching for the best plan. This may not betrue always. For example, the

index enforcer, that takes a sorted input and builds a clustered index on the same, requires that

its input be sorted on the relevant attribute, and the best plan for the input may be an enforcer

plan with the sort operator as the root. We handle this by introducing acompositeenforcer for

each possible cascade – in the above case, the sort-index cascade is handled by introducing a

1The formulae used to estimate the operator costs appear in Appendix C.

28 CHAPTER 2. TRADITIONAL QUERY OPTIMIZATION

Procedure FINDBESTPLAN

Input: e, a physical equivalence node in the PQDAG
Output: The best plan for e
Begin

bestEnfPlan = FINDBESTENFPLAN (e)
bestAlgPlan = FINDBESTALGPLAN (e)
return the cheaper of bestEnfPlan and bestAlgPlan

End

Procedure FINDBESTENFPLAN

Input: e, a physical equivalence node in the PQDAG
Output: The best enforcer plan for e
Begin

if best enforcer plan for e is present /* memoized */
return best enforcer plan for e

bestEnfPlan = dummy plan with cost +1
for each enforcer child op of e

planCost = cost of op
for each input equivalence node ei of op

inpBestPlan = FINDBESTALGPLAN (ei)
planCost = planCost + cost of inpBestPlan

if planCost < cost of bestEnfPlan
bestEnfPlan = plan rooted at op

memoize bestEnfPlan as best enforcer plan for e
return bestEnfPlan

End

Procedure FINDBESTALGPLAN

Input: e, a physical equivalence node in the PQDAG
Output: The best algorithm plan for e
Begin

if best algorithm plan for e is present /* memoized */
return best algorithm plan for e

bestAlgPlan = dummy plan with cost +1
for each algorithm child op of e

planCost = cost of op
for each input equivalence node ei of op

inpBestPlan = FINDBESTPLAN (ei)
planCost = planCost + cost of inpBestPlan

if planCost < cost of bestAlgPlan
bestAlgPlan = plan rooted at op

for each equivalence node e0 that immediately subsumes e
subsBestAlgPlan = FINDBESTALGPLAN (e0)
if cost of subsBestAlgPlan < cost of bestAlgPlan

bestAlgPlan = subsBestAlgPlan
memoize bestAlgPlan as best algorithm plan for e
return bestAlgPlan

End

Figure 2.7: The Search Algorithm

2.2. DESIGN OF A COST-BASED QUERY OPTIMIZER 29

sort-cum-index enforcer. The space of enforcer plans generated using the resulting enforcer set

contains the best enforcer plan.

Procedure FINDBESTPLAN , shown in Figure 2.7, finds the best plan for an equivalence

nodee in the PQDAG. FINDBESTPLAN calls the procedures FINDBESTENFPLAN and FIND-

BESTALGPLAN that respectively find the best enforcer plan and algorithm plan fore, and returns

the cheaper of the two plans.

FINDBESTENFPLAN looks at each enforcer child ofe, and constructs the best plan for that

enforcer by taking the best algorithm plan for its input physical equivalence node. The cheapest

of these plans is the best enforcer plan fore.
FINDBESTALGPLAN looks at each algorithm child ofe, and builds the best plan for that

algorithm by taking the best plan for each of its input physical equivalence nodes, determined by

recursive invocations of FINDBESTPLAN . Further, it looks at the best plan for each immediately

subsuming node (see Section 2.2.3), determined recursively. The cheapest of all these plans is

the best algorithm plan fore.
Observe that subsuming physical equivalence nodes are considered only while searching for

the best algorithm plan (in FINDBESTALGPLAN) and not while searching for the best enforcer

plan (in FINDBESTENFPLAN). This is because an enforcer plan for the subsuming physical

equivalence node has a cost at least as much as the best enforcer plan for the subsumed physical

equivalence node.2

Branch-and-Bound Pruning. Branch-and-bound pruning is implemented by passing an extra

parameter, thecost limit, which specifies an upper limit on the cost of the plans to be considered.

The cost limit for the root equivalence node is initially infinity. When a plan for a physical

equivalence nodee with cost less than the current cost limit is found, its cost becomes the new

cost limit for future search of the best plan fore.
The cost limit is propagated down the DAG during the search and helps prune the search

space as follows. Consider the invocation of FINDBESTPLAN on the physical equivalence nodee. In the call to FINDBESTENFPLAN , the cost limit for the input of the enforcerop is the cost

2This is assuming that, for example, cost of sortingA onA:X is at most that of sorting it onhA:X;A:Y i

30 CHAPTER 2. TRADITIONAL QUERY OPTIMIZATION

limit for e minus the local cost ofop. Similarly, in FINDBESTALGPLAN invoked one, when

invoking FINDBESTPLAN on theith input of an algorithm node childop of e, the cost limit for

the plan for theith input is the cost limit fore minus the sum of the costs of best plans for earlier

inputs toop as well as the local cost of computingop. The recursive plan generation occurs only

till the cost limit is positive; when the cost limit becomes non-positive, the current plan is pruned.

If all the plans fore are pruned for the given cost limit, then the cost limit is a lower bound on the

best plan fore – this lower bound is used to prune later invocations one with higher cost limits.

Branch-and-bound pruning is not shown in the pseudocode forFINDBESTPLAN in Fig-

ure 2.7, for sake of simplicity.

2.2.5 Differences from the Original Volcano Optimizer

In this section, we point out the major differences between our optimizer and the Volcano opti-

mizer as described in [23].

Separation of Logical/Physical Plan Space Generation and Search

Our approach in this chapter has been to assume that the threesteps of (1) LQDAG generation,

(2) PQDAG generation, and (3) search for the best plan are executed one after another, inde-

pendently. In other words, the optimization task goes “breadth-first” on the graph of Figure 2.1

– given the input queryQ, first all its rewritingsQ1; : : : ; Qm are generated, then all its execu-

tion plansP11; : : : ; Pmn are generated, and finally the best execution planP � is identified and

returned.

This may not be the case in reality, where these three steps may interleave. For example, on

the other extreme, the optimizer may choose to go “depth-first” on the graph of Figure 2.1. FirstQ1 is generated, then its corresponding execution plansP11; : : : ; P1k, are generated and the best

plan so far identified. Then, the next rewritingQ2 is generated, folowed by its corresponding

execution plans and the best plan so far is updated, if a better plan is seen. This repeats for all the

successive rewritings uptoQm, and finally the overall best plan is returned. This is essentially the

Volcano algorithm, as described in [23]. This approach may be advantageous when the complete

2.2. DESIGN OF A COST-BASED QUERY OPTIMIZER 31

space of plans is too big to fit in memory, since here the rewritings and the plans that have already

been found to be suboptimal can be discarded before the end ofthe algorithm.

Unification of Equivalent Subexpressions

The original Volcano algorithm does not generate the unifiedLQDAG as explained in Sec-

tion 2.2.2. Instead, the generated LQDAG may have multiple logical equivalence nodes rep-

resenting the same logical expressions.

For example, consider the query((A 1 B 1 C) [(B 1 C 1 D)). The Volcano optimizer

does not consider the two occurences ofB as refering to the same relation. Similarly for the two

occurences ofC. Instead each occurrence ofB orC is considered a distinct relation; effectively,

the query is interpreted as((A 1 B 1 C) [(B0 1 C 0 1 D)) whereB0 andC 0 are clones ofB
andC respectively. This does not alter the search space, since during execution the two accesses

of B (or C) are going to be independent, anyway. However, by doing so, it fails to recognise

that the two subexpressions expressions(B 1 C) and(B0 1 C 0) are identical, and therefore

optimizes them independently.

In our version of Volcano, since the equivalent subexpressions are unified (see Section 2.2.2),

the subexpression is going to be optimized only once and the best plan reused for both of its

occurrences. In general, the common subexpression may be rather complex, and unification may

reduce the optimization effort significantly.

Separation of the Enforcer and Algorithm Plan Spaces

Our version of Volcano memoizes the best algorithm plan as well as the best enforcer plan for

each physical equivalence node. On the other hand, Volcano stores only the overall best plan.

While searching for the best plan for, say,(A 1A:X=B:Y B) sorted onA:X, Volcano explores

the enforcer plan with the sort operation onA:X as the root and the equivalence node for unsorted

result as input. In order to determine the best plan for this input node, in the naive case, it visits

the equivalence nodes that subsume the same. In particular,it explores the equivalence node

for the sort orderA:X as well, landing back where it had started and thus gets into an infinite

32 CHAPTER 2. TRADITIONAL QUERY OPTIMIZATION

recursion. Volcano tries to avoid this by passing down an extra parameter, theexcluding physical

property, to the search function. In the above example, the excludingphysical property is “sort

order onA:X” and helps the recursive call to determine the best plan for the unsorted result

figure that the equivalence node with sort order onA:X should not be explored while looking

for the best plan.

However, this approach has its own problems. The best plan thus found for the equivalence

node with no sort order is subject to the exclusion of the saidphysical property and may not

be its overall best plan; in particular, the merge-join planfor the result that is present below the

equivalence code for sort orderA:X may be the overall best plan for the unsorted result, but has

not been considered above. Thus, at each equivalence node, the optimizer needs to memoize the

best plan for each excluded physical property apart from theoverall best plan — a significant

amount of book-keeping.

Our version obviates the above problem, as discussed earlier in Section 2.2.4 by observing

that one need only consider algorithm plans as input to an enforcer while looking for the best

enforcer plan. While searching for the best plan for(A 1 B) sorted onA:X, the enforcer plan

considered only cosists of the sort operation over the best algorithm plan for the unsorted result.

In general, it can be seen that in Figure 2.7, neither of FINDBESTPLAN , FINDBESTENFPLAN

and FINDBESTALGPLAN are ever invoked more than once on the same equivalence node,thus

proving that the recursion always terminates.

2.3 Summary

In this chapter, we first gave a brief overview of the issues intraditional query optimization, and

pointed out the important research and development work in this area. We then gave a detailed

description of the design of our version of the Volcano queryoptimizer, which provides the basic

framework for the work presented in this thesis. Later chapters of this thesis modify this basic

optimizer, enabling it to perform multi-query optimization, query result cache management and

materialized view selection and materialization respectively.

For sake of simplicity, the later chapters restrict to the logical plan space. The Query DAG

2.3. SUMMARY 33

refered hereafter will refer to the Logical Query DAG, unless explicitly stated otherwise. How-

ever, the descriptions therein can be easily extended in terms of the physical plan space.

Chapter 3

Multi-Query Optimization

This chapter1 addresses the problem of optimizing a set of queries exploiting the presence of

common sub-expressions among the queries; this problem is referred to asmulti-query optimiza-

tion. Common subexpressions are possible evenwithina single query; the techniques we develop

deal with such intra-query common subexpressions as well.

Traditional query optimizers are not appropriate for optimizing queries with common sub

expressions, since they make locally optimal choices, and may miss globally optimal plans as

the following example demonstrates.

Example 3.0.1 Let Q1 andQ2 be two queries whose locally optimal plans (i.e., individual best

plans) are(R 1 S) 1 P and (R 1 T) 1 S respectively. The best plans forQ1 andQ2
do not have any common sub-expressions, hence they cannot share However, if we choose the

alternative plan(R 1 S) 1 T (which may not be locally optimal) forQ2, then, it is clear thatR 1 S is a common sub-expression and can be computed once and used in both queries. This

alternative with sharing ofR 1 S may be the globally optimal choice.

On the other hand, blindly using a common sub-expression maynot always lead to a globally

optimal strategy. For example, there may be cases where the cost of joining the expressionR 1 S
with T is very large compared to the cost of the plan(R 1 T) 1 S; in such cases it may make

1Joint work with S. Seshadri, S. Sudarshan and Siddhesh Bhobe. Parts of this chapter appeared in SIGMOD

2000 [47]

35

no sense to reuseR 1 S even if it were available.2
Example 3.0.1 illustrates that the job of multi-query optimizer, over and above that of ordi-

nary query optimizer, is to (i) recognize the possibilitiesof shared computation, and (ii) modify

the optimizer search strategy to explicitly account for shared computation and find a globally

optimal plan.

While there has been work on multi-query optimization in thepast ([54, 56, 53, 13, 38]),

prior work has concentrated primarily on exhaustive algorithms. Other work has concentrated

on finding common subexpressions as a post-phase to query optimization [18, 59], but this gives

limited scope for cost improvement. The search space for multi-query optimization is doubly

exponential in the size of the queries, and exhaustive strategies are therefore impractical; as a

result, multi-query optimization was hitherto consideredtoo expensive to be useful. We show

how to make multi-query optimizationpractical, by developing novel heuristic algorithms, and

presenting a performance study that demonstrates their practical benefits.

We have decomposed our approach into two distinct tasks: (i)recognize possibilities of

shared computation (thus essentially setting up the searchspace by identifying common sub-

expressions), and (ii) modify the optimizer search strategy to explicitly account for shared com-

putation and find a globally optimal plan. Both of the above tasks are important and crucial for

a multi-query optimizer but areorthogonal. In other words, the details of the search strategy do

not depend on how aggressively we identify common sub-expressions (of course, the efficacy of

the approach does).

The rest of this chapter is structured as follows: We describe how to set up the search space for

multi-query optimization in Section 3.1. Next, we present three heuristics for finding the globally

optimal plan. Two of the heuristics we present, Volcano-SH and Volcano-RU are lightweight

modifications of the Volcano optimization algorithm, and are described in Section 3.2. The third

heuristic is a greedy strategy which iteratively picks the subexpression that gives the maximum

benefit (reduction in cost) if it is materialized and reused;this strategy is covered in Section 3.3.

Our extensions to create indexes on intermediate relationsand nested queries are discussed in

Sections 3.5. We describe the results of our performance study in Section 3.6. Section 3.7

36 CHAPTER 3. MULTI-QUERY OPTIMIZATION

discusses related work. We summarize the chapter in Section3.8.

3.1 Setting Up The Search Space

As we mentioned earlier, the job of a multi-query optimizer is to (i) recognize possibilities of

shared computation (thus essentially setting up the searchspace by identifying common sub-

expressions) and (ii) modify the optimizer search strategyto explicitly account for shared com-

putation and find a globally optimal plan. Both of the above tasks are important and crucial for

a multi-query optimizer but areorthogonal. In other words, the details of the search strategy do

not depend on how aggressively we identify common sub-expressions (of course, the efficacy of

the strategy does). We emphasize the search strategy component in this thesis.

To apply multi-query optimization to a batch of queries, thequeries are represented together

in a single Query DAG, sharing subexpressions (ref. Section2.2.2). To make the Query DAG

rooted, a pseudo operation node is created, which does nothing, but has the root equivalence

nodes of all the queries as its inputs. We extend the Query DAGgeneration algorithm of Sec-

tion 2.2.2 to aid multi-query optimization by introducingsubsumption derivationswhich identify

and add more CSEs into the Query DAG, thus increasing the potential of sharing within the plans.

For example, suppose two subexpressionse1: �A<5(E) and e2: �A<10(E) appear in the

query. The result ofe1 can be obtained from the result ofe2 by an additional selection, i.e.,�A<5(E) � �A<5(�A<10(E)). To represent this possibility we add an extra operation node�A<5
in the Query DAG, betweene1 ande2. Similarly, givene3: �A=5(E) ande4: �A=10(E), we

can introduce a new equivalence nodee5: �A=5_A=10(E) and add new derivations ofe3 ande4
from e5. The new node represents the sharing of accesses between thetwo selection. In general,

given a number of selections on an expressionE, we create a single new node representing the

disjunction of all the selection conditions.

Similar derivations also help with aggregations. For example, if we havee6: dnoGsum(Sal)(E)
ande7: ageGsum(Sal)(E), we can introduce a new equivalence nodee8: dno;ageGsum(Sal)(E) and

add derivations ofe6 ande7 from equivalence nodee8 by further groupbys ondno andage.
The idea of applying an operation (such as�A<5 on one subexpression to generate another

3.2. REUSE BASED MULTI-QUERY OPTIMIZATION ALGORITHMS 37

has been proposed earlier [45, 54, 59]. Integrating such options into the Query DAG, as we

do, clearly separates the space of alternative plans (represented by the Query DAG) from the

optimization algorithms. Thereby, it simplifies our optimization algorithms, allowing them to

avoid dealing explicitly with such derivations.

Physical Properties. Our search algorithms can be easily understood on the Logical Query

DAG representation (without physical properties), although they actually work on Physical Query

DAGs (ref. Section 2.2.3). For brevity, therefore, we do notexplicitly consider physical proper-

ties further.

3.2 Reuse Based Multi-Query Optimization Algorithms

In this section we study a class of multi-query optimizationalgorithms based on reusing results

computed for other parts of the query. We present these as extensions of the Volcano optimization

algorithm. Before we describe the extensions, in Section 3.2.1, we outline how to extend the basic

Volcano optimization algorithm to find best plans given somenodes in the DAG are materialized.

Sections 3.2.2 and 3.2.3 then present two of our heuristic algorithms, Volcano-SH and Volcano-

RU.

3.2.1 Optimization in Presence of Materialized Views

We now consider how to extend Volcano to find best plans, giventhat (expressions corresponding

to) some equivalence nodes in the DAG are materialized. Letreuse
ost(m) denote the cost of

reusing the materialized result ofm, and letM denote the set of materialized nodes.

The only change from the algorithm presented in Chapter 2 is as follows. When computing

the cost of a operation nodeo, if an input equivalence nodee is materialized (i.e., inM), use

the minimum ofreuse
ost(e) and
ost(e) when computing
ost(o). Thus, we use the following

expression instead:
ost(o) = cost of executing(o) + Xei2
hildren(o)C(ei)

38 CHAPTER 3. MULTI-QUERY OPTIMIZATION

where C(ei) = 8><>:
ost(ei) if ei 62Mmin(
ost(ei); reuse
ost(ei)) if ei 2M
3.2.2 The Volcano-SH Algorithm

In our first strategy, which we call Volcano-SH, the expandedDAG is first optimized using the

basic Volcano optimization algorithm. The best plan computed for the virtual root is the com-

bination of the Volcano best plans for each individual query. The best plans produced by the

Volcano optimization algorithm may have common subexpressions. Thus the consolidated best

plan for the root of the DAG may contain nodes with more than one parent, and is thus a DAG-

structured plan.2 The Volcano-SH algorithm works on the above consolidated best plan, and

decides in a cost based manner which of the nodes to materialize and share.

Since materialization of a node involves storing the resultto the disk, and we assume pipelined

execution of operators, it may be possible for recomputation of a node to be cheaper than the cost

of materializing and reusing the node. In fact, in our experiments in Section 3.6, there were quite

a few occasions when it was cheaper to recompute an expression.

Let us consider first a naive (and incomplete) solution. Consider an equivalence nodee.
Let
ost(e) denote the computation cost of nodee. Letnumuses(e) denote the number of times

nodee is used in course of execution of the plan. Letmat
ost(e) denote the cost of materializing

nodee. As before,reuse
ost(e) denote the cost of reusing the materialized result ofe. Then, we

decide to materializee if
ost(e) +mat
ost(e) + reuse
ost(e)� (numuses(e)� 1) < numuses(e)�
ost(e)
The left hand side of this inequality gives the cost of materializing the result when first computed,

and using the materialized result thereafter; the right hand side gives the cost of the alternative

wherein the result is not materialized but recomputed on every use. The above test can be sim-

plified to mat
ost(e)=(numuses(e)� 1) + reuse
ost(e) <
ost(e) (3.1)
2The ordering of queries does not affect the above plan.

3.2. REUSE BASED MULTI-QUERY OPTIMIZATION ALGORITHMS 39

The problem with the above solution is thatnumuses(e) and
ost(e) both depend on what

other nodes have been materialized, For instance, suppose nodee1 is used twice in computing

nodee2, and nodee2 is used twice in computing nodee3. Now, if no node is materialized,e1 is

used four times in computinge3. If e2 is materialized,e1 gets used twice in computinge2, ande2
gets computed only once. Thus, materializinge2 can reduce bothnumuses(e1) and
ost(e3).

In general,numuses(e) depends on which ancestors ofe in the Volcano best plan are ma-

terialized, and
ost(e) depends on which descendants have been materialized. Specifically,numuses(e) can be computed recursively based on the number of uses of theparents ofe:numuses(root) = 1, while for all other nodes,numuses(e) = Pp2parents(e) U(p), whereU(p) = numuses(p) if p is not materialized, and= 1 if p is materialized. Thus, computingnumuses requires us to know the materialization status of parents. On the other hand, as we

have seen earlier,
ost(e) depends on what descendants have been materialized.

A naive exhaustive strategy to decide what nodes in the Volcano best plan to materialize

is to consider each subset of the nodes in the best plan, and compute the cost of the best plan

given that all nodes in this subset are materialized at theirfirst computation; the subset giving the

minimum cost is selected for actual materialization. Unfortunately, this strategy is exponential

in the number of nodes in the Volcano best plan, and thereforeis very expensive; we require

cheaper heuristics.

To avoid enumerating all sets as above, the Volcano-SH algorithm, which is shown in Fig-

ure 3.1, traverses the tree bottom-up. As each equivalence nodee is encountered in the traversal,

Volcano-SH decides whether or not to materializee. When making a materialization decision for

a node, the materialization decisions for all descendants ia already known. When Volcano-SH

is examining a nodee, let M denote the set of descendants ofe that have been chosen to be

materialized. Based on this, we can compute
ost(e) for a nodee, as described in Section 3.2.1.

To make a materialization decision for a nodee, we also need to knownumuses(e). Un-

fortunately,numuses(e) depends on the materialization status of its parents, whichis not fixed

yet. To solve this problem, the Volcano-SH algorithm uses anunderestimatenumuses�(e) of

number of uses ofe. Such an underestimate can be obtained by simply counting the number of

ancestors ofe in the Volcano best plan. We use this underestimate in our cost formulae, to make

40 CHAPTER 3. MULTI-QUERY OPTIMIZATION

Procedure VOLCANO-SH
Input: Consolidated Volcano best plan P for virtual root of DAG
Output: Set of nodes to materialize M , and the corresponding best plan P
Global variable: M , the set of nodes chosen to be materialized
BeginM = �

Perform prepass on P to introduce subsumption derivations
Let Croot = COMPUTEMATSET(root)
Set Croot = Croot +Pd2M (
ost(d) +mat
ost(d))
Undo all subsumption derivations on P

where the subsumption node is not chosen to be materialized.
return (M,P)

End

Procedure COMPUTEMATSET

Input: e, equivalence node
Output: Cost of computing e
Global variable: M , the set of nodes chosen to be materialized
Begin

If
ost(e) is already memoized, return
ost(e)
Let operator oe be the child of e in P
For each input equivalence node ei of oe

Let Ci= COMPUTEMATSET(ei) // returns computation cost of ei
If ei is materialized, let Ci = reuse
ost(ei)

Compute
ost(e) = cost of operation oe +
Pi Ci

If (mat
ost(e)=(numuses�(e)� 1) + reuse
ost(e) <
ost(e))
If e is not introduced by a subsumption derivation

add e to M // Decide to materialize e
else if
ost(e) +mat
ost(e) + reuse
ost(e) � (numuses�(e)� 1) is less than

savings to parents of e due to introducing materialized e
add e to M // Decide to materialize e

Memoize and return
ost(e)
End

Figure 3.1: The Volcano-SH Algorithm

3.2. REUSE BASED MULTI-QUERY OPTIMIZATION ALGORITHMS 41

a conservative decision on materialization.

Based on the above, Volcano-SH makes the decision on materialization as follows: nodee is

materialized if mat
ost(e)=(numuses�(e)� 1) + reuse
ost(e) <
ost(e) (3.2)

Note that here we use the lower boundnumuses�(e) in place ofnumuses(e). Using the lower

bound guarantees that if we decide to materialize a node, materialization will result in cost sav-

ings.

The final step of Volcano-SH is to factor in the cost of computing and materializing all nodes

that were chosen to be materialized. Thus, to the cost of the pseudoroot computed as above, we

add
Pm2M (
ost(m) +mat
ost(m)), whereM is the set of nodes chosen to be materialized.

Let us now return to the first step of Volcano-SH. Note that thebasic Volcano optimiza-

tion algorithm will not exploit subsumption derivations, such as deriving�A<5(E) by using�A<5(�A<10(E)), since the cost of the latter will be more than the former, andthus will not

be locally optimal.

To consider such plans, we perform a pre-pass, checking for subsumption amongst nodes

in the plan produced by the basic Volcano optimization algorithm. If a subsumption derivation

is applicable, we replace the original derivation by the subsumption derivation. At the end of

Volcano-SH, if the shared subexpression is not chosen to be materialized, we replace the deriva-

tion by the original expressions. In the above example, in the prepass we replace�A<5(E) by�A<5(�A<10(E)). If �A<10(E) is not materialized, we replace�A<5(�A<10(E)) by �A<5(E).
The algorithm of [59] also finds best plans and then chooses which shared subexpressions to

materialize. Unlike Volcano-SH, it does not factor earliermaterialization choices into the cost of

computation.

3.2.3 The Volcano-RU Algorithm

The intuition behind Volcano-RU is as follows. ConsiderQ1 andQ2 from Example 3.0.1. With

the best plans as shown in the example, namely(R 1 S) 1 P and(R 1 T) 1 S, no sharing is

42 CHAPTER 3. MULTI-QUERY OPTIMIZATION

Procedure VOLCANO-RU
Input: Expanded DAG on queries Q1; : : : ; Qk (including subsumption derivations)
Output: Set of nodes to materialize M , and the corresponding best plan P
BeginN = � // Set of potentially materialized nodes

For each equivalence node e, Set
ount[e℄ = 0
For i = 1 to k

Compute Pi, the best plan for Qi, using Volcano, assuming nodes in N are materialized
For every equivalence node in Pi

set
ount[e℄ =
ount[e℄ + 1
If (
ost(e) +mat
ost(e) +
ount[e℄ � reuse
ost(e) < (
ount[e℄ + 1) �
ost(e))

// Worth materializing if used once more
add e to set N

Combine P1; : : : ; Pk to get a single DAG-structured plan P
(M,P) = VOLCANO-SH(P) // Volcano-SH makes final materialization decision

End

Figure 3.2: The Volcano-RU Algorithm

possible with Volcano-SH. However, when optimizingQ2, if we realize thatR 1 S is already

used in in the best plan forQ1 and can be shared, the choice of plan(R 1 S) 1 T may be found

to be the best forQ2.
The intuition behind the Volcano-RU algorithm is thereforeas follows. Given a batch of

queries, Volcano-RU optimizes them in sequence, keeping track of what plans have already been

chosen for earlier queries, and considering the possibility of reusing parts of the plans. The resul-

tant plan depends on the ordering chosen for the queries; we return to this issue after discussing

the Volcano-RU algorithm.

The pseudocode for the Volcano-RU algorithm is shown in Figure 3.2. LetQ1; : : : ; Qn be

the queries to be optimized together (and thus under the samepseudo-root of the DAG). The

Volcano-RU algorithm optimizes them in the sequenceQ1; : : : ; Qn. After optimizingQi, we

note equivalence nodes in the DAG that are part of the best plan Pi for Qi as candidates for

potential reuse later. We maintain counts of number of uses of these nodes. We also check if

each node is worth materializing, if it is used one more time.If so, we add the node toN , and

when optimizing the next query, we will assume it to be available materialized.

Thus, in our example earlier in this section, after finding the best plan for the first query, we

3.3. THE GREEDY ALGORITHM 43

check ifR 1 S is worth materializing if it is used once more. If so we add it to N , and assume

it to be materialized when optimizing the second query.

After optimizing all the individual queries, the second phase of Volcano-RU executes Volcano-

SH on the overall best plan found as above to further detect and exploit common subexpressions.

This step is essential since the earlier phase of Volcano-RUdoes not consider the possibility of

sharing common subexpressions within a single query – equivalence nodes are added toN only

after optimizing an entire query. Adding a node toN in our algorithm does not imply it will get

reused and therefore materialized. Instead Volcano-SH makes the final decision on what nodes

to materialize. The difference from directly applying Volcano-SH to the result of Volcano opti-

mization is that the planP that is given to Volcano-SH has been chosen taking sharing ofparts

of earlier queries into account, unlike the Volcano plan.

A related implementation issue is in caching of best plans inthe DAG. When optimizingQi
we cache best plans in nodes of the DAG that are descendants ofQi. When optimizing a later

queryQj, if we find a node that is not inPi (the plan chosen for queryQi) for somei < j, we

must recompute the best plan for the node; for, the set of nodesM may have changed, leading

to a different best plan. Therefore we note with each cached best plan which query was being

optimized when the plan was computed; we recompute the plan as required above.

Note that the result of Volcano-RU depends on the order in which queries are considered. In

our implementation we consider the queries in the order in which they are given, as well as in

the reverse of that order, and pick the cheaper one of the two resultant plans. Note that the DAG

is still constructed only once, so the extra cost of considering the two orders is relatively quite

small. Considering further (possibly random) orderings ispossible, but the optimization time

would increase further.

3.3 The Greedy Algorithm

In this section, we present the greedy algorithm, which provides an alternative approach to the al-

gorithms of the previous section. Our major contribution here lies in how toefficiently implement

the greedy algorithm, and we shall concentrate on this aspect.

44 CHAPTER 3. MULTI-QUERY OPTIMIZATION

In this section, we present an algorithm with a different optimization philosophy. The algo-

rithm picks a set of nodesS to be materialized and then finds the optimal plan given that nodes inS are materialized. This is then repeated on different sets ofnodesS to find the best (or a good)

set of nodes to be materialized.

Before coming to the greedy algorithm, we present some definitions, and an exhaustive algo-

rithm. As before, we shall assume there is a virtual root nodefor the DAG; this node has as input

a “no-op” logical operator whose inputs are the queriesQ1 : : : Qk. LetQ denote this virtual root

node.

For a set of nodesS, let best
ost(Q; S) denote the cost of the optimal plan forQ given

that nodes inS are to be materialized (this cost includes the cost of computing and materializing

nodes inS). As described in the Volcano-SH algorithm, the basic Volcano optimization algorithm

with an appropriate definition of the cost for nodes inS can be used to findbest
ost(Q; S).
To motivate our greedy heuristic, we first describe a simple exhaustive algorithm. The ex-

haustive algorithm, iterates over each subsetS of the set of nodes in the DAG, and chooses the

subsetSopt with the minimum value forbest
ost(Q; S). Therefore,best
ost(Q; Sopt) is the cost

of the globally optimal plan forQ.

It is easy to see that the exhaustive algorithm is doubly exponential in the size of the initial

query DAG and is therefore impractical.

In Figure 3.3 we outline a greedy heuristic that attempts to approximateSopt by constructing

it one node at a time. The algorithm iteratively picks nodes to materialize. At each iteration, the

nodex that gives the maximum reduction in the cost if it is materialized is chosen to be added toX.

The greedy algorithm as described above can be very expensive due to the large number

of nodes in the setY and the large number of times the functionbest
ost is called. We now

present three important and novel optimizations to the greedy algorithm which make it efficient

and practical.

1. The first optimization is based on the observation that thenodes materialized in the globally

optimal plan are obviously a subset of the ones that are shared in some plan for the query.

3.3. THE GREEDY ALGORITHM 45

Procedure GREEDY

Input: Expanded DAG for the consolidated input query Q
Output: Set of nodes to materialize and the corresponding best plan
Begin

X = �
Y = set of equivalence nodes in the DAG
while (Y 6= �)

L1: Pick the node x 2 Y with the smallest value for bestcost(Q, fxg [X)
if (bestcost(Q, fxg [X) < bestcost(Q, X))

Y = Y - x; X = X [fxg
else Y = � /* benefit < 0, so break out of loop */

return X
End

Figure 3.3: The Greedy Algorithm

Therefore, it is sufficient to initializeY in Figure 3.3, with nodes that are shared in some

plan for the query. We call such nodessharable nodes. For instance, in the expanded DAG

for Q1 andQ2 corresponding to Example 3.0.1,R 1 S is sharable whileR 1 T is not. We

present an efficient algorithm for finding sharable nodes in Section 3.3.1.

2. The second optimization is based on the observation that there are many calls tobest
ost
at line L1 of Figure 3.3, with different parameters. A simpleoption is to process each call

to best
ost independent of other calls. However, observe that the symmetric difference3 in

the sets passed as parameters to successive calls tobest
ost is very small – sucessive calls

take parameters of the formbest
ost(Q; fxg[X), where onlyx varies. It makes sense for

a call to leverage the work done by a previous call. We describe a novel incremental cost

update algorithm, in Section 3.3.2, that maintains the state of the optimization across calls

to best
ost, and incrementally computes a new state from the old state.

3. The third optimization, which we call the monotonicity heuristic, avoids having to invokebest
ost(Q; fxg [X), for everyx 2 Y , in line L1 of Figure 3.3. We describe this

optimization in detail in Section 3.3.3.

3The symmetric difference of two setsS1 andS2 consists of elements that are in one of the two but not both;

formally the symmetric difference of setsS1 andS2 is (S1 � S2) [(S2 � S1), where� denotes set difference.

46 CHAPTER 3. MULTI-QUERY OPTIMIZATION

3.3.1 Sharability

In this subsection, we outline how to detect whether an equivalence node can be shared in some

plan. The plan tree of a plan is the tree obtained from the DAG structured plan, by replicating

all shared nodes of the plan, to completely eliminate sharing. The degree of sharing of a logical

equivalence node in an evaluation planP is the number of times it occurs in the plan tree ofP .

Thedegree of sharingof a logical equivalence node in an expanded DAG is the maximum of the

degree of sharing of the equivalence node amongst all evaluation plans represented by the DAG.

A logical equivalence node issharableif its degree of sharing in the expanded DAG is greater

than one.

We now present a simple algorithm to compute the degree of sharing of each node and thereby

detect whether a node is shared. A sub–DAG of a nodex consists of the nodes belowx along

with the edges between these nodes that are in the original DAG. For each nodex of the DAG,

and every equivalence nodez in the sub-DAG rooted atx, let E[x℄[z℄ represent the degree of

sharing ofz in the sub–DAG rooted atx. Clearly for all equivalence nodesx, E[x℄[x℄ is 1. For a

given nodex, all otherE[x℄[℄ values can be computed given the valuesE[y℄[℄ for all childreny
of x as follows.

If x is an operation nodeE[x℄[z℄ = SumfE[y℄[z℄ j y 2
hildren(x)g
and ifx is an equivalence node,E[x℄[z℄ = MaxfE[y℄[z℄ j y 2
hildren(x)g
The degree of sharing of an equivalence nodez in the overall DAG is given byE[r℄[z℄, wherer
is the root of the DAG.

Space is minimized in the above by computingE[x℄[z℄ for onez at a time, discarding all butE[r℄[z℄ at the end of computation for onez value.

In a reasonable implementation of the above algorithm, the time complexity of computing

the rowE[x℄ is proportional to (a) the number of non-zero entries inE[x℄ (saynx), and (b) the

number of children ofx (sayex). Thus, the overall complexity of the algorithm is proportional toPx nxex. Sincenx is (very conservatively) bounded above by the number of equivalence nodes

3.3. THE GREEDY ALGORITHM 47neq, and
Px ex equals the total number of edgese, the complexity isO(neqe).

However, typically,E is fairly sparse since the DAG is typically “short and fat” – as the

number of queries grows, the height of the DAG may not increase, but it becomes wider. Thus,nx � neq for mostx, making this sharability computation algorithm fairly efficient in practice.

In fact, for the queries we considered in our performance study (Section 3.6), the computation

took at most a few tens of milliseconds.

3.3.2 Incremental Cost Update

The sets with whichbest
ost is called successively at line L1 of Figure 3.3 are closely related,

with their (symmetric) difference being very small. For, line L1 finds the nodex with the max-

imum benefit, which is implemented by callingbest
ost(Q; fxg [X), for different values ofx. Thus the second parameter tobest
ost changes by dropping one nodexi and adding anotherxi+1. We now present an incremental cost update algorithm that exploits the results of earlier

cost computations to incrementally compute the new plan.

Figure 3.4 outlines our incremental cost update algorithm.Let S be the set of nodes shared

at a given point of time, i.e., the previous call tobest
ost was withS as the parameter. The

incremental cost update algorithm maintains the cost of computing every equivalence node, given

that all nodes inS are shared, and no other node is shared. LetS 0 be the new set of nodes that

are shared, i.e., the next call tobest
ost hasS 0 as the parameter. The incremental cost update

algorithm starts from the nodes that have changed in going from S to S 0 (i.e., nodes inS 0 � S
andS� S 0) and propagates the change in cost for the nodes upwards to all their parents; these in

turn propagate any changes in cost to their parents if their cost changed, and so on, until there is

no change in cost. Finally, to get the total cost we add the cost of computing and materializing

all the nodes inS 0.
If we perform this propagation in an arbitrary order then in the worst case we could propagate

the change in cost through a nodex multiple times (for example, once from a nodey which is

an ancestor of another nodez and then fromz). A simple mechanism for avoiding repeated

propagation uses topological numbers for nodes of the DAG. During DAG generation the DAG

48 CHAPTER 3. MULTI-QUERY OPTIMIZATION

Procedure UPDATECOST

Input: S, previous set of shared nodes, corresponding best planS0, new set of shared nodes
Output: Best plan corresponding to S0
Begin

// PropHeap is a priority heap (initially empty), containing
// equivalence nodes are ordered by their topological sort number
add S � S0 [S0 � S to PropHeap
while (PropHeap is not empty)N = equivalence node with minimum topological sort number in PropHeap

Remove N from PropHeap
oldCost = old value of cost(N)
cost(N) = Min f cost(p) — p 2
hildren(N)g //
hildren(N) are operation nodes
if (cost(N) 6= oldCost) or N 2 (S � S0) or N 2 (S0 � S)

for every parent operation node p of N
cost(p) = cost of executing operation p +

P
2
hildren(p)(C(
))
where C(
) = cost(
) if
 62 S0, and = min(reuse
ost(
); cost(
)) if
 2 S0

add p’s parent equivalence node to PropHeap if not already present
TotalCost =
omp
ost(root) +Ps2S0(cost(s) +mat
ost(s))

End

Figure 3.4: Incremental Cost Update

3.3. THE GREEDY ALGORITHM 49

is sorted topologically such that a descendant always comesbefore an ancestor in the sort order,

and nodes are numbered in this order. As shown in Figure 3.4, cost propagation is performed in

the topological number ordering usingPropHeap, a heap built on the topological number. The

heap is used to efficiently find the node with the minimum topological sort number at each step.

In our implementation, we additionally take care of physical property subsumption. Details

of how to perform incremental cost update on Physical Query DAGs with physical property

subsumption are given in the appendix of this chapter.

3.3.3 The Monotonicity Heuristic

In Figure 3.3, the functionbest
ost will be called once for each node inY , under normal circum-

stances. We now outline how to determine the node with the smallest value ofbest
ost much

more efficiently, using the monotonicity heuristic.

Let us definebenefit(x;X) asbest
ost(Q;X)�best
ost(Q; fxg[X). Notice that, minimiz-

ing best
ost in lineL1 corresponds to maximizing benefit as defined here. Suppose the benefit is

monotonic. Intuitively, the benefit of a node is monotonic if it never increases as more nodes get

materialized; more formallybenefit is monotonic if8X � Y , benefit(x;X) � benefit(x; Y).
We associate an upper bound on the benefit of a node inY and maintain a heapC of nodes

ordered on these upper bounds.4 The initial upper bound on the benefit of a node inY uses the

notion of the maximum degree of sharing of the node (which we described earlier). The initial

upper bound is then just the cost of evaluating the node (without any materializations) times the

maximum degree of sharing. The heapC is now used to efficiently find the nodex 2 Y with

the maximumbenefit(x;X) as follows: Iteratively, the noden at the topC is chosen, its current

benefit is recomputed, and the heapC is reordered. Ifn remains at the top, it is deleted from theC
heap and chosen to be materialized and added toX. Assuming the monotonicity property holds,

the other values in the heap are upper bounds, and therefore,the noden added toX above, is

indeed the node with the maximum real benefit.

If the monotonicity property does not hold, the node with maximum current benefit may not

4This cost heap is not to be confused with the heap on topological numbering used earlier.

50 CHAPTER 3. MULTI-QUERY OPTIMIZATION

be at the top of the heapC , but we still use the above procedure as a heuristic for finding the node

with the greatest benefit. Our experiments in Section 3.6 demonstrate that the above procedure

greatly speeds up the greedy algorithm. Further, for all queries we experimented with, the results

were exactly the same even if the monotonicity heuristic wasnot used.

3.4 Handling Physical Properties

The greedy algorithm described in Section 3.3 is in the context of the Logical Query DAG and

selects logical equivalence nodes to materialize. However, in reality, the algorithm works over the

Physical Query DAG instead, and selects the physical equivalence nodes to materialize. While

the core algorithm and the sharability and monotonicity optimizations can be trivially restated

to address the above change of context, the incremental recomputation optimization needs to

be refined nontrivially to address the newer issues involving physical property subsumption and

enforcer plans. In this section, we explain these issues anddescribe the change to the incremental

recomputation algorithm.

Given the current best plan and an unmaterialized physical equivalence node, the incremental

propagation algorithm is required to compute the new best plan when the given physical equiva-

lence node is additionally materialized.

The additional materialization may affect the best plans for all the physical equivalence nodes

for the same logical equivalence node. The propagation process starts by recomputing the best

plans for these nodes. This may further affect, transitively, the best plans of all the physical

equivalence nodes that belong to the logical equivalence nodes that are ancestors of this logical

equivalence node. Thus, as in the algorithm described earlier, the propagation occurs across

logical equivalence nodes – these nodes are visited bottom-up in a topological manner in order

to prevent multiple visits of the same logical equivalence nodes.

LetL be a logical equivalence node being visited during the propagation, and letE1; E2; : : : ; Ek
be the physical equivalence nodes belonging toL. The crux of this section is to show how to

compute the best plans for eachEi given (a) the best plans for all the physical equivalence nodes

belonging toL’s children logical equivalence nodes, and (b) for each pairEi andEj, the cost of

3.4. HANDLING PHYSICAL PROPERTIES 51

computing aEj fromEi – if Ei is materialized then this cost includes the cost of readingEi, and

if Ej is materialized then this cost includes the cost of materializingEj.
The first step is to compute the best algorithm plan for eachEi; this is straightforward since

the costs of the inputs of all the algorithms belowEi is known – so we just need to recompute

the cost of the corresponding algorithm plans and pick the cheapest one.

An example scenario is shown in Figure 3.5(a).E1, E2 andE3 are physical equivalence

nodes representing the same logical equivalence node with different physical properties; among

these,E1 andE3 are specified as materialized, whileE2 is not. For each pairEi andEj, the

cost of obtainingEj from Ei is shown as the weight of directed edgeEi ! Ej. Further, the

best algorithm plans for eachE1, E2 andE3 are also shown with the respective plan costs noted

alongside.

The next step is to consider the enforcer plans for eachEi as well and choose the overall best

plan. An obvious approach is to first compute the best enforcer plan forEi by enumerating all

the enforcer plans and select the cheapest one; comparing the best enforcer plan with the best

algorithm plan forEi determined earlier will then give the node’s best plan. We illustrate this

approach by an example.

Consider again the scenario of Figure 3.5(a).E1’s best algorithm plan has a cost of3. E1
also has two enforcer plans. The first computesE2 using its algorithm plan at a cost of1, and

then derivesE1 from the result at an additional cost of3 units – a total cost of4; the second

derivesE1 from E3 at a cost of1 – the cost of computingE3 is not added since it is marked

as materialized. Comparing the costs, the second enforcer plan is chosen as the best plan for

computingE1. Similarly,E3’s best algorithm plan has a cost of3 and its two enforcer plans are

as follows. The first computesE2 using its algorithm plan at a cost of1 and derivesE3 from the

result at a cost of1 – a total cost of2. The second plan computesE3 from materializedE1 at a

cost of2. Breaking the tie among the two enforcer plans arbitrarily,the second enforcer plan is

chosen as the best plan. Thus, the best plan forE1 derives it from materializedE3 while the best

plan forE3 derives it from materializedE1 – this mutual derivation is clearly absurd.

The above example shows that while the approach described above works for unmaterialized

nodes, it may not work for materialized nodes. We now give thedetails of our approach of

52 CHAPTER 3. MULTI-QUERY OPTIMIZATION

E2

3

X

����
����
����

����
����
����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

����
����
����

����
����
����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

E1

E2

E1
���
���
���

���
���
���

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

����
����
����

����
����
����

��������������

��������������

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

E3 E1
��������������

�������������� E3

������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

E2

E3

D

�����
�����
�����
�����

�����
�����
�����
�����

E1

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

E3

E2

DX

1

1

����
����
����
����

����
����
����
����

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

����
����
����
����
����
����
����

����
����
����
����
����
����
����

����������������

����������������

E1

(a) (b) (c)

1

1

E3

1

1

3

(d) (e) (f)

1

2

2

E1

3

220

3

E3

1

2

1

1

1

33

1

2

1

1

20

3
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

Figure 3.5: Example Showing Cost Propagation through Physical Equivalence Nodes

3.4. HANDLING PHYSICAL PROPERTIES 53

computing the best plans for the materialized nodes.

We introduce a dummy “external” nodeX and, for eachEi, replace the best algorithm plan

forEi by its cost summary in terms of an edge fromX toEi weighted by the cost of the algorithm

plan. Figure 3.5(b) shows the result of the above transformation on our running example.

Next, for eachEi, we find theshortest pathfrom E to Ei; this shortest path represents the

best plan for computingEi assuming none ofE1; E2; : : : ; Ek are materialized. To keep track of

these shortest paths, we introduce another dummy nodeD and add an edge to eachEi from D
representing the shortest path found as above. The edge is weighted by the sum of the edges in

the shortest path.

Now, we consider the subgraph induced byD and the materialized nodes amongE1; E2; : : : ; Ek.
Each edge into the nodeEi in this graph represents a way to computeEj – if the edge is fromD, then it corresponds to computing the result fromX using the plan represented by the shortest

path, and materializing it; otherwise if it is from some other materialized nodeEj then it corre-

sponds to reading the result, derivingEi from it, and materializing it. We need to pick a set of

edges, one into eachEi and without generating any cycles, such that the sum of the costs on the

edges (the total cost) is minimized. This corresponds to aminimum cost directed spanning tree

of the graph, which can be computed efficiently using Edmond’s algorithm [17]. This spanning

tree gives us – after expanding out any edges out ofD included in this tree into the correspond-

ing path – the best plan for each materialized node, taking into consideration other materialized

nodes.

For our running example, Figure 3.5(c) shows the subgraph induced by the materialized nodesE1 andE2 and the dummy nodeD. Figure 3.5(d) shows the minimum cost directed spanning tree

for the graph. The edge fromD toE3 is expanded out to the pathX ! E2 ! E3 in Figure 3.5(e).

The final best plan, obtained by replacing the edgeX ! E2 by the best algorithm plan forE2,
is shown in Figure 3.5(f). This plan corresponds to computingE2 using its best algorithm plan,

computingE3 using the enforcer plan containingE2’s algorithm plan and materializing it, and

computingE1 fromE2, available as materialized.

Note that the solution is heuristic to the extent that some ofthe materialized nodes may not be

needed in the overall best plan, and if eliminated, some other minimum spanning tree may have

54 CHAPTER 3. MULTI-QUERY OPTIMIZATION

resulted. However, we do not know the set of nodes that will get used. Hence, we conservatively

assume that all of them may be used, and compute the spanning tree across all the materialized

nodes.

3.5 Extensions

In this section, we briefly outline extensions to i) incorporate creation and use of temporary

indices, ii) optimize nested queries to exploit common sub-expressions and iii) optimize multiple

invocations of parameterized queries.

3.5.1 Selection of Temporary Indices

Costs may be substantially reduced by creating (temporary)indices on database relations or

materialized intermediate results. To incorporate index selection, we model the presence of an

index as a physical property, similar to sort order. Since our algorithms are actually executed

on the physical DAG, they choose not only what results to materialize but also what physical

properties they should have. Index selection then falls outas simply a special case of choosing

physical properties, with absolutely no changes to our algorithms.

Note that our framework allows us to consider materialization of indices even if the corre-

sponding relation is not materialized, which is useful for algorithms such as index-only joins.

3.5.2 Nested Queries

One approach to handling nested queries is to use decorrelation techniques (see, e.g. [55]). The

use of such decorrelation techniques results in the query being transformed to a set of queries,

with temporary relations being created. Now, the queries generated by decorrelation have several

subexpressions in common, and are therefore excellent candidates for multi-query optimization.

One of the queries in our performance evaluation brings out this point.

Correlated evaluation is used in other cases, either because it may be more efficient on the

query, or because it may not be possible to get an efficient decorrelated query using standard

3.5. EXTENSIONS 55

relational operations [43]. In correlated evaluation, thenested query is repeatedly invoked with

different values for correlation variables. Consider the following query.

Query: select * from a, b, c

where a.x = b.x and b.y = c.y and

a.cost = (select min(a1.cost) from a as a1, b as b1

where a1.x = b1.x and b1.y = c.y)

One option for optimizing correlated evaluation of this query is to materializea 1 b, and share it

with the outer level query and across nested query invocations. An index ona 1 b, on attributeb:y is required for efficient access to it in the nested query, since there is a selection onb:y from

the correlation variable. If the best plan for the outer level query uses the join order(a 1 b) 1
,
materializing and sharinga 1 b may provide the best plan.

In general, parts of the nested query that do not depend on thevalue of correlation variables

can potentially be shared across invocations [43]. We now show how to extend our algorithms to

consider such reuse across multiple invocations of a nestedquery. The key intuition is that when

a nested query is invoked many times, benefits due to materialization must be multiplied by the

number of times it is invoked; results that depend on correlation variables, however, must not be

considered for materialization. The nested query invariant optimization techniques of [43] then

fall out as a special case of ours.

The inner subquery forms part of a predicate of some select orjoin operation of an outer

query. This predicate has a pointer to an equivalence node that forms the root of the Query DAG

for the inner subquery. Common results between the Query DAGs of the inner subquery and

outer query are unified. Thus, unlike optimizers that perform block at a time optimization, we

can share optimization effort between the outer and the inner subquery.

In the Query DAG for the inner subquery, the predicate for a select or a join operation node

can contain a reference to a correlation variable from the outer query. Let us call such a node a

referencernode. Clearly, the result of an expression that contains a referencer node varies across

different calls to the subquery (depending on the value of the correlation variable) and therefore

can not be materialized and shared across calls with different parameter values. Hence, we tag

56 CHAPTER 3. MULTI-QUERY OPTIMIZATION

the equivalence node under which a referencer node occurs aswell as all its ancestor nodes in the

inner subquery’s Query DAG as non-materializable. Such tagging can be performed efficiently

while the inner subquery’s Query DAG is being constructed.

The cost of the inner subquery is the product of (a) the cost ofthe best plan in the inner Query

DAG, and (b) an estimate of the number of times the inner subquery is invoked.

After the above constructions, the rest of our optimizationalgorithms are used unchanged,

except that they do not consider materializing nodes taggedas non-materializable. An important

point to note here is that the above construction allows us toshare computation not only across

multiple invocations of the inner subquery, but also between the inner subquery and the outer

query (see Example 3.0.1).

Extensions that allow memoization of results of the different invocation of the inner sub-

query (or even intermediate results of these invocations),along with the corresponding corre-

lation variable values, are possible. These will reduce thenumber of times the inner subquery

is evaluated [51]. Such optimizations are independent of the optimizations we present, and can

be used in conjunction. Note that if inner subquery’s results are memoed, the inner subquery is

invoked as many times as there are distinct parameter values.

Parameterized Queries. Our algorithms can also be extended to optimize multiple invocations

of parameterized queries. Parameterized queries are queries that take parameter values, which are

used in selection predicates; stored procedures are a common example. Parts of the query may

be invariant, just as in nested queries, and these can be exploited by multi-query optimization.

Although there has been much work on optimizing parameterized queries (e.g., [19]), to the

best of our knowledge all the work in this area aims at finding the best way of executing an

individual instance, not at multiquery optimization across multiple executions.

3.6 Performance Study

Our algorithms were implemented by extending and modifyinga Volcano-based query optimizer

we had developed earlier. All coding was done in C++, with thebasic optimizer taking approx.

3.6. PERFORMANCE STUDY 57

17,000 lines, common MQO code took 1000 lines, Volcano-SH and Volcano-RU took around

500 lines each, and Greedy took about 1,500 lines.

The optimizer transformation rule set is listed in AppendixB. Implementation algorithms

included sort-based aggregation, merge join, nested loopsjoin, indexed join, indexed select and

relation scan. The cost estimation formulae for these operators appear in Appendix C. Our imple-

mentation incorporates all the techniques discussed in this chapter, including handling physical

properties (sort order and presence of indices) on base and intermediate relations, unification and

subsumption during DAG generation, and the sharability algorithm for the greedy heuristic.

The block size was taken as 4KB and our cost functions assume 6MB is available to each

operator during execution (we also conducted experiments with larger memory sizes up to 128

MB, with similar results). Standard techniques were used for estimating costs, using statistics

about relations. The cost estimates contain an I/O component and a CPU component, with seek

time as 10 msec, transfer time of 2 msec/block for read and 4 msec/block for write, and CPU

cost of 0.2 msec/block of data processed. We assume that intermediate results are pipelined

to the next input, using an iterator model as in Volcano; theyare saved to disk only if the result

is to be materialized for sharing. The materialization costis the cost of writing out the result

sequentially.

The tests were performed on a single processor 233 Mhz Pentium-II machine with 64 MB

memory, running Linux. Optimization times are measured as CPU time (user+system).

3.6.1 Basic Experiments

The goal of the basic experiments was to quantify the benefitsand cost of the three heuristics

for multi-query optimization, Volcano-SH, Volcano-RU andGreedy, with plain Volcano-style

optimization as the base case. We used the version of Volcano-RU which considers the forward

and reverse orderings of queries to find sharing possibilities, and chooses the minimum cost plan

amongst the two.

58 CHAPTER 3. MULTI-QUERY OPTIMIZATION

 Q2 Q2-D Q11 Q15
0

50

100

150

E
s
ti
m

a
te

d
 C

o
s
t
(s

e
c
s
)

Volcano
Volcano-SH
Volcano-RU
Greedy

 Q2 Q2-D Q11 Q15

0.008

0.016

0.031

0.062

0.125

0.250

0.500

1.000

2.000

O
pt

im
iz

at
io

n
T

im
e

(s
ec

s)
, l

og
sc

al
e

Volcano
Volcano-SH
Volcano-RU
Greedy

Figure 3.6: Optimization of Stand-alone TPCD Queries

Experiment 1 (Stand-Alone TPCD)

The workload for the first experiment consisted of four queries based on the TPCD bench-

mark [60]. The queries are listed in Appendix A. We used the TPCD database at scale of 1

(i.e., 1 GB total size), with a clustered index on the primarykeys for all the base relations. The

results are discussed below and plotted in Figure 3.6.

TPCD query Q2 has a large nested query, and repeated invocations of the nested query in a

correlated evaluation could benefit from reusing some of theintermediate results. For this query,

though Volcano-SH and Volcano-RU do not lead to any improvement over the plan of estimated

cost 126 secs. returned by Volcano, Greedy results in a plan of with significantly reduced cost

estimate of 79 secs. Decorrelation is an alternative to correlated evaluation, and Q2-D is a (man-

ually) decorrelated version of Q2 (due to decorrelation, Q2-D is actually a batch of queries).

Multi-query optimization also gives substantial gains on the decorrelated query Q2-D, resulting

in a plan with estimated costs of 46 secs., since decorrelation results in common subexpressions.

Clearly the best plan here is multi-query optimization coupled with decorrelation.

Observe also that the cost of Q2 (without decorrelation) with Greedy is much less than

with Volcano, and is less than even the cost of Q2-D with plainVolcano — this results in-

dicates that multi-query optimization can be very useful inother queries where decorrelation

is not possible. To test this, we ran our optimizer on a variant of Q2 where thein clause is

changed tonot in clause, which prevents decorrelation from being introduced without introduc-

3.6. PERFORMANCE STUDY 59

 Q2 Q2-D Q11 Q15
0

200

400

600

800

T
o

ta
l E

xe
cu

tio
n

 T
im

e
 (

se
cs

)

No-MQO
MQO

Figure 3.7: Execution of Stand-alone TPCD Queries on MS SQL Server

ing new internal operators such as anti-semijoin [43]. We also replaced the correlated predicatePS PARTKEY = P PARTKEY by PS PARTKEY 6= P PARTKEY . For this mod-

ified query, Volcano gave a plan with estimated cost of 62927 secs., while Greedy was able to

arrive at a plan with estimated cost 7331, an improvement by almost a factor of 9.

We next considered the TPCD queries Q11 and Q15, both of whichhave common subex-

pressions, and hence make a case for multi-query optimization.5 For Q11, each of our three

algorithms lead to a plan of approximately half the cost as that returned by Volcano. Greedy

arrives at similar improvements for Q15 also, but Volcano-SH and Volcano-RU do not lead to

any appreciable benefit for this query.

Overall, Volcano-SH and Volcano-RU take the same time and space as Volcano. Greedy takes

more time than the others for all the queries. In terms of relative time taken, Greedy needed a

maximum of about 5 times as much time as Volcano, but took a maximum of just over 2 seconds,

which is very small compared to its benefits. The total space required by Greedy ranged from

1.5 to 2.5 times that of the other algorithms, and again the absolute values were quite small (up

to just over 130KB).

Results on Microsoft SQL-Server 6.5:

To study the benefits of multi-query optimization on a real database, we tested its effect on

5As mentioned earlier, we use the term multi-query optimization to mean optimization that exploits common

subexpressions, whether across queries or within a query.

60 CHAPTER 3. MULTI-QUERY OPTIMIZATION

the queries mentioned above, executed on Microsoft SQL Server 6.5, running on Windows NT,

on a 333 Mhz Pentium-II machine with 64MB memory. We used the TPCD database at scale

1 for the tests. To do so, we encoded the plans generated by Greedy into SQL. We modeled

sharing decisions by creating temporary relations, populating, using and deleting them. If so

indicated by Greedy, we created indexes on these temporary relations. We could not encode the

exact evaluation plan in SQL since SQL-Server does its own optimization. We measured the

total elapsed time for executing all these steps.

The results are shown in Figure 3.7. For query Q2, the time taken reduced from 513 secs. to

415 secs. Here, SQL-Server performed decorrelation on the original Q2 as well as on the result

of multi-query optimization. Thus, the numbers do not matchour cost estimates, but clearly

multi-query optimization was useful here. The reduction for the decorrelated version Q2-D was

from 345 secs. to 262 secs; thus the best plan for Q2 overall, even on SQL-Server, was using

multi-query optimization as per Greedy on a decorrelated query. The query Q11 speeded up by

just under 50%, from 808 secs. to 424 secs. and Q15 from 63 secs. to 42 secs. using plans with

sharing generated by Greedy.

The results indicate that multi-query optimization gives significant time improvements on a

real system. It is important to note that the measured benefits are underestimates of potential

benefits, for the following reasons. (a) Due to encoding of sharing in SQL, temporary relations

had to be stored and re-read even for the first use. If sharing were incorporated within the

evaluation engine, the first (non-index) use can be pipelined, reducing the cost further. (b) The

operator set for SQL-Server 6.5 seems to be rather restricted, and does not seem to support

sort-merge join; for all queries we submitted, it only used (index)nested-loops. Our optimizer

at times indicated that it was worthwhile to materialize therelation in a sorted order so that it

could be cheaply used by a merge-join or aggregation over it,which we could not encode in

SQL/SQL-Server.

In other words, if multi-query optimization were properly integrated into the system, the

benefits are likely to be significantly larger, and more consistent with benefits according to our

cost estimates.

3.6. PERFORMANCE STUDY 61

 BQ1 BQ2 BQ3 BQ4 BQ5
0

200

400

600

E
s
ti
m

a
te

d
 C

o
s
t
(s

e
c
s
)

Volcano
Volcano-SH
Volcano-RU
Greedy

 BQ1 BQ2 BQ3 BQ4 BQ5

0.008
0.016
0.031
0.062
0.125
0.250
0.500
1.000
2.000
4.000
8.000

O
pt

im
iz

at
io

n
T

im
e

(s
ec

s)
, l

og
sc

al
e

Volcano
Volcano-SH
Volcano-RU
Greedy

Figure 3.8: Optimization of Batched TPCD Queries

Experiment 2 (Batched TPCD Queries)

In the second experiment, the workload models a system whereseveral TPCD queries are exe-

cuted as a batch. The workload consists of subsequences of the queries Q3, Q5, Q7, Q9 and Q10

from TPCD; none of these queries has any common subexpressions within itself. These queries

are listed in Appendix A. Each query was repeated twice with different selection constants.

Composite query BQi consists of the first i of the above queries, and we used composite queries

BQ1 to BQ5 in our experiments. Like in Experiment 1, we used the TPCD database at scale of 1

and assumed that there are clustered indices on the primary keys of the database relations.

Note that although a query is repeated with two different values for a selection constant, we

found that the selection operation generally lands up at thebottom of the best Volcano plan tree,

and the two best plan trees may not have common subexpressions.

The results on the above workload are shown in Figure 3.8. Across the workload, Volcano-

SH and Volcano-RU achieve up to only about 14% improvement over Volcano with respect to the

cost of the returned plan, while incurring negligible overheads. There was no difference between

Volcano-SH and Volcano-RU on these queries, implying the choice of plans for earlier queries

did not change the local best plans for later queries. Greedyperforms better, achieving up to 56%

improvement over Volcano, and is uniformly better than the other two algorithms.

As expected, Volcano-SH and Volcano-RU have essentially the same execution time and

space requirements as Volcano. Greedy takes about 15 seconds on the largest query in the set,

62 CHAPTER 3. MULTI-QUERY OPTIMIZATION

BQ5, while Volcano takes slightly more than 1 second on the same. However, the estimated cost

savings on BQ5 is 260 seconds, which is clearly much more thanthe extra optimization time cost

of 14 secs. Thus the extra time spent on Greedy is well spent. Similarly, the space requirements

for Greedy were more by about a factor of three to four over Volcano, but the absolute difference

for BQ5 was only 60KB. The benefits of Greedy, therefore, clearly outweigh the cost.

3.6.2 Scaleup Analysis

To see how well our algorithms scale up with increasing numbers of queries, we defined a new

set of 22 relationsPSP1 to PSP22 with an identical schema(P , SP , NUM) denoting part id,

subpart id and number. Over these relations, we defined a sequence of 18 component queriesSQ1 to SQ18: component querySQi was a pair of chain queries on five consecutive relationsPSPi to PSPi+4, with the join condition beingPSPj:SP = PSPj+1:P , for j = i::i + 3. One

of the queries in the pairSQi had a selectionPSPi:NUM � ai while the other had a selectionPSPi:NUM � bi whereai andbi are arbitrary values withai 6= bi.
To measure scaleup, we use the composite queriesCQ1 to CQ5, whereCQi is consists of

queriesSQ1 toSQ4i�2. Thus,CQi uses4i+2 relationsPSP1 toPSP4i+2, and has32i�16 join

predicates and8i � 4 selection predicates. Query CQ5, in particular, is on 22 relations and has

144 join predicates and 36 select predicates. The size of the22 base relationsPSP1; : : : ; PSP22
varied from 20000 to 40000 tuples (assigned randomly) with 25 tuples per block. No index was

assumed on the base relations.

The cost of the plan and optimization time for the above workload is shown in Figure 3.9.

The relative benefits of the algorithms remains similar to that in the earlier workloads, except

that Volcano-RU now gives somewhat better plans than Volcano-SH. Greedy continues to be

the best, although it is relatively more expensive. The optimization time for Volcano, Volcano-

SH and Volcano-RU increases linearly. The increase in optimization time for Greedy is also

practically linear, although it has a very small super-linear component. But even for the largest

query, CQ5 (with 22 relations, 144 join predicates and 36 select predicates) the time taken was

only 35 seconds. The size of the DAG increases linearly for this sequence of queries. From the

3.6. PERFORMANCE STUDY 63

 CQ1 CQ2 CQ3 CQ4 CQ5
0

200

400

600

800

E
s
ti
m

a
te

d
 C

o
s
t
(s

e
c
s
)

Volcano
Volcano-SH
Volcano-RU
Greedy

 CQ1 CQ2 CQ3 CQ4 CQ5

10

20

30

O
p

ti
m

iz
a

ti
o

n
 T

im
e

 (
s
e

c
s
)

Volcano
Volcano-SH
Volcano-RU
Greedy

Figure 3.9: Optimization of Scaleup Queries

 CQ1 CQ2 CQ3 CQ4 CQ5
0

50000

100000

150000

N
um

be
r

of
 C

os
t P

ro
pa

ga
tio

ns

Greedy

 CQ1 CQ2 CQ3 CQ4 CQ5
0

500

1000

1500

2000
N

um
be

r
of

 C
os

t R
ec

om
pu

ta
tio

ns

Greedy

Figure 3.10: Complexity of the Greedy Heuristic

above, we can conclude that Greedy is scalable to quite largequery batch sizes.

To better understand the complexity of the Greedy heuristicon the scaleup workload, in

addition to the optimization time we measured the total number of times cost propagation occurs

across equivalence nodes, and the total number of times costrecomputation is initiated. The

result is plotted in Figure 3.10. Note that in addition to thesize of the DAG, the number of

sharable nodes also increases linearly across queries CQ1 to CQ5.

Greedy was considered expensive by [57] because of its worstcase complexity: it can be as

much asO(k2e), wherek is the number of nodes in the DAG which are sharable, ande is the

number of edges in the DAG. However, for multi-query optimization, the DAG tends to be wide

rather than tall – as we add queries, the DAG gets wider, but its height does not increase, since

the height is defined by individual queries.

64 CHAPTER 3. MULTI-QUERY OPTIMIZATION

The result shows that for the given workload, the number of times cost propagation occurs

across equivalence nodes, and the number of times cost recomputation is initiated both increase

almost linearly with number of queries. The observed complexity is thus much less than the

worst case complexity.

The number of times costs are propagated across equivalencenodes is almost constant per

cost recomputation. This is because the number of nodes of the DAG affected by a single ma-

terialization does not vary much with number of queries, which is exploited by incremental cost

recomputation. The height of the DAG remains constant (since the number of relations per query

is fixed, which is a reasonable assumption).

3.6.3 Effect of Optimizations

In this series of experiments, we focus on the effect of individual optimizations on the optimiza-

tion of the scaleup queries. We first consider the effect of the monotonicity heuristic addition to

Greedy. Without the monotonicity heuristic, before a node is materialized the benefits would be

recomputed for all the sharable nodes not yet materialized.With the monotonicity heuristic addi-

tion, we found that on an average only about 45 benefits were recomputed each time, across the

range of CQ1 to CQ5. In contrast, without the monotonicity heuristic, even at CQ2 there were

about 1558 benefit recomputations each time, leading to an optimization time of 77 seconds for

the query, as against 8 seconds with monotonicity. Scaleup is also much worse without mono-

tonicity. Best of all, the plans produced with and without the monotonicity heuristic assumption

had virtually the same cost on the queries we ran. Thus, the monotonicity heuristic provides very

large time benefits, without affecting the quality of the plans generated.

To find the benefit of the sharability computation, we measured the cost of Greedy with the

sharability computation turned off; every node is assumed to be potentially sharable. Across the

range of scaleup queries, we found that the optimization time increased significantly. For CQ2,

the optimization time increased from 35 secs. to 46 secs. Thus, sharability computation is also

a very useful optimization.

In summary, our optimizations of the implementation of the greedy heuristic result in an

3.6. PERFORMANCE STUDY 65

order of magnitude improvement in its performance, and are critical for it to be of practical use.

3.6.4 Discussion

To check the effect of memory size on our results, we ran all the above experiments increasing

the memory available to the operators from 6MB to 32MB and further to 128MB. We found

that the cost estimates for the plans decreased slightly, but the relative gains (i.e., cost ratio with

respect to Volcano) essentially remained the same throughout for the different heuristics.

We stress that while the cost of optimization is independentof the database size, the execution

cost of a query, and hence the benefit due to optimization, depends upon the size of the underlying

data. Correspondingly, the benefit to cost ratio for our algorithms increase markedly with the

size of the data. To illustrate this fact, we ran the batched TPCD query BQ5 (considered in

Experiment 2) on TPCD database with scale of 100 (total size 100GB). Volcano returned a plan

with estimated cost of 106897 seconds while Greedy obtains aplan with cost estimate 73143

seconds, an improvement of 33754 seconds. The extra time spent during optimization is 14

seconds, as before, which is negligible relative to the gain.

While the benefits of using MQO show up on query workloads withcommon subexpressions,

a relevant issue is the performance on workloads with rare ornonexistent overlaps. If it is known

apriori that the workload is not going to benefit from MQO, then we can set a flag in our optimizer

that bypasses the MQO related algorithms described in this chapter, reducing to plain Volcano.

To study the overheads of our algorithms in a case with no sharing, we took TPCD queries

Q3, Q5, Q7, Q9 and Q10, renamed the relations to remove all overlaps between queries, and

created a batch consisting of the queries with relations renamed. The overheads of Volcano-SH

and Volcano-RU are neglibible, as discussed earlier. BasicVolcano optimization took 650 msec,

while the Greedy algorithm took 820 msec. Thus the overhead was around 25%, but note that the

absolute numbers are very small. With no overlap, the sharability detection algorithm finds no

node sharable, causing the Greedy algorithm to terminate immediately (returning the same plan

as Volcano). Thus, the overhead in Greedy is due to (a) expansion of the entire DAG, and (b) the

execution of the sharability detection algorithm. Of this overhead, cause (a) is predominant, and

66 CHAPTER 3. MULTI-QUERY OPTIMIZATION

the sharability computation was quite cheap on queries withno sharing.

In our experiments, Volcano-RU was better than Volcano-SH only in a few cases, but since

their run times are similar, Volcano-RU is preferable. There exist cases where Volcano-RU finds

out plans as good as Greedy in a much less time and using much less space; but on the other hand,

in the above experiments we saw many cases where additional investment of time and space in

Greedy pays off and we get substantial improvements in the plan.

To summarize, for very low cost queries, which take only a fewseconds, one may want to use

Volcano-RU, which does a “quick-and-dirty” job; especially so if the query is also syntactically

complex. For more expensive queries, as well as “canned” queries that are optimized rarely but

executed frequently over large databases, it clearly makessense to use Greedy.

3.7 Related Work

The multi-query optimization problem has been addressed in[18, 54, 56, 53, 13, 38, 10, 64, 59].

The work in [54, 56, 53, 13, 38] describe exhaustive algorithms; they use an abstract represen-

tation of a queryQi as a set of alternative plansPi;j, each having a set of tasksti;j;k, where the

tasks may be shared between plans for different queries. They do not exploit the hierarchical

nature of query optimization problems, where tasks have subtasks. Finally, these solutions are

not integrated with an optimizer.

The work in [59] considers sharing only amongst the best plans of each query – this is similar

to Volcano-SH, and as we have seen, this often does not yield the best sharing.

The problem of materialized view/index selection [45, 44, 63, 9, 34, 26] is related to the

multi-query optimization problem. The issue of materialized view/index selection for the special

case of aggregates/data-cubes is considered in [29, 27] andimplemented in Redbrick Vista [11].

The view selection problem can be viewed as finding the best set of sub-expressions to mate-

rialize, given a workload consisting of both queries and updates. The multi-query optimization

problem differs from the above since it assumes absence of updates, but it must keep in mind

the cost of computing the shared expressions, whereas the view selection problem concentrates

on the cost of keeping shared expressions up-to-date. It is also interesting to note that multi-

3.7. RELATED WORK 67

query optimization is needed for finding the best way of propagating updates on base relations

to materialized views [44].

Several of the algorithms presented for the view selection problem ([29, 27, 26]) are simi-

lar in spirit to our greedy algorithm, but none of them described how to efficiently implement

the greedy heuristic. Our major contribution here lies in making the greedy heuristic practical

through our optimizations of its implementation. We show how to integrate the heuristic with the

optimizer, allowing incremental recomputation of benefits, which was not considered in any of

the earlier work, and our sharability and monotonicity optimizations also result in great savings.

The lack of an efficient implementation could be one reason for the authors in [57] to claim that

the greedy algorithm can be quite inefficient for selecting views to materialize for cube queries.

Another reason is that, for multi-query optimization of normal SQL queries (modeled by our

TPC-D based benchmarks) the DAG is “short and fat”, whereas DAGs for complicated cube

queries tend to be taller. Our performance study (Section 3.6) indicates the greedy heuristic is

quite efficient, thanks to our optimizations.

Another related area is that of caching of query results. Whereas multiquery optimization

can optimize a batch of queries given together, caching takes a sequence of queries over time,

deciding what to materialize and keep in the cache as each query is processed. Related work in

caching includes [10, 64, 33]. The work in [64, 33] considersonly queries that can be expressed

as a single multi-dimensional expression. The work in [10] addresses the issue of management

of a cache of previous results but considers only select-project-join (SPJ) queries. We consider a

more general class of queries.

Our multi-query optimization algorithms implement query optimization in the presence of

materialized/cached views, as a subroutine. By virtue of working on a general DAG structure,

our techniques are extensible, unlike the solutions of [8] and [10]. The problem of detecting

whether an expression can be used to compute another has alsobeen studied in [35, 62, 52];

however, they do not address the problem of choosing what to materialize, or the problem of

finding the best query plans in a cost-based fashion.

Recently, [43] considers the problem of detecting invariant parts of a nested subquery, and

teaching the optimizer to choose a plan that keeps the invariant part as large as possible. Perform-

68 CHAPTER 3. MULTI-QUERY OPTIMIZATION

ing multi-query optimization on nested queries automatically solves the problem they address.

Our algorithms have been described in the context of a Volcano-like optimizer; at least two

commercial database systems, from Microsoft and Tandem, use Volcano based optimizers. How-

ever, our algorithms can also be modified to be added on top of existing System-R style bottom-

up optimizers; the main change would be in the way the DAG is represented and constructed.

3.8 Summary

We have described three novel heuristic search algorithms,Volcano-SH, Volcano-RU and Greedy,

for multi-query optimization. We presented a a number of techniques to greatly speed up the

greedy algorithm. Our algorithms are based on the AND/OR Query DAG representation of

queries, and are thereby can be easily extended to handle newoperators. Our algorithms also

handle index selection and nested queries, in a very naturalmanner. We also developed ex-

tensions to the DAG generation algorithm to detect all common sub expressions and include

subsumption derivations.

Our implementation demonstrated that the algorithms can beadded to an existing optimizer

with a reasonably small amount of effort. Our performance study, using queries based on the

TPC-D benchmark, demonstrates that multi-query optimization is practical and gives significant

benefits at a reasonable cost. The benefits of multi-query optimization were also demonstrated

on a real database system. The greedy strategy uniformly gave the best plans, across all our

benchmarks, and is best for most queries; Volcano-RU, whichis cheaper, may be appropriate for

inexpensive queries.

Our multi-query optimization algorithms were partially prototyped on Microsoft SQL Server

in summer ’99, and are currently being evaluated by Microsoft for possible inclusion in SQL

Server.

In conclusion, we believe we have laid the groundwork for practical use of multi-query op-

timization, andmulti-query optimization will form a critical part of all query optimizers in the

future.

Chapter 4

Query Result Caching

Data warehouses are becoming increasingly important partsof data analysis for decision support.

The typical processing time of decision support queries range from minutes to hours. This is due

to the nature of complex queries used for decision making. The aim of the work presented in

this chapter1 is to improve query response times by caching final as well as intermediate results

produced during query processing.

In a traditional database engine, every query is processed independently. In decision support

applications, queries often overlap in the data that they access and in the manner in which they

utilize the data, i.e., there are common expressions between queries. A natural way to improve

performance is to allocate a limited-size area on the disk tobe used as a cache for results com-

puted by previous queries. The contents of the cache may be utilized to speed up the execution

of subsequent queries. We use the termquery cachingin this chapter to mean caching of final

and/or intermediate results of queries.

Most exisiting decision support systems supportstatic view selection: select a set of views

apriori, and keep them permanently on disk. The selection isbased on either (a) the intuition

of the systems administrator, or (b) recommendation of “advisor wizards” as supported by Mi-

crosoft SQL-Server [9] based on a workload history. The advantage of query caching addressed

in this work over static view selection is that it can cater tochanging workloads — the data ac-

1Joint work with Krithi Ramamritham, S. Seshadri and S. Sudarshan.

70 CHAPTER 4. QUERY RESULT CACHING

relations
to be cached

current

Transaction
Update

Query Query Result

relations

query execution plan +
cache management plan

cache state

base relations + delta relations

cached

Cache Mgr

DB

Result Cache

Optimizer &
Execution Engine

Figure 4.1: Architecture of the Exchequer System

cess patterns of the queries cannot be expected to be static,and to answer all types of queries

efficiently, we need to dynamically change the cache contents.

The techniques needed for (a) for intelligently and automatically managing the cache con-

tents, given the cache size contraints, as queries arrive, and (b) for performing query optimization

exploiting the cache contents, so as to minimize the overallresponse time for all the queries, form

the crux of this work. These techniques form a part of the Exchequer2 query caching system. The

architecture of the Exchequer system is portrayed in Figure4.1.

Query results are cached on a fixed-size disk area, called theresult cache. Thus the caching of

a result incurs an overhead of writing the result to disk. If the cached result is to be indexed, the

caching overhead includes the index creation overhead. A use of the cached result corresponds

to index probes if it is indexed, a full scan otherwise. Our techniques also apply to -memory

caching as well as to hybrid two-level (disk cum main-memory) caching. These variants are

discussed in Section 4.6.

The cache manager and the optimizer are tightly integrated:(a) the optimizer optimizes an

incoming query based on the current cache state, and (b) the cache manager decides which results

to cache and which cached results to evict based on the workload (which depends on the sequence

of queries in the past).

We assume that the workload presents queries in an ordered sequence, and only one query is

2Efficiently eXploiting caCHEd QUEry Results

4.1. CACHE-AWARE QUERY OPTIMIZATION 71

processed at a time. Extending for concurrent optimizationand execution, wherein new queries

arrive and are to be optimized and executed while a previous query is being optimized and exe-

cuted, is a topic of future study. In particular, we assume that the cache contents do not change

between the optimization and execution of a query. The results are cached without any projec-

tions, to maximize the number of queries that can benefit froma cached result. Extensions to

avoid caching very large attributes are possible.

In addition to the above functionality, a caching system should also support invalidation or re-

fresh of cached results in the face of updates to the underlying database. In this chapter, however,

we will confine our attention only to the issue of efficient query processing, ignoring updates.

Data Warehouses are an example of an application where the cache replacement algorithm can

ignore updates, since updates happen only periodically (once a day or even once a week).

The Rest of The Chapter: Section 4.1 describes how Exchequer performs cache-aware query

optimization. In order to perform workload-adaptive caching, it is essential to dynamically main-

tain a characterization of the current workload; how Exchequer achieves this is discussed in Sec-

tion 4.2. Next, Section 4.3 outlines Exchequer’s cache management algorithm. Differences of

this work from earlier related work are covered in detail in Section 4.4. Results of experimental

evaluation of the proposed algorithms are discussed in Section 4.5. The chapter is summarized

in in Section 4.7.

4.1 Cache-Aware Query Optimization

This section explains how cache-aware query optimization is carried out in Exchequer. Sec-

tion 4.1.1 describes theConsolidated DAG, an auxiliary Query DAG (ref. Section 2.2.2) that is

used to keep track of the queries in the workload as well as thecache contents. In Section 4.1.2,

we outline how a Query DAG for the query is generated and melded with the Consolidated DAG;

as we shall show, this takes care of cached result matching and expressing the query in terms of

these cached results. Next, in Section 4.1.3, we describe Exchequer’s variant of the Volcano

query optimization algorithm that uses this Query DAG to findthe best plan for the query in the

72 CHAPTER 4. QUERY RESULT CACHING

presence of the cached results.

4.1.1 Consolidated DAG

We now introduceCDAG, the Consolidated DAG. CDAG is an auxilliary Query DAG structure

underlying Exchequer’s algorithms. CDAG contains (a) all the queries in the workload (in the

ideal case, when space is not at premium; a more practical alternative is discussed below), and

(b) the set of results present in the cache.

CDAG is used (a) to perform cache-aware query optimization,as explained in Section 4.1.2;

(b) to determine if a new query has occured earlier in the workload – this is needed in order to

maintain query statistics used to characterize the workload, as explained in Section 4.2; and (c)

to make dynamic caching decisions, as explained in Section 4.3.

Given the large number of queries involved, the space overhead of CDAG is a concern if

all alternative plans of all the queries are to be stored. In practice, therefore, we (a) keep only

thebest planof each query in the CDAG, and (b) specify a static space constraint and consider

only a restricted set of queries to represent the workload, so that the resulting CDAG fits in the

given space. Queries may be displaced if they are not expected to recur often in the current

workload; how this can be determined is explained in Section4.2. Note that most commercial

database systems maintain aprocedure cache[58] to cache the optimized plans of the queries in

the workload; these procedure caches clearly have similar space overhead.

Due to the displacement of queries (because of the space constraints, as discussed above), as

well as due to the evolution with time of the set of cached results, we need to delete and insert

queries from CDAG. Since parts of CDAG may be shared by multiple queries and cached results,

deletion of intermediate nodes of CDAG is done using a reference counting mechanism.

Equivalence nodes in CDAG that correspond to cached resultsare marked as such; this allows

us to (a) keep track of the cached results for use in the cache-aware optimization algorithm as

will be explained in Section 4.1.2, and (b) specify the needed reconfiguration of the cache by

marking and unmarking the equivalence nodes as will be explained in Section 4.3.

Figure 4.2(a) shows a CDAG for the query setfA 1 C 1 D, A 1 C 1 Eg, and the cached

4.1. CACHE-AWARE QUERY OPTIMIZATION 73

(cached) (cached) (cached)

E

A B B C A C

DCBA

A B A C

BA C D E

A C

C D EA

A C D A C E A B C A C D A C E A C D A C EA B C

(b) (c)(a)

Figure 4.2: (a) CDAG forf A 1 C1 D, A 1 C1 E g (b) Unexpanded A1 B 1 C inserted into

CDAG (c) A1 B 1 C expanded into CDAG

result setfA 1 Cg.
4.1.2 Query DAG Generation and Query/Cached Result Matching

When a new query arrives, it is added to CDAG and expanded intoits Query DAG. A fallout of

the support for unification in our version of the Volcano optimizer (ref. Section 2.2.2) is that since

the equivalence nodes in the Query DAG for a query may unify with a CDAG equivalence node

that corresponds to a result present in the cache, we automatically get rewritings of the query in

terms of the cached results. Moreover, unification allows usto determine if the new query has

occured earlier in the workload, since in this case, the rootequivalence node of the Query DAG

will unify with the root equivalence node corresponding to the query in CDAG. This is needed

in order to maintain the statistics needed to characterize the workload (Section 4.2).

As an example, consider again the CDAG of Figure 4.2(a), for the query setfA 1 C 1 D,

A 1 C 1 Eg, and the cached result setfA 1 Cg. Now, when the query A1 B 1 C arrives, its

initial unexpanded representation is created and added to the CDAG as shown in Figure 4.2(b).

The next step is the expansion of this query tree into the Query DAG for the query shown in

Figure 4.2(c). This is achieved by applying all possible transformations on every equivalence

node of the query tree. In our example, we assume that the onlytransformations applied are

join associativity and commutativity. (To avoid clutter, the figure does not show the results of

applying commutativity on the respective expressions.) Inthe process, when the expression (A1 C)1 B is generated, the new expression A1 C is found to already exist in the CDAG. It turns

74 CHAPTER 4. QUERY RESULT CACHING

out that the equivalence node for A1 C is marked as present in the cache (see Figure 4.2(c)); the

expression (A1 C)1 B represents a rewriting of the query in terms of the cached result A1 C.

Exchequer also detects and handlessubsumptionderivations. For example, suppose two

subexpressionse1: �A<5(E) ande2: �A<10(E) appear in the query. The result ofe1 can be

obtained from the result ofe2 by an additional selection, i.e.,�A<5(E) � �A<5(�A<10(E)). To

represent this possibility, we add an extra operation node�A<5 betweene1 ande2 in the Query

DAG. Similarly, givene3: �A=5(E) ande4: �A=10(E), we introduce a new equivalence nodee5: �A=5_A=10(E) and add new derivations ofe3 ande4 from e5. In general, given a number of

selections on an expressionE, we create a single new equivalence node representing the disjunc-

tion of all the selection conditions. Similar derivations also help with aggregations. For example,

if we havee6: dnoGsum(Sal)(E) ande7: ageGsum(Sal)(E), we introduce a new equivalence nodee8: dno;ageGsum(Sal)(E) and add derivations ofe6 ande7 from equivalence nodee8 by further

groupbys ondno andage.
Subsumption derivations are important because (a) they allow reuse of cached results even

though the cached result does not exactly match a subexpression of the query, but can be used to

compute the same; and dually, (b) they make explicit the different ways in which a result may

be used, which is important for determining the benefit of caching the result while making the

dynamic caching decisions as explained in Section 4.3.

Volcano neither performs unification nor introduces subsumption derivations – these exten-

sions were proposed as a part of our earlier work on multi-query optimization (Chapter 3). The

novelty here is to show how this Query DAG framework can be used to perform matching of

queries and cached results during optimizationwith neglegible overhead on the optimizer.

In the following section, we discuss how the Query DAG for thenew query, generated as

explained in this section, is used to generate the best plan for the query in a cache-aware manner.

4.1.3 Volcano Extensions for Cache-Aware Optimization

Exchequer makes use of the above Query DAG representation and uses a variant of the Volcano

optimization algorithm (see Chapter 2) to optimize the queries.

4.2. DYNAMIC CHARACTERIZATION OF CURRENT WORKLOAD 75

The main extension to Volcano for Exchequer involves considering possible use of cached

results while determining the minimum-cost plan for a query. To find the cost of a node given

a set of equivalence nodesS whose results are present in the cache, we use the Volcano cost

formulae stated above for the query, with the following change.

For the equivalence nodee, whose result is present in the cache, letreuse
ost(e) denote the

cost of reusing the cached result. When computing the cost ofan operation nodeo, if an input

equivalence nodee0 2 S, the minimum ofreuse
ost(e0) and
ost(e0) is used for
ost(o). Thus,

we use the following expression instead:

cost(o) = cost of executing(o) + �ei2
hildren(o)C(ei)
whereC(ei) = 8><>:
ost(ei) if ei 62 Smin(
ost(ei); reuse
ost(ei)) if ei 2 S

Thus, the extended optimizer computes best plans for the query in the presence of cached results.

The extra optimization overhead is quite small.

4.2 Dynamic Characterization of Current Workload

In this section, we outline how Exchequer characterizes thedynamically changing workload that

are needed to make dynamic caching decisions.

Consider a point in time just before the arrival of theith queryQi. We model the future

workload at this point as a sequence of queries picked from some fixed set according to some

fixed probability distribution. Thus, in this model, the setof queries and probability distribution

together fully characterize the workload at this point; however, neither of these are known, and

need to be predicted. These predictions need to be dynamic, and must be continuously updated

to keep track of the changing workload as time progresses.

Our predictions for the future are entirely based on the past. As such, we predict the set of

future queries as the set of queries present in CDAG at the given point in time. We denote this set

by Ui. Further, let the estimate of the probability distributionat this point be denoted byPi. We

assume the presence of (a) an arbitrary non-empty initial set of queries,U1, and (b) an arbitrary

initial probability distribution,P1, onU1. In the discussion below, we show howUi andPi are

76 CHAPTER 4. QUERY RESULT CACHING

updated toUi+1 andPi+1 respectively on the arrival of the queryQi.
WhenQi arrives, it is optimized; the unification extension of Volcano algorithm, described

in Section 4.1.2, enables us to determine whether or notQi 2 Ui. If Qi 2 Ui, the CDAG remains

unchanged; if not,Qi is added to CDAG.3 Thus, we haveUi+1 = Ui [fQig.
For a givenQ 2 Ui+1, Pi+1(Q) is computed using a simple exponential smoothing estimator

on the serieshIk(Q)iik=1 where the indicator functionIk(Q) is 1 if Q � Qk, and 0 otherwise.

Formally:4 Pi+1(Q) = 8>>>>><>>>>>: (1� �)Pi(Q) if Q 6� Qi� if Q � Qi andQi 62 Ui(1� �)Pi(Q) + � if Q � Qi andQi 2 Ui
The smoothing factor� 2 [0; 1℄ denotes the bias of the estimator in favour of the recent queries

in the workload; we choose� = 0:05 in our experiments. The exponential smooting estimator

was chosen because of its simplicity and low overhead.

The probability estimates need to be maintained dynamically as the workload progresses. An

option is to compute this estimate on the arrival of each successive query using the equations

above for each query in the current CDAG. This is clearly not viable due to the large number of

queries involved. In practice, therefore, these estimatesare maintained lazily and computed only

when accessed.

4.3 Cache Management in Exchequer

Consider an arbitrary queryQi in the workload. The algorithm outlined in this section attempts

to determine the intermediate results computed during the execution ofQi that are worth caching;

the goal being to minimize theexpectedexecution cost of an arbitrary query in the future work-

load. This involves comparing the expected benefit of caching the results with (a) the cost in-

volved in storing them on the disk, and (b) the loss due to the displacement of previously cached

3Possibly replacing some other queries due to space constraints. This case is not considered in the presented

scheme for sake of simplicity; it is trivial extension to thesame.
4It can be verified thatPi+1 is a valid probability distribution ifPi is one.

4.3. CACHE MANAGEMENT IN EXCHEQUER 77

results in order to accomodate these results, if necessary,due to cache space constraints.

As outlined in Section 4.2, the future workload at the point of execution ofQi is characterized

by (a) the set of queriesUi+1 and (b) the probability distributionPi+1 onUi+1. Let S be the set

of results present in the cache when a queryQ0 arrives, as a part of the predicted workload.Q0 is

then optimized using the results inS as explained in Section 4.1. The expected execution cost of

the best plan forQ0 chosen by the optimizer is given by
PQ2Ui+1(
ost(Q;S) � Pi+1(Q)), where
ost(Q;S) is the cost of computing the queryQ given the set of cached resultsS. However,

sinceUi+1 contains a large number of queries, computation of the abovesum is expensive. Thus,

we identify arepresentative set,R, a subset ofUi+1 containingN queries that are most likely to

occur as the next query (as suggested by the distributionPi+1 onUi+1) and compute the sum with

respect toR — this is justified since the distributionPi+1 is most likely skewed due to locality

of reference; therefore, restricting the sum with respect to the most probable queries should give

a reasonable approximation of the actual expected cost. We thus compute an approximationexp
ost(S) of the expected execution cost as:exp
ost(S) = XQ2R(
ost(Q;S) � Pi+1(Q))
The algorithm described below, thus, chooses the setS that minimizesexp
ost(S); Exchequer’s

execution engine reconfigures the cache accordingly duringthe execution ofQi.
Given a set of resultsS already chosen for caching by the algorithm, and a resultx, benefit(x;S),

the benefit of additionally caching nodex, is defined as the decrease inexp
ost(S) (the payoff),

minus the cost of cachingx, if it is not already present in the cache (the investment). Formally:

benefit(x;S) = 8>>>>>>>><>>>>>>>>:
exp
ost(S) � exp
ost(fxg [S)

if x is present in the cacheexp
ost(S) � (exp
ost(fxg [S) +mat
ost(x))
if x is not present in the cache

wheremat
ost(x) is the cost of caching the new resultx, which involves writingx to the disk.

The benefit measured as above is conservative since it does not amortize themat
ost(x) over

multiple uses; computing a tighter measure of benefit is nontrivial since it is difficult to compute

78 CHAPTER 4. QUERY RESULT CACHING

Procedure GREEDY

Input: C, the set of candidate results for caching
Output: S, the set of results to be cached
BeginS = �

while (C 6= �)
Among results y 2 C

L1: Pick the result x with the maximum benefit(x;S)=size(x)
/* i.e., maximum benefit per unit space */

if (benefit(x;S) � 0 or size(fxg [S) > Ca
heSize)
break; /* No further benefits to be had, stop */C = C � x; S = S [fxg

return S
End

Figure 4.3: The Greedy Algorithm for Cache Management

apriori how many times the resultx is going to be used between its admission into the cache and

its replacement. However, in practice, we find that amortizingmat
ost(x) does not have much

effect; this is because for mostx with highbenefit(x;S), mat
ost(x) is relatively insignificant.

Figure 4.3 outlines an algorithm, hereafter called Greedy,that takes as input acandidate set

of results,C, and heuristically selects (for caching) the subsetS of C with the maximum benefit

overall under the cache space constraint ofCa
heSize. The purpose of Greedy is to weigh the

benefits of caching the intermediate results that are computed during the execution of the best

plan ofQi against the benefit of retaining results that are already in the cache. As such, the

candidate setC contains:

1. The final and intermediate results in the best plan ofQi, and

2. The set of results that was selected as having the maximum benefit by the preceding invo-

cation of the algorithm (this set is present in the cache).

Greedy works iteratively as follows. Starting withS empty, in each iteration, the algorithm

greedily selects the nodex among the results inC that, if cached, gives the maximumbenefit per

unit space, and moves it fromC to S. The algorithm terminates whenC becomes empty, benefit

becomes zero/negative, or the size of the nodes inS exceed the cache size, whichever is earlier.

4.3. CACHE MANAGEMENT IN EXCHEQUER 79

The final value ofS is the set of results to be placed in the cache, and is returnedas the output of

the algorithm.

After S has been computed by Greedy, the best plan ofQi is executed. Two variants of the

Exchequer algorithm are possible depending upon what is cached during the execution:� Exchequer/NoFullCache:Only computed intermediate results that are included inS are

added to the cache; no additional nodes are admitted even if there is space in the cache.� Exchequer/FullCache:Apart from computed intermediate results that are includedin S,

other computed results are also admitted to the cache if there is enough free space in the

cache.

The idea behind Exchequer/FullCache is to keep the cache as occupied as possible at all times;

however, the experimental results in Section 4.5 show that this does not provide any significant

benefit.

In order to make the decisions regarding the eviction of results in the cache not inS, we use

Largest Cache Space/Least Recently Used (LCS/LRU), wherein the largest results are preferen-

tially evicted, and amongst all results of the same size, theleast recently used one is evicted. We

chose this policy because of its low overhead, since it does not need any statistical information.

Moreover, this policy has been shown to work best among a hostof alternatives considered by

ADMS [10].

Optimizations of Greedy Algorithm: Two important optimizations to a greedy algorithm for

multi-query optimization, originally proposed in the context of multi-query optimization (Chap-

ter 3), can be adapted for the purpose of selecting the cachable nodes efficiently:

1. Since there are many calls tobenefit(and thereby toexp
ost) at line L1 of Figure 4.3,

with different parameters, a simple option is to process each call toexp
ost independent

of other calls. Our optimization is toincrementallyupdate the costs, maintaining the state

of the Query DAG (which includes previously computed best plans for the equivalence

nodes) across calls toexp
ost. Details can be found in Chapter 3.

80 CHAPTER 4. QUERY RESULT CACHING

2. With the greedy algorithm as presented above, in each iteration the benefit of every can-

didate result that is not yet cached is recomputed since it may have changed. If we can

assume that the benefit of a result cannot increase when another result is chosen to be

cached (while this is not always true, it is often true in practise) there is no need to re-

compute the benefit of a resultx if the new benefit of some resulty is higher than the

previously computed benefit ofx. It is clearly preferable to cachey at this stage, rather

thanx — under the above assumption, the benefit ofx could not have increased since it

was last computed.

4.4 Differences from Prior Work

Much of the earlier work on caching has been for specialized applications (e.g. data cubes [16,

33, 50], or [10] which handles only select-project-join queries, or [15, 32, 31] which handle just

selections). While specialized queries are important, general purpose decision support systems

must support more general queries as well. Our algorithms can handle any SQL query, including

nested queries. Moreover, our techniques are extensible inthat new operators can be added

easily, due to the use of the Query DAG framework.

Further, most of the earlier work does not take caching of intermediate results into account

(e.g. WatchMan [49]), or has relatively simple cache replacement algorithms, which do not take

into account the fact that the benefit of a cached result may depend on what else is in the cache

(e.g. ADMS [10]). Dynamat [33] uses sophisticated cache replacement techniques, specifically

computing benefits of cached results taking other cache contents into account. However, their

techniques are restricted to the case where each result can be derived directly from exactly one

parent (and indirectly from any ancestor). Our techniques do not have this restriction.

In earlier work, usage statistics are maintained for each cached result, which are used to com-

pute a replacement metric for the same; the replacement metric is variously taken as the cached

results last use, its frequency of use in a given window, its rate of use, etc. Our techniques do not

maintain statistics at the granularity of the cached result– instead, the statistics maintained at the

granularity of the queries are used to decide on admission and replacement of the intermediate

4.4. DIFFERENCES FROM PRIOR WORK 81

results.

Furthermore, in earlier work that considers general queries (e.g. WatchMan [49]), the cached

results are matchedsyntactically. Our work carries out sematic matching of cached results during

cache-aware query optimization.

It is important to contrast the caching problem with the materialized view/index selection

problem, where the cache contents do not vary and the query workload is known fully apriori

(e.g., see [44, 34, 26] for general views, [29, 27, 57] for data cubes, and [9] for index selection).

Techniques for materialized view/index selection use sophisticated ways of deciding what to

materialize, where the computation of the benefit of materializing a view takes into account what

other views are materialized. The major disadvantage of static cache contents is that they cannot

cater to changing workloads — the data access patterns of thequeries cannot be expected to be

static, and to answer all types of queries efficiently, we need to dynamically change the cache

contents. Moreover, the cost of materializing the selectedviews is ignored.

Another related area is multi-query optimization (MQO), where (e.g., the work presented in

Chapter 3) the optimizer takes the cost of temporarily materializing the selected views, but still

makes a static decision on what to materialize based on a fixedset of queries. Still, as we saw

in Section 4.3, dynamic cache management can benefit from some of the techniques developed

for the efficient implementation of MQO. In particular, the Greedy algorithm presented in Sec-

tion 4.3 is derived from the Greedy algorithm used in our earlier work on MQO (Chapter 3).

However, that algorithm was concerned with minimizing the total one-time execution cost of

the queries in a given batch, with no restriction on the storage space. The Greedy algorithm

presented in Section 4.3, on the other hand, is concerned with minimizing the cost of aninfinite

workload, where each query can occur multiple times, under fixed constraints on the storage

space for cached results. This leads to a very different notion of the “benefit” of sharing a result.

Apart from this, a major design issue in this work is to make Greedy suitable for online operation,

as is apparent from our discussion in Section 4.3.

Recently, there has been some interest in caching in contextof LDAP queries [31]; these

queries are simple in nature and involve only multi-attribute selects on a single table. The caching

algorithm proposed in [31] performs complete reorganization of the cache contents (calledrev-

82 CHAPTER 4. QUERY RESULT CACHING

olution) whenever the estimated benefit of the cached data drops below a dynamically estimated

value. In between revolutions, the cache contents undergo incremental modifications (calledevo-

lution). Exchequer performs only evolution; our experiences withperforming revolutions as well

are presented in Section 4.6.

4.5 Experimental Evaluation of the Algorithms

In this section we describe our experimental setup and the results obtained. Our algorithms

were implemented as extensions of the multi-query optimization code (Chapter 3) that we have

integrated into our Volcano-based query optimizer. The basic optimizer took approx. 17,000

lines of C++ code, with caching code taking about 3,000 lines.

The block size was taken as 4KB and our cost functions assume 6MB is available to each

operator during execution (we also conducted experiments with memory sizes up to 128 MB,

with similar results). Standard techniques were used for estimating costs, using statistics about

relations. The cost estimates contain an I/O component and aCPU component, with seek time

as 10 msec, transfer time of 2 msec/block for read and 4 msec/block for write, and CPU cost

of 0.2 msec/block of data processed. We assume that intermediate results are pipelined to the

next input, using an iterator model as in Volcano. Caching a result has the cost of writing out the

result sequentially to the disk.

The tests were performed on a Sun workstation with UltraSparc 10 333Mhz processor, 256MB

RAM, running Solaris 2.7.

4.5.1 Test Query Sequences

We tested our algorithms with streams of 1000 randomly generated queries on a TPCD-based

star schema similar to the one proposed by [50]. The schema has a centralOrdersfact table, and

four dimension tablesPart, Supplier, CustomerandTime. The size of each of these tables is the

same as that of the corresponding table in the 100 MB TPCD-0.1database. This corresponds to

base data size of approximately 40 MB (there are other tablesin the TPCD-0.1 database which

4.5. EXPERIMENTAL EVALUATION OF THE ALGORITHMS 83

account for the remaining 60MB). Each generated query was ofthe form:

SELECT SUM(QUANTITY)

FROM ORDERS, SUPPLIER, PART, CUSTOMER, TIME

WHERE join-list AND select-list

GROUP BY groupby-list;

The join-list enforces equality between attributes of the order fact table and primary keys of

the dimension tables. We pickfsuppkey, partkey, custkey, month, yearg as the set of group-

by attributesG. An additional attribute from each of PART, SUPPLIER and CUSTOMER was

picked to form the list of select attributesA.

Thegroupby-listwas generated by picking a subset ofG at random. Theselect-list, i.e. the

predicates for the selects, were generated by selecting attributes at random fromA andG and

creating equality or inequality predicates on these attributes using random values picked from the

respective domains. The select predicates involving attribues inA define different cubes. Thus,

in effect, the workload models simultaneous analysis of a large number of distinct cubes. A

query is thus defined uniquely by the pair(select-list, groupby-list). Even though our algorithms

can handle a more general class of queries, the above class ofcube queries was chosen so that

we can have a fair comparison with DynaMat [33] and Watchman2[50].

There are two independent criteria based on which the pair(select-list, groupby-list)was

generated.

1. The kind of predicates comprising the select-list.

Accordingly, we classify the workloads as:� CubePoints:Predicates are restricted to equalities, or� CubeSlices:Predicates are a random mix of equalities and inequalities.

Figure 4.4 gives the distribution of the distinct intermediates results computed during the

processing of the CubePoints and CubeSlices workloads. Since each predicate in Cube-

Points is a highly selective equality, the size of most intermediate results is small, at most

84 CHAPTER 4. QUERY RESULT CACHING

0% 8% 32% 64% 128%

Result Size (% of DB Size)

1

10

100

1000

N
um

be
r

of
 R

es
ul

ts

900 Query CubePoints
900 Query CubeSlices

Figure 4.4: Distribution of distinct intermediate resultsgenerated during the processing of the

CubePoints and CubeSlices workloads

10% of the database size. On the other hand, since CubeSlicescontains inequalities as

well, a number of larger intermediate results, with size upto 40% of the database size, are

also present.

2. The distribution from which the attributes and values are picked up in order to form the

groupby-listand the predicates in the select-list.

We consider a moderately skewed and a highly skewed workload, based on the Zipfian

distribution:5� Zipf-0.5: Uses Zipfian distribution with parameter 0.5. This workloadis moderately

skewed.� Zipf-2.0: Uses Zipfian distribution with parameter 2.0. This workloadis highly

skewed.

The distribution additionally rotates after every interval of 128 queries, i.e. the most fre-

quent subset of groupbys becomes the least frequent, and allthe rest shift up one position.

5Zipfian distribution with parameter� onf1; : : : ; ng specifiesp(k) / k��

4.5. EXPERIMENTAL EVALUATION OF THE ALGORITHMS 85

Thus, within each block of 128 queries, some groupby combinations and selection con-

stants are more likely to occur than others.

Based on the four combinations that result from the above criteria, the following four work-

loads are considered in the experiments:� CubePoints/Zipf-0.5:a moderately skewed workload of CubePoints,� CubePoints/Zipf-2.0:a highly skewed workload of CubePoints,� CubeSlices/Zipf-0.5:a moderately skewed workload of CubeSlices, and� CubeSlices/Zipf-2.0:a highly skewed workload of CubeSlices

4.5.2 Metric

The metric used to compare the goodness of caching algorithms is thetotal response time of a set

of queries. We report the total response time for a sequence of 900 queries that enter the system

after a sequence of 100 queries warm up the cache. This total response time is as estimated by the

optimizer and hence denoted asestimated costin the experimental results presented in Section

4.5.4. These estimates are the same as used in Section 3.6 andas demonstrated there, are a close

approximation to the real execution costs on Microsoft SQL-Server 6.5.

4.5.3 List of algorithms compared

We consider the following three variants of Exchequer; the first two were described in Sec-

tion 4.3:� Exchequer/FullCache:Apart from computed intermediate results that are includedin S,

other computed results are also admitted to the cache if there is enough free space in the

cache. This is the variant actually used in the Exchequer system.� Exchequer/NoFullCache: Only computed intermediate results that are included in the

candidate setS are added to the cache; no additional nodes are admitted evenif there is

space in the cache.

86 CHAPTER 4. QUERY RESULT CACHING� Exchequer/FinalResIdentical to Exchequer/FullCache, except that only the final results

are cached. This variant is considered to illustrate the impact of caching intermediate

results.

The size of the representative set is set to 10 for each of these variants. As a part of the

experimental study in Section 4.5.4, we evaluate these variants against each other as well as

against the following prior approaches.� LCS/LRU: This approach uses the caching policy found to be the best in ADMS [10],

namely replacing the result occupying thelargest cache space(LCS), picking theleast

recently used(LRU) result in case of a tie. The incoming query is optimizedtaking the

cache contents into account. The final as well as intermediate results in the best plan are

considered for admission into the cache based on LCS.� DynaMat: We simulate DynaMat [33] by considering only the top-level query results

(in order to be fair to DynaMat, our benchmark queries were chosen to have either no

selection or only single value selections). The original DynaMat performs matching of

cube slices using R-trees on the dimension space. In our implementation, query matching

is performed semantically, using our unification algorithm, rather than syntactically. We

use our algorithms to optimize the query taking into accountthe current cache contents;

this covers the subsumption dependency relationships explicitly maintained in [33]. The

replacement metric is computed as:

(number-of-accesses� cost-of-computation)/(query-result-size)

where the number of accesses are from the entire history (observed so far).� WatchMan: Watchman [49] also considers caching only the top level query results. The

original Watchman does syntactic matching of queries, withsemantic matching left for fu-

ture work. We improve on that by considering semantic matching. The difference between

our implementation of DynaMat and WatchMan is in the replacement metric: instead of

considering the number of accesses as in the Dynamat implementation, our WatchMan

implementation considers the rate of use on a window of last five accesses for each query.

4.5. EXPERIMENTAL EVALUATION OF THE ALGORITHMS 87

The replacement metric for Watchman is thus:

(rate-of-use� cost-of-computation)/(query-result-size)

where the cost of computation is with respect to the current cache contents. The original

algorithms did not consider subsumption dependencies between the queries; our imple-

mentation considers aggregation subsumption among the cube queries considered.

Given the enhancements mentioned above, our implementations of the above algorithms are

slightly more sophisticated than the originally proposed versions.

It is important to investigate the promise dynamic materialized view selection hold over static

materialized view selection. In order to do so, we consider our version of static view selection

wizard as follows:� Static: We use Exchequer/NoFullCache on the first 100 queries in the workload, with

the representative set consisting of all queries so far. After the 100th query, the cache

contents are fixed and never changed in the duration of the remaining workload. The cost

of computing the materialized views is not added in the execution cost of the workload.

In order to evaluate the absolute benefits and competitivityof the algorithms considered. we

also consider the following baseline approaches:� NoCache:Queries are run assuming that there is no cache. This gives anupper bound on

the running time of any well-behaved caching algorithm.� InfCache: The purpose of this simulation is to give a lower bound on the running time of

any caching algorithm. We assume an infinite cache anddo notinclude the materialization

cost. Each new result is computed and cached the first time it occurs, and reused whenever

it occurs later.

4.5.4 Experimental Results

The goal of this section is to study the following issues:

1. Merit of intermediate result caching over exclusively final result caching.

88 CHAPTER 4. QUERY RESULT CACHING

0% 8% 32% 64% 128%

Cache Size (% of DB Size)

0

5000

10000

90
0

Q
ue

ry
 C

ub
eP

oi
nt

/Z
ip

f-
0.

5:
 E

st
im

at
ed

 C
os

t (
se

co
nd

s)

NoCache
DynaMat
LCS/LRU
Exchequer/FinalRes
WatchMan
Exchequer/FullCache
Exchequer/NoFullCache
Static
InfCache

Figure 4.5: Performance on 900 Query CubePoints/Zipf-0.5 Workload

2. Merit of dynamic intermediate result caching over staticresult caching, for moderately and

highly skewed workloads.

3. Merit of cost-benefit based approach over simpler policies like LCS/LRU.

4. Merit of keeping the cache full by caching additional results in case the results selected by

greedy do not fill up the entire cache (as in Exchequer/FullCache) over caching only the

results selected by greedy, as in Exchequer/NoFullCache).

5. Whether the overheads incurred by Exchequer/FullCache are acceptable.

We experiment with different cache sizes, corresponding toroughly 0%, 32% and 64% and

128% of the total database size of approximately 40 MB. For each of these cache sizes, the

set of 9 algorithms mentioned in Section 4.5.3 (viz. NoCache, DynaMat, LCS/LRU, WatchMan,

Exchequer/FinalRes, Exchequer/FullCache, Exchequer/NoFullCache, Static and InfCache) were

executed on the four workloads listed in Section 4.5.1. The results for CubePoints/Zipf-0.5 and

CubePoints/Zipf-2.0 workloads are shown in Figure 4.5 and Figure 4.6 respectively, while the

results for CubeSlices/Zipf-0.5 and CubeSlices/Zipf-2.0are shown in Figure 4.7 and Figure 4.8

4.5. EXPERIMENTAL EVALUATION OF THE ALGORITHMS 89

0% 8% 32% 64% 128%

Cache Size (% of DB Size)

0

5000

10000

90
0

Q
ue

ry
 C

ub
eP

oi
nt

/Z
ip

f-
2.

0:
 E

st
im

at
ed

 C
os

t (
se

co
nd

s)

NoCache
DynaMat
LCS/LRU
Exchequer/FinalRes
WatchMan
Exchequer/FullCache
Exchequer/NoFullCache
Static
InfCache

Figure 4.6: Performance on 900 Query CubePoints/Zipf-2.0 Workload

0% 8% 32% 64% 128%

Cache Size (% of DB Size)

0

5000

10000

15000

90
0

Q
ue

ry
 C

ub
eS

lic
e/

Z
ip

f-
0.

5:
 E

st
im

at
ed

 C
os

t (
se

co
nd

s)

NoCache
DynaMat
LCS/LRU
Exchequer/FinalRes
WatchMan
Exchequer/FullCache
Exchequer/NoFullCache
Static
InfCache

Figure 4.7: Performance on 900 Query CubeSlices/Zipf-0.5 Workload

90 CHAPTER 4. QUERY RESULT CACHING

0% 8% 32% 64% 128%

Cache Size (% of DB Size)

0

5000

10000

15000

90
0

Q
ue

ry
 C

ub
eS

lic
e/

Z
ip

f-
2.

0:
 E

st
im

at
ed

 C
os

t (
se

co
nd

s)

NoCache
DynaMat
LCS/LRU
Exchequer/FinalRes
WatchMan
Exchequer/FullCache
Exchequer/NoFullCache
Static
InfCache

Figure 4.8: Performance on 900 Query CubeSlices/Zipf-2.0 Workload

respectively.

Effect of Intermediate Result Caching. For all the four workloads, DynaMat, WatchMan and

Exchequer/FinalRes which cache only the full query resultsperform very poorly. This is because

though there is a large amount of overlap among the queries ineach workload, there is hardly

any repetition of the same query. In fact, because of the select predicates involving the setA (ref.

Section 4.5.1), the subsumption possibilities among the results (that can be exploited by these

algorithms) are minimal.

The importance of intermediate result caching can be gaugedby the fact that even Static,

which maintains afixedset of intermediate results, consistently performs far better than these

algorithms. This is because the intermediate results cached by static, though fixed, can be used by

a greater number of queries in the workload. This clearly demonstrates the heavy improvement

in performance that can be achieved using intermediate result caching.

Effect of Dynamic Caching. We now compare the performance of Static with that of the algo-

rithms which dynamically maintain the cached results, viz.LCS/LRU, Exchequer/NoFullCache

4.5. EXPERIMENTAL EVALUATION OF THE ALGORITHMS 91

and Exchequer/FullCache.

Recall that Static builds up the cache contents using the query distribution of the first 100

queries, and keeps it fixed for the duration of the remaining 900 queries. However, each of the

workloads changes the skew after every 128 queries, making the caching decisions by Static

mostly ineffective. Naturally, therefore, we find that these dynamic intermediate result caching

algorithms consistently perform much better than Static for all the workloads considered, with

the sole exception of CubeSlices/Zipf-0.5.

In the case of CubeSlices/Zipf-0.5, Static performs betterthan LCS/LRU for the whole range

of cache sizes considered. This is because CubeSlices/Zipf-0.5 workload contains large interme-

diate results with high benefit due to subsumption. While Static caches these results, LCS/LRU

does not because of its bias against larger results. Surprisingly, for small cache sizes on the

CubeSlices/Zipf-0.5 workload, even Exchequer/NoFullCache and Exchequer/FullCache perform

better than Static. This is because for small cache sizes, these large cache results lead to signifi-

cant overheads due to their repeated materialization and disposal in the dynamic algorithms, and

the fixed caching approach of Static holds an advantage. However, for larger cache sizes, Ex-

chequer/NoFullCache and Exchequer/FullCache are able to maintain these larger results in the

cache longer, leading to the sharp gain in performance over Static.

Thus, overall, we conclude that dynamic intermediate can lead to large improvements over

static caching. For consistent behaviour, however, it is important that the intermediate result

caching policy be intelligent, taking into account the costversus benefit of caching the results,

unlike LCS/LRU. This is further discussed next.

Need for Cost-Benefit Based Algorithms. We now compare the sophisticated approach of

Exchequer/FullCache, with the much simpler approach of LCS/LRU. We find that while Ex-

chequer/FullCache performs very well for all the four workloads, the relative performance of

LCS/LRU varies from very good to poor (even worse than Static), markedly depending upon the

distribution of the intermediate results (ref. Figure 4.4)and the skew of the workload.

On the CubePoints workloads (both Zipf-0.5 and Zipf-2.0), LCS/LRU performs extremely

well; in fact its performance is close to that of Exchequer/FullCache for this workload. This

92 CHAPTER 4. QUERY RESULT CACHING

is because the size of the intermediate results in these workloads is small; moreover, because

of the predicates being exclusively equalities, subsumption plays little role and therefore larger

results have small benefit given the space they occupy. Thus,on these workloads, the LCS/LRU

strategy of preferably caching smaller results pays well, and the advantage due to occasional

high benefit larger results cached by Exchequer/FullCache is not much. Thus, for the workloads

having small intermediate results and low subsumption opportunities, the benefits offered by

the more sophisticated Exchequer/FullCache over much simpler LCS/LRU are modest. On the

CubeSlices workloads, however, Exchequer/FullCache performs much better than LCS/LRU.

This is because, due to subsumption, the larger results havea higher benefit, but LCS/LRU

preferentially maintains smaller results in cache.

LCS/LRU works on the assumption that smaller intermediate results have high benefit. In

the cases when this assumption is satisfied, the performanceof LCS/LRU is almost as well as

Exchequer/FullCache. However, in case this assumption does not hold and larger intermediate

results have greater benefit, LCS/LRU does not perform well.Exchequer/FullCache explicitly

takes into account the costs and benefits of intermediate results while taking the caching decisions

and, unlike LCS/LRU, does not rely on an ad-hoc rule. This makes it much less sensitive to the

size of intermediate results, and it performs much better than other earlier algorithms on all

the four workloads. Thus, at the cost of the extra sophistication, Exchequer/FullCache gives

a performance that is not only better, but is much more stablethan that given by the simpler

LCS/LRU.

Effect of Caching Additional Results in Available Extra Space. The two variants of the

basic Exchequer algorithm, Exchequer/NoFullCache and Exchequer/FullCache, differ in the de-

cision about whether or not to make extra investments by caching additional results in the cache

that may remain unfilled after all the results selected by Greedy are cached; this extra space is

managed using LCS/LRU. Exchequer/FullCache makes this investment expecting to benefit in

the future due to having more results in the cache. On the other hand, Exchequer/NoFullCache

is more conservative and does not make this investment.

Our results show that Exchequer/FullCache benefits significantly in performance over Ex-

4.5. EXPERIMENTAL EVALUATION OF THE ALGORITHMS 93

chequer/NoFullCache by making use of the extra cache space.There are instances when the

investment does not pay off, as in the case of CubePoints/Zipf-0.5 for the cache size of 128%,

and the performance actually deteriorates. But this occasional loss is neglegible as compared

to the benefits obtained, as can be seen by comparing the graphs of Exchequer/FullCache and

Exchequer/NoFullCache for all the four workloads.

It may be argued that since Exchequer/NoFullCache selects results for caching after carefully

weighing their benefits against their costs, the extra benefit due to caching additional results

should be minimal. However, the accuracy of these benefits depends on the how accurately the

past workload estimates the future workload (ref. Section 4.2). In face of sudden changes in the

workload skew (recall that each of our workloads changes skew after a block of 128 queries),

the estimate may be inaccurate for a certain transient period. During this period, therefore, the

benefit may not be accurate. Caching additional results reduces the impact of such occasional

inaccuracies, and makes the caching policy more stable.

Space and Time Overheads. As an estimate of the memory overhead of the Exchequer al-

gorithm, we determined the space taken by CDAG during the execution of the Exchequer algo-

rithm; recall that the CDAG includes the best plans for the 10queries in the representative set,

the expanded DAG for the current query, and the best plans forthe results currently in the cache.

For the run of Exchequer/FullCache on the CubeSlices/Zipf-2.0 workload, the maximum size of

CDAG was approximately 23M of memory, and was independent ofthe cache size.

The time taken by Exchequer/FullCache depends on the cache size since the Greedy algo-

rithm (ref. Section 4.3) chooses results only till their size does not exceed the cache size. The

table below shows the average optimization costs and optimization times per query for Exche-

quer/FullCache on the 900 query CubeSlices/Zipf-2.0 workload for different cache sizes; the

corresponding numbers for other workloads are similar.

Cache Size (% of DB Size)

Metric 0% 8% 32% 64% 128%

Avg. Optimization Time/Query (secs) 0.16 1.01 1.18 1.22 1.05

Avg. Estimated Cost/Query (secs) 16.95 10.92 8.26 7.00 6.45

94 CHAPTER 4. QUERY RESULT CACHING

As we can see, the cost of optimization and cache management using Exchequer/FullCache

is an order of magnitudeless than the execution cost of the workload (the ratio can beexpected

to be even less on datasets larger than TPC-0.1), thus showing that the optimization of queries

and cache management in Exchequer has negligible overhead.

4.6 Extensions

We have developed several extensions of our techniques, which we outline below.

We implemented a version of the Exchequer algorithm with periodic reorganization, which

is similar to revolution [31]. This involved invoking Greedy with the candidate set containing all

results in the best plan of each query in the Representative Set. However, for reasonably complex

queries involving joins this leads to a large candidate set,and thus the reorganization step is very

expensive. In many cases, this led to poor gains at a high cost. Therefore, we abandoned this

strategy.

The Exhequer system described in this chapter supports onlydisk-caching. However, the

techniques described can be extended formain-memorycaching andhybrid (disk cum main-

memory) caching. A main-memory caching system contains a fixed size area in memory allo-

cated as the cache. The modification is restricted to the cost-model – there is no I/O overhead for

caching results or for using them; the techniques as presented in this chapter remain unchanged.

A hybrid caching system contains (a) a fixed size area in memory allocated as the main-memory

cache, as well as (b) a fixed size area on disk allocated as the disk cache. We modify the Greedy

algorithm to work in two phases: the first phase fills up the main-memory cache, while the sec-

ond phase fills up the disk cache, choosing results from thosethat remain in the candidate set

after the first phase is over. The two phases are identical in all respects, except that results in the

first phase are chosen using the main-memory based cost model(no I/O overhead for caching or

use of cached results), while the results in the second phaseare chosen using the disk based cost

model (same as considered in this chapter).

4.7. SUMMARY 95

4.7 Summary

In this chapter we have presented new techniques for query result caching, which can help speed

up query processing in data warehouses. The novel features incorporated in our Exchequer sys-

tem include optimization aware cache maintenance and the use of a cache aware optimizer. In

contrast, in existing work, the module that makes cost-benefit decisions is part of the cache

manager and works independent of the optimizer which essentially reconsiders these decisions

while finding the best plan for a query. Whereas existing approaches are either restricted to

cube (slice/point) queries, or cache just the query results, our work presents a data-model inde-

pendent framework and algorithm. Our experimental resultsattest to the efficacy of our cache

management techniques.

Chapter 5

Materialized View Maintenance and

Selection

Materialized views have been found to be very effective in speeding up query, as well as update

processing, and are increasingly being supported by commercial database systems. Materialized

views are especially attractive in data warehousing environments because of the query intensive

nature of data warehouses. However, when a warehouse is updated, the materialized views must

also be updated. Typically, updates are accumulated and then applied to a data warehouse. While

the need to provide up-to-date responses to an increasing query load is growing and the amount

of data that gets added to data warehouses has been increasing, the time window available for

making the warehouse up-to-date has been shrinking. These trends call for efficient techniques

for maintaining the materialized views as and when the warehouse is updated.

The view maintenance problem can be seen as computing the expressions corresponding to

the “delta” of the views, given the “delta”s of the base relations that are used to define the views.

It is not difficult to motivate that query optimization techniques are important for choosing an

efficient plan for maintaining a view, as shown in [61]. For example, consider the materialized

view V = (A 1 B 1 C). We assume, as in SQL, that relationsA, B andC are multisets (i.e.,

relations with duplicates). Given that the multiset of tuplesÆ+C is inserted intoC, the change to

the materialized viewV consists of a set of tuples(A 1 B) 1 Æ+C to be inserted intoV . This

97

expression can equivalently be computed as(A 1 Æ+C) 1 B and by(B 1 Æ+C) 1 A, one of

which may be substantially cheaper to compute. Further, in some cases the view may be best

maintained by recomputing it, rather than by finding the differentials as above.

Our work addresses the problem of optimizing the maintenance of asetof materialized views.

If there are multiple materialized views, as is common, significant opportunities exist for sharing

computation between the maintenance of different views. Specifically, common subexpressions

between the view maintenance expressions can reduce maintenance costs greatly.

Whether or not there are multiple materialized views, significant benefits can be had in many

cases by materializing extra views or indices, whose presence can decrease maintenance costs

significantly. The choice of what to materialize permanently depends on the choice of view

maintenance plans, and vice versa. The choices of the two must therefore be closely coupled to

get the best overall maintenance plans.

Contributions. The contributions of this work lie in optimization of the view maintenance

plans. Specifically, the contributions are as follows.

1. We show how to exploit transient materialization of common subexpressions to reduce the

cost of view maintenance plans.

Sharing of subexpressions occurs when multiple views are being maintained, since related

views may share subexpressions, and as a result the maintenance expressions may also be

shared. Furthermore, sharing can occur even within the planfor maintaining a single view

if the view has common subexpressions within itself.

The shared expressions could include differential expressions, as well as full expressions

which are being recomputed.

Here,transient materializationmeans that these results are materialized during the evalu-

ation of the maintenance plan and disposed on its completion.

2. We show how to efficiently choose additional expressions forpermanent materialization to

speed up maintenance of the given views.

98 CHAPTER 5. MATERIALIZED VIEW MAINTENANCE AND SELECTION

Just as the presence of views allows queries to be evaluated more efficiently, the main-

tenance of the given permanently materialized views can be made more efficient by the

presence of additional permanently materialized views [45, 44]. That is, given a set of

materialized views to be maintained, we choose additional views to materialize in order to

minimize the overall view maintenance costs.

The expressions chosen for permanent materialization may be used in only one view main-

tenance plan, or may be shared between different views maintenance plans. We outline

differences between our work and prior work in this area, in Section 5.1.

3. We show how to determine the optimal maintenance plan for each individual view, given

the choice of results for transient/permanent materialization.

Maintenance of a materialized view can either be doneincrementallyor by recomputation.

Incremental view maintenance involves computing the differential (“delta”s) of a materi-

alized view, given the “delta”s of the base relations that are used to define the views, and

merging it with the old value of the view. However, incremental view maintenance may

not always be the best way to maintain a materialized view; when the deltas are large the

view may be best maintained by recomputing it from the updated base relations.

Our techniques determine the maintenance policy, incremental or recomputation, for each

view in the given set such that the overall combination has the minimum cost.

4. We show how to make the above three choices in an integrated manner to minimize the

overall cost.

It is important to point out that the above three choices are highly interdependent, and must

be taken in such a way that the overall costs of maintaining a set of views is minimized.

Specifically:� Given a subexpression useful during materialization of multiple views, choosing

whether it should be transiently or permanently materialized is an optimization prob-

lem, since each alternative has its cost and benefit. Transient views are materialized

99

during the evaluation of the maintenance plan and discardedafter maintenance of the

given views; such transient views themselves need not be maintained. On the other

hand, the permanent views are materialized a priori, so there is no (re)computation

cost; however, there is a maintenance cost, and a storage cost (which is long term in

that it persists beyond the view maintenance period) due to the permanently materi-

alized views.� The choice of additional views must be done in conjunction with selecting the plans

for maintaining the views, as discussed above. For instance, a plan that seems quite

inefficient could become the best plan if some intermediate result of the plan is chosen

to be materialized and maintained.

We propose a framework that cleanly integrates the choice ofadditional views to be tran-

siently or permanently materialized, the choice of whethereach of the given set of (user-

specified) views must be maintained incrementally or by recomputation, and the choice of

view maintenance plans.

5. We have implemented all our algorithms, and present a performance study, using queries

from the TPC-D benchmark, showing the practical benefits of our techniques.

Our contributions go beyond the existing state of the art in several ways:

1. Earlier work on selecting views for materialization addresses either transient view selec-

tion (for multi-query optimization, but not for view maintenance) without considering per-

manent view selection, or permanent view selection, without considering transient view

selection. Neither approach is integrated with the choice of view maintenance plans. To

the best of our knowledge, ours is the first work that addresses the above aspectssimul-

taneously, taking into account the intricate interdependence of the decisions. Making the

decisions separately may lead to a non-optimal choice. See Section 5.1 for more details of

related work.

Moreover, as far as we know, the problem of automatically selecting the optimum main-

tenance policy for a materialized view in the presence of other materialized views has not

100 CHAPTER 5. MATERIALIZED VIEW MAINTENANCE AND SELECTION

been addressed earlier. This is a major step beyond the current state-of-the-art in research

or practice. For example, in Oracle 8i [5], a user has to specify a materialized view’s

maintenance policy during its definition in an ad-hoc manner.

2. Earlier work on transient materialization (done in the context of multiquery optimization)

is not coupled with view maintenance. While those algorithms can be used directly on view

maintenance expressions to decide on transient view materialization, using them naively

would lead to very poor performance. We show how to integrateview maintenance choices

into an optimizer in a way that leads to very good performance.

3. We have shown the practicality of our work by implementingall our algorithms and pre-

senting a performance study illustrating the benefits to be had by using our techniques.

Earlier work does not cover efficient techniques for the implementation of materialized

view selection algorithms. Moreover, our implementation is built on top of an existing

state-of-the-art query optimizer, showing the practicality of using our techniques on exist-

ing database systems.

Our performance study, detailed in Section 5.6 shows that significant benefits, often by factors

of 2 or more, can be obtained using our techniques.

Although the focus of our work is to speed up view maintenance, and we assume an initial

set of views have been chosen to be materialized, our algorithms can also be used to choose extra

materialized views to speed up a workload containing queries and updates.

Paper Organization. Related work is outlined in Section 5.1. Section 5.2 gives anoverview

of the techniques presented in this chapter. Section 5.3 describes our system model, and how the

search space of the maintenance plans is set up. Section 5.4 shows how to compute the optimal

maintenance cost for a given set of permanently materialized views, and a given set of views to

be transiently materialized during the maintenance. Section 5.5 describes a heuristic that uses

this cost calculation to determine the set of views to be transiently or permanently materialized

so as to minimize the overall maintenance cost. Section 5.6 outlines results of a performance

study, and Section 5.7 presents a summary of the chapter.

5.1. RELATED WORK 101

5.1 Related Work

In the past decade, there has been a large volume of research on view maintenance, transiently

materialized view selection (also known as multi-query optimization) and also on permanently

materialized view selection. This work is summarized below. However, each of these problems

have been addressed independently since the concerns are orthogonal; no prior work, to the best

of our knowledge, has looked at addressing all of these problems in an integrated manner.

View Maintenance Amongst the early work on computing the differential results of operations

and expressions was Blakeley et al. [3]. More recent work in this area includes [24, 12, 37, 36]

and [48]. Gupta and Mumick [25] provide a survey of view maintenance techniques.

Vista [61] describes how to extend the Volcano query optimizer to compute the best mainte-

nance plan, but does not consider the materialization of expressions, whether transient or perma-

nent. [42] and [61] propose optimizations that exploit knowledge of foreign key dependencies

to detect that certain join results involving differentials will be empty. Such optimizations are

orthogonal and complementary to our work.

Transiently Materialized View Selection (Multi-Query Opt imization) Blakeley et al. [3]

and Ross et al. [44] noted that the computation of the expression differentials has the potential

for benefiting from multi-query optimization. In the past, multi-query optimization was viewed

as too expensive for practical use. As a result they did not gobeyond stating that multi-query

optimization could be useful for view maintenance.

Early work on multi-query optimization includes [54, 56, 53]. More recently [59] and [47]

(Chapter 3 of this thesis) considered how to perform multi-query optimization by selecting subex-

pressions for transient materialization, and showed that multiquery optimization is practical and

can give significant performance benefits at acceptable cost.

However, none of the work on multi-query optimization considers updates or view mainte-

nance, which is the focus of this chapter. Using these techniques naively on differential main-

tenance expressions would be very expensive, since incremental maintenance expressions can

102 CHAPTER 5. MATERIALIZED VIEW MAINTENANCE AND SELECTION

be very large. We utilize the optimizations proposed in Chapter 3 but significant extensions

are required to to take update costs into account, and to efficiently optimize view maintenance

expressions.

Permanently Materialized View Selection There has been much work on selection of views

to be materialized. One notable early work in this area was byRoussopolous [45]. Ross et

al. [44] considered the selection of extra materialized views to optimize maintenance of other

materialized views/assertions, and mention some heuristics. Labio et al. [34] provide further

heuristics. The problem of materialized view selection fordata cubes has seen much work, such

as [29], who propose a greedy heuristic for the problem. Gupta [26] and Gupta and Mumick [28]

extend some of these ideas to a wider class of queries.

The major differences between our work and the above work on materialized view selection

can be summarized as follows:

1. Earlier work in this area has not addressed optimization of view maintenance plans in the

presence of other materialized views. Earlier work simply assumes that the cost of view

maintenance for a given set of materialized views can be computed, without providing any

details.

2. Earlier work does not consider how to exploit common subexpressions by temporarily ma-

terializing them because of their focus on permanent materialization. In particular, com-

mon subexpressions involving differential relations cannot be permanently materialized.

3. Earlier work does not cover efficient techniques for the implementation of materialized

view selection algorithms, and their integration into state-of-the-art query optimizers. Show-

ing how to do the above is amongst our important contributions.

5.2 Overview of Our Approach

We extend the Volcano query optimization framework [23] to generate optimal maintenance

plans. This involves the following subproblems:

5.2. OVERVIEW OF OUR APPROACH 103

1. Setting up the Search Space of Maintenance Plans

We extend the Query DAG representation (ref. Chapter 2), which represents just the space

of recomputation plans, to include the space of incrementalplans as well. This new ex-

tension usespropagation-based differential generation, which propagates the effect of one

delta relation at a time in a predefined order. Our approach has a lower space cost of opti-

mization as compared to using incremental view maintenanceexpressions, and is easier to

implement.

Propagation-based differential generation is explained in Section 5.3.2, and the extended

Query DAG generation is explained in Section 5.3.3.

2. Choosing the Policy for Maintenance and Computing the Cost of Maintenance

We show how to compute the minimum overall maintenance cost of the given set of per-

manently materialized views, given a fixed set of additionalviews to be transiently ma-

terialized. In addition to computing the cost, the proposedtechnique generates the best

consolidated maintenance plan for the given set of permanently materialized views. The

maintenance plan chosen for each materialized view can be incremental or recomputation,

based on costs.

Maintenance cost computation is explained in Section 5.4.

3. Transient/Permanent Materialized View Selection

Finally, we address the problem of determining the respective sets of transient and perma-

nently materialized views that minimize the overall cost. Our technique uses, as a subrou-

tine, the previously mentioned technique for computing thebest maintenance policy given

fixed sets of permanently and temporarily materialized views. The costs of materialization

of transiently materialized views and maintenance of permanently materialized views are

taken into account by this step.

We propose a greedy heuristic that iteratively picks up views in order of benefit – where

benefit is defined as the decrease in the overall materialization cost if this view is tran-

104 CHAPTER 5. MATERIALIZED VIEW MAINTENANCE AND SELECTION

siently or permanently materialized in addition to the views already chosen. Then, de-

pending upon whether transient or permanent materialization of the view produces the

greater benefit, the view is categorized as such.

The greedy heuristic is presented in Section 5.5.1, and several optimizations of this heuris-

tic that result in an efficient implementation are describedin Section 5.5.2.

5.3 Setting up the Maintenance Plan Space

In this section, we describe how the search space of maintenance plans is set up. We start by

describing our system model. As mentioned earlier, our approach to incremental maintenance

is based on the compact propagation-based differential generation technique; this is described

in Section 5.3.2. The extensions to the Query DAG representation, introduced in Section 2.2.2,

to compactly represent the search space of view maintenanceplans as well, are described in

Section 5.3.3.

5.3.1 System Model

We assume that we are given an initial set of permanently materialized views. We may add more

views to this set. We do not consider space limitations on storing materialized views in the main

part of the chapter, but address this issue in Section 5.5.3.

We assume that the updates (inserts/deletes) to relations are logged in correspondingdelta

relations, which are made available to the view refresh mechanism; for each relationR, there are

two relationsÆ+R andÆ�R denoting, respectively, the (multiset of) tuples insertedinto and deleted

from the relationR. The maintenance expressions in our examples assume that the old value of

the relation is available, but we can use maintenance expressions based on the new values of the

relations in case the updates have already been performed onthe base relations.

We assume that the given set of materialized views is refreshed at times chosen by users,

which are typically regular intervals. For optimization purposes, we need estimates of the sizes

of these delta relations. In production environments, the rates of changes are usually stable across

5.3. SETTING UP THE MAINTENANCE PLAN SPACE 105

refresh periods, and these rates can be used to make decisions on what relations to materialize

permanently. We will assume that the average insert and delete sizes for each relation are pro-

vided as percentages of the full relation size. The insert and delete percentages can be different

for different relations. Other statistics, such as number of new distinct values for attributes (in

each refresh interval), if available, can also be used to improve the cost estimates of the optimizer.

5.3.2 Propagation-Based Differential Generation for Incremental View Main-

tenance

We generate the differential of an expression by propagating differentials of the base relations up

theexpression tree, one relation at a time, and only one update type (insertionsor deletions) at a

time. The differential propagation technique we use is based on the techniques used in [45] and

[44].

The differential of a node in the tree is computed using the differential (and if necessary,

the old value) of its inputs. We start at the leaves of the tree(the base relations), and proceed

upwards, computing the differential expressions corresponding to each node.

For instance, the differential of a join(E1 1 E2), given inserts onR is computed using the

differentials ofE1 andE2 and the old full results ofE1 andE2. The differential result is empty

if R is used in neitherE1 norE2. If R is used only inE1, the differential is given by(ÆE1 1 E2);
symmetrically ifR is used only inE2, the differential is given by(E1 1 ÆE2). If R is used in

both, the differential consists of(ÆE1 1 E2) [(E1 1 ÆE2) [(ÆE1 1 ÆE2).
The process of computing differentials starts at the bottom, and proceeds upwards, so when

we compute the differential to(E1 1 E2), the differentials of the inputs have been computed al-

ready. The full results are computed when required, if they are not available already (materialized

views and base relations are available already).

Extending the above technique to operations other than joinis straightforward, using standard

techniques for computing the differentials of operations,such as those in [3]; see [25] for a survey

of view maintenance techniques.

It may appear that computing the change to(E1 1 E2), given a change toR, requires com-

106 CHAPTER 5. MATERIALIZED VIEW MAINTENANCE AND SELECTION

putation of the entire result ofE2 if R is used inE1. However, our search space will include

differentials of all plans equivalent to(E1 1 E2). In the case of joins, in particular, the search

space will include plans where every intermediate result includes the differential ofR. To illus-

trate this point, consider the view(A 1 B 1 C). If we wish to compute the differential of the

view when tuples are inserted intoA, then the plans(B 1 (Æ+A 1 C)) and(Æ+A 1 (B 1 C))
would both be among the plans considered, and the cheapest plan is selected. Similarly, if we

wish to compute the differential of the view when tuples are inserted intoB, then the plans(A 1 (Æ+B 1 C)) and(Æ+B 1 (A 1 C)) would be amongst the alternatives. Using the differen-

tials of a single expression, such as(A 1 (B 1 C)) or (B 1 (A 1 C)), is not preferable for

propagating all the base relation differentials.

Our optimizer’s search space includes all of the alternatives for computing the differentials

to (A 1 B 1 C), including the above two, and the cheapest one is chosen for propagating the

differential of each base relation.

Propagating differentials of only one type (inserts or deletes) to one relation at a time, simpli-

fies choosing of a separate plan for each differential propagation. It is straightforward to extend

the techniques to permit propagation of inserts and deletesto a single relation together, to reduce

the number of different expressions computed.

We assume that the updates to the base relations are propagated one relation at a time. After

each one is propagated, the base relation is itself updated,and the computed differentials are

applied to all incrementally maintained materialized views.1 We leave unspecified the order in

which the base relations are considered. The order is not expected to have a significant effect

when the deltas of all the relations are small percentages ofthe relation sizes: the relation statis-

tics then do not change greatly due to the updates, and thus the costs of the plans should not be

affected greatly by the order. For large deltas, our experimental results show that recomputa-

tion of the view is generally preferable to incremental maintenance, so the order of incremental

propagation is not relevant.

1The differentials must belogically applied. The database system can give such a logical view, yet postpone

physically applying the updates. By postponing physical application, multiple updates can be gathered and executed

at once, reducing disk access costs.

5.3. SETTING UP THE MAINTENANCE PLAN SPACE 107

An alternative approach for computing differentials is to generate the entire differential ex-

pression, and optimize it (see, e.g. [24]). However, the resultant expression can be very large –

exponential in the size of the view expression. For instance, consider the view(A 1 B 1 C),
with inserts on all three relations. The differential in theresult of the view can be computed as:(Æ+A 1 B 1 C) [(A 1 Æ+B 1 C) [(A 1 B 1 Æ+
) [(A 1 Æ+B 1 Æ+C) [(Æ+A 1 B 1 Æ+C) [(Æ+A 1 Æ+B 1 C) [(Æ+A 1 Æ+B 1 Æ+C)
There are many common subexpressions in the above expression, and the above expression could

be simplified by factoring, to get:(Æ+A 1 B 1 C) [((A [Æ+A) 1 Æ+B 1 C) [((A [Æ+A) 1 (B [Æ+B) 1 Æ+C)
This simplified expression is equivalent in effect to our technique for propagating differentials.

Creating differential expressions (whether in the unsimplified or in the simplified form) is

difficult with more complex expressions containing operations other than join (see, e.g. [24]).

Moreover, the size of the unsimplified expression is exponential in the number of relations. Op-

timizing such large expressions can be quite expensive, since query optimization is exponential

in the size of the expression.

In contrast, the process of propagating differentials can be expressed purely in terms of how

to compute the differentials for individual operations, given the differential of their inputs. As a

result it is also easy to extend the technique to new operations.

5.3.3 Incorporating Incremental Plans in the Query DAG Representation

Consider a database consisting ofn relations:R1; : : : ; Rn. Then, for each equivalence nodee in the Query DAG described in Section 2.2.2, we introducen additional equivalence nodesÆ1e ; : : : ; Æ2ne , whereÆ2i�1e and Æ2ie (for i = 1; : : : ; n) correspond to the differentials ofe with

respect toÆ+Ri andÆ�Ri respectively. For example, the equivalence nodee : (R1 1 R2) is refined

into four additional equivalence nodesÆ1e : (Æ+R1 1 R2), Æ2e : (Æ�R1 1 R2), Æ3e : (R1 1 Æ+R2) andÆ4e : (R1 1 Æ�R2).

108 CHAPTER 5. MATERIALIZED VIEW MAINTENANCE AND SELECTION

We now describe the structure ofÆke , k = 1::2n. For each child operation nodeo of e,
there exists a child operation nodeok of Æke , representing the differential ofo with respect to

the corresponding base relation update. In the example above, consider equivalence nodee has

a child operation nodeo which is a join operation; the children ofo are the equivalents nodes

representingR1 andR2. The nodeÆ1e has as its child an operation nodeo1 which is a join

operation, and the children ofo1 are the equivalence nodes forÆ+R1 andR2. The other nodesÆke
are similar in structure.2 As can be seen from the above example, the children ofok can be full

results as well as differentials. The rationale of this construction was given in Section 5.3.2. As

also mentioned in that section, the approach is easily extended to other operations.

The equivalence nodee represents the full result; but this result varies as successive differ-

entialsÆ1e ; : : : ; Æ2ne are merged with it. For cost computation purposes, the system keeps an arrayL[0::2n℄ with e, whereL[0℄ is the list of logical properties (such as schema and estimated statis-

tics) of the old result andL[i℄, for i = 1::2n, is the list of logical properties of the result after the

result has been merged with the differentials given byÆ1e ; : : : ; Æie.
Space-Efficient Implementation. It might seem that by including all the differential expres-

sions for each equivalence node, we have increased the size of the Query DAG by a factor of2n. However, our implementation reduces the cost by piggybacking the differential equivalence

and operation nodes on the equivalence and operation nodes in the original Query DAG. These

implementation details are explained next; however, for ease of explanation, in the rest of the

chapter, we stick to the above logical description.

For space efficiency, the equivalence nodes for each differential are not created separately

in our implementation. Instead, each equivalence nodee stores an arrayD[1::2n℄, whereD[k℄
logically represents the differential equivalence nodeÆke , and contains: (a) logical properties of

the differential resultÆke , and (b) the best plan for computingÆke .

If e does not depend on a relationRi, or if there is no corresponding update, then the logical

properties and best plan ((a) and (b) above) forD[2i � 1℄ andD[2i℄ are set as null. In addition,

2The structure is a little more complicated when a relationR is used in both children of a join node, requiring a

union of several join operations. The details are straightforward and we omit them for simplicity.

5.4. MAINTENANCE COST COMPUTATION 109

as in the original representation, the equivalence nodee stores the best plan for (and cost of)

recomputing the entire result of the node after all updates have been made on the base relations.

5.4 Maintenance Cost Computation

In this section, we derive formulae for the total maintenance cost for a setMp of views mate-

rialized permanently and a setMt of views materialized temporarily. The optimizer basically

traverses the Query DAG structure, applying these formulae, to find the overall cost.

The setMt can have views corresponding to entire results (e.g.A 1 B), as well as views

corresponding to differentials (e.g.Æ+A 1 B). In contrast, the setMp can only have views corre-

sponding to entire results; this is because the differentials are only used during view maintenance.

The computation cost of the equivalence nodee, denoted
ost(ejMp;Mt), is computed as

follows, whereC(e) is the set of children operation nodes ofe.
ost(ejMp;Mt) = 8><>: mino2C(e)
ost(ojMp;Mt) if C(e) 6= �0 if C(e) = � (i.e. e is a relation)

In terms of forming the execution plan, the above equation represents the choice of the operation

node with the minimum cost in order to compute the expressioncorresponding to the equivalence

nodee.
The computation cost of an operation nodeo, denoted
ost(ojMp;Mt), is:
ost(ojMp;Mt) = lo
al
ost(o) + Xe2C(o)
hild
ost(ejMp;Mt)

wherelo
al
ost(o) is the “local” cost of the operationo, C(o) is the set of children equivalence

nodes ofo, and
hild
ost(ejMp;Mt) = 8><>: reuse
ost(e) if e 2 Mp [Mt
ost(ejMp;Mt) if e 62 Mp [Mt
During transient materialization, the view is computed andmaterialized on the disk for the

duration of the maintenance processing. Thus, the cost of transiently materializing a viewe 2

110 CHAPTER 5. MATERIALIZED VIEW MAINTENANCE AND SELECTIONMt, denoted bytransmat
ost(ejMp;Mt), is:transmat
ost(ejMp;Mt) =
ost(ejMp;Mt) +mat
ost(e)
wheremat
ost(e), is the cost of materializing the view (on disk, assuming materialized views

do not fit in memory).

Further, for a givene 2 Mp, the cost of recomputing the result from the base relations is
ost(ejMp;Mt); and the cost of computing the differentialÆke ; k = 1::2n is
ost(Æke jMp;Mt).
Letmerge
ost(Æke) denote the cost of merging the differential corresponding to Æke with the view

after the differentials corresponding toÆ1e ; : : : ; Æk�1e have already been merged. Then, the cost of

incrementally maintaininge, denotedimaint
ost(ejMp;Mt), is:imaint
ost(ejMp;Mt) = 2nXk=1(
ost(Æke jMp;Mt) +merge
ost(Æke))
On the other hand, maintenance by recomputation involves computing the view and materializing

it, replacing the old value. The recomputation maintenancecost, denoted byrmaint
ost(ejMp;Mt),
is: rmaint
ost(ejMp;Mt) =
ost(ejMp;Mt) +mat
ost(e)
wheremat
ost(e), as before, is the cost of materializing the view.

Notice thatrmaint
ost(ejMp;Mt) is the same astransmat
ost(ejMp;Mt), the cost of

transiently materializinge derived above. As such, we do not consider materializing a view per-

manently and maintaining using recomputation, unless it was already specified as permanently

materialized. For, if recomputation is the cheapest way of maintaining a view, we may as well

materialize it transiently: keeping it permanently would not help the next round of view main-

tenance. Thus, the cost of maintaining the permanently materialized viewe 2 Mp, denoted bymaint
ost(ejMp;Mt), is as follows, whereM is the set of views given as already materialized

in the system.maint
ost(ejMp;Mt) = 8>>>>>>>><>>>>>>>>:
min(imaint
ost(ejMp;Mt); rmaint
ost(ejMp;Mt))

if e 2 Mimaint
ost(ejMp;Mt)
if e 2 Mp �M

5.5. TRANSIENT/PERMANENT MATERIALIZED VIEW SELECTION 111

For e 2 M, the choice corresponds to selecting the refresh mode – incremental refresh or re-

computation – depending on whichever is cheaper.

Thus, the total cost incurred in maintaining the materialized views inMp given that the views

in Mt are transiently materialized, denotedtotal
ost(Mp;Mt), is:total
ost(Mp;Mt) = Xe2Mpmaint
ost(ejMp;Mt) + Xe2Mt transmat
ost(ejMp;Mt) (5.1)

Given the setM of views given as already materialized in the system, we needto determine

the setMp(� M) of views to be permanently materialized, as well as the set ofviewsMt to

be transiently materialized, such thattotal
ost(Mp;Mt) is minimized. In the next section, we

propose a heuristic greedy algorithm to determineMp andMt.
As mentioned earlier, the optimizer performs a depth-first traversal of the Query DAG struc-

ture, applying these formulae at each node, to find the overall cost.

5.5 Transient/Permanent Materialized View Selection

We now describe how to integrate the choice of extra materialized views with the choice of best

plans for view maintenance. In Section 5.5.1, we present thebasic algorithm for selecting the

two sets of views for transient and permanent materialization respectivel, followed by a discus-

sion of some optimizations and extensions in Section 5.5.2.

5.5.1 The Basic Greedy Algorithm

Given a set of resultsMp andMt already chosen to be respectively permanently and transiently

materialized, and a equivalence nodex, the benefit of additionally materializingx, benefit(xjMp;Mt),
is defined as:

benefit(xjMp;Mt) = 8>>>>>>>>>>>><>>>>>>>>>>>>:
total
ost(Mp;Mt)�min(total
ost(Mp [fxg;Mt); total
ost(Mp;Mt [fxg))

if x is a full resulttotal
ost(Mp;Mt)� total
ost(Mp;Mt [fxg)
if x is a differential

112 CHAPTER 5. MATERIALIZED VIEW MAINTENANCE AND SELECTION

Procedure GREEDY

Input: M, the set of equivalence nodes for the initial materialized viewsC, the set of candidate equivalence nodes for materialization
Output: Mp, set of equivalence nodes to be materialized permanentlyMt, set of equivalence nodes to be materialized transiently
BeginMp = M; Mt = �

while (C 6= �)
L1: Pick the node x 2 C with the highest benefit(xjMp;Mt)

if (benefit(xjMp;Mt) < 0)
break; /* No further benefits to be had, stop */

if (x is a full result and maint
ost(xjMp;Mt) < trans
ost(xjMp;Mt))Mp =Mp [fxg
else Mt =Mt [fxgC = C � fxg

return (Mp;Mt)
End

Figure 5.1: The Greedy Algorithm for Selecting Views for Transient/Permanent Materialization

Using Equation (5.1), and since (a) ifx is a full result, then for alle 2 Mp,maint
ost(ejMp;Mt[fxg) = maint
ost(ejMp [fxg;Mt), and (b) for alle 2 Mt, transmat
ost(ejMp;Mt [fxg) = transmat
ost(ejMp [fxg;Mt), the above can be simplified to:benefit(xjMp;Mt) = gain(xjMp;Mt)� investment(xjMp;Mt)
wheregain(xjMp;Mt) = Pe2Mp(maint
ost(ejMp;Mt)�maint
ost(ejMp;Mt [fxg))+Pe2Mt(trans
ost(ejMp;Mt)� trans
ost(ejMp;Mt [fxg))
and investment(xjMp;Mt) = 8>>>>>>>><>>>>>>>>:

min(maint
ost(xjMp;Mt); trans
ost(xjMp;Mt))
if x is a full resulttrans
ost(xjMp;Mt)
if x is a differential

Figure 5.1 outlines a greedy algorithm that iteratively picks nodes to be materialized. The

procedure takes as input the setC of candidates (equivalence nodes, and their differentials) for

5.5. TRANSIENT/PERMANENT MATERIALIZED VIEW SELECTION 113

materialization, and returns the setsMp andMt of equivalence nodes to be materialized perma-

nently and transiently, respectively.Mp is initialized toM, the set of equivalence nodes for the

initial materialized views, whileMt is initialized as empty. At each iteration, the equivalence

nodex 2 C with the maximum benefit is selected for materialization. Ifx is a full result, then

it is added to eitherMp or Mt based on whether maintaining it or transiently materializing it

would be cheaper; ifx is a differential, then it is added toMt since it cannot be permanently

materialized.

Naively, the candidate setC can be the set of all equivalence nodes in the Query DAG (full

results as well as differentials). In Section 5.5.2, we consider approaches to reduce the candidate

set.

5.5.2 Optimizations

Three important optimizations to the greedy algorithm for multi-query optimization were pre-

sented in Chapter 3. While monotonicity optimization applies unchanges, the incremental cost

update and sharability computation need to be extended to handle differentials, as follows.

1. The incremental cost update algorithm presented in Chapter 3 maintains the state of the

Query DAG (which includes previously computed best plans for the equivalence nodes)

across calls, and may even avoid visiting many of the ancestors of a node whose cost has

been modified due to materialization or unmaterialization.

We modify the incremental cost update algorithm to handle differentials as follows.

(a) If the full result of a node is materialized, we update notonly the cost of computing

the full result of each ancestor node, but also the costs for the 2n differentials of

each ancestor node since the full result may be used in any of the 2n differentials.

Propagation up from an ancestor node can be stopped if there is no change in cost to

computing the full result or any of the differentials.

(b) If the differential of a node with respect to a given update is materialized, we update

only the differentials of its ancestors with respect to the same update. Propagation can

114 CHAPTER 5. MATERIALIZED VIEW MAINTENANCE AND SELECTION

stop on ancestors whose differentials with respect to the given update do not change

in cost.

2. It is wasteful to transiently materialize nodes unless they are used multiple times during the

refresh. An algorithm for computing sharability of nodes asproposed in Chapter 3, which

detects equivalence nodes that can potentially be used multiple times in a single plan.

We consider differential results for transient materialization only if the corresponding full

result is detected to be sharable.

The sharability optimization cannot be applied to full results in our context, since a full

result may be worth materializing permanently even if it is used in only one query. Thus

all full results are candidates for optimization.

We also observed that when it is worth transiently materializing the differential of an ex-

pression with respect to the update of a particular base relation, it is often worth transiently

materializing the differentials with respect to updates ofthe other base relations as well. To re-

duce the cost of the greedy algorithm, we consider all differentials of an expression (with respect

to different base relation updates) as a single unit of materialization. The number of candidates

considered by the greedy algorithm reduces greatly as a result, reducing its execution time sig-

nificantly.

5.5.3 Extensions

The algorithms we have outlined can be extended in several ways. One direction is to deal

with limited space for storing materialized results. To deal with this problem, we can modify the

greedy algorithm to prioritize results in order of benefit per unit space (got by dividing the benefit

by the size of the result). If the space available for permanent and transient materialized results

are separate, we can modify the algorithm to continue considering results for permanent (resp.

transient) materialization even after the space of transient (resp. permanent) materialization is

exhausted.

Another direction of extension would be to select materialized views in order to speed up a

5.6. PERFORMANCE STUDY 115

workload of queries. The greedy algorithm can be modified forthis task as follows: candidates

would be final/intermediate results of queries, and benefitsto queries would be included when

computing benefits. In fact, many of the approaches proposedearlier for selecting materialized

views use such a greedy approach, and our implementation techniques provide an efficient way

to implement these algorithms. Longer term future work would include dealing with large sets

of queries efficiently.

5.6 Performance Study

We implemented the algorithms described earlier for findingoptimal plans for view maintenance.

As mentioned earlier, the implementation performs index selection along with selection of results

to materialize. The implementation was performed on top of an existing query optimizer.

5.6.1 Performance Model

We used a benchmark consisting of views representing the results of queries based on the TPC-D

schema. In particular, we separately considered the following two workloads:� Set of Views Workload.A set of 10 views, 5 with aggregates and 5 without, on a total of

8 distinct relations. There is some amount of overlap acrossthese views, but most of the

views have selections that are not present in other views, limiting the amount of overlap.� Single Views Workload.The same views as above, but each optimized and executed sepa-

rately, and we show the sum of the view maintenance times. Since the views are optimized

separately, as if they were on separate copies of the database, sharing between views cannot

be exploited.

The materialized views are shown in Appendix A.2. The purpose of choosing a simple workload

in addition to the complex workload is to show that our methods are very effective not only for

big sets of overlapping complex views, where one might arguethat simple multi-query optimiza-

tion may be as effective, but also for singleton views without common subexpressions, where a

116 CHAPTER 5. MATERIALIZED VIEW MAINTENANCE AND SELECTION

technique based exclusively on multi-query optimization would be useless.

The performance measure isestimated maintenance cost. The cost model used takes into

account number of seeks, amount of data read, amount of data written, and CPU time for in-

memory processing. While we would have liked to give actual run times on a real database, we

do not currently have a query execution engine which we can extend to perform differential view

maintenance. We are working on translation of the plans intoSQL queries that can be run on

any SQL database. However, the results would not be as good asif we had fine grain control,

since the translation will split queries into small pieces whose results are stored in disk and then

used, resulting in decreased pipelining benefits. Our cost model is fairly sophisticated, and we

have verified its accuracy by comparing its estimates with numbers obtained by running queries

on commercial database systems. We found close agreement (within around 10 percent) on most

queries, which indicates that the numbers obtained in our performance study are fairly accurate.

We provide performance numbers for different percentages of updates to the database rela-

tions; we assume that all relations are updated by the same percentage. In our notation, a 10%

update to a relation consists of inserting 10% as many tuplesare currently in the relation.

We assume a TPC-D database at scale factor of 0.1, that is the relations occupy a total of

100 MB. The buffer size is set at 8000 blocks, each of size 4KB,for a total of 32 MB, although

we also ran some tests at a much smaller buffer size of 1000 blocks. However, the numbers are

not greatly affected by the buffer size, and in fact smaller buffer sizes can be expected to benefit

more from sharing of common subexpressions. The tests were run on an Ultrasparc 10, with 256

MB of memory.

5.6.2 Performance Results

The purpose of the experiments reported in this section is to:

1. Verify the efficacy of transient and permanent materialization of additional views (Sec-

tion 5.6.2),

2. Verify the efficacy of adaptive determination of maintenance policy for each permanently

materialized view (Section 5.6.2), and

5.6. PERFORMANCE STUDY 117

 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Update Percentage

0

1000

2000

3000

4000

5000

E
st

im
at

ed
 M

ai
nt

en
an

ce
 C

os
t (

se
co

nd
s)

, S
in

gl
e

V
ie

w
s

no materialization
only transient
transient and permanent

 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Update Percentage

0

1000

2000

3000

4000

5000

E
st

im
at

ed
 M

ai
nt

en
an

ce
 C

os
t (

se
co

nd
s)

, S
et

 o
f V

ie
w

s

Single Views Set of Views

Figure 5.2: Effect of Transient and Permanent Materialization

3. Establish that our methods are indeed practical by showing that the overheads of our

optimization-based techniques are reasonable, and that our methods scale with respect

to increasing number of views (Section 5.6.2).

Effect of Transient and Permanent Materialization

We executed the following variations of our algorithm:� No Materialization. Neither transient nor permanent materialization of additional views

is allowed. That is, only the given set of initial views is permanently materialized and

maintained without any sharing. This corresponds to the current state of the art.� Only Transient. Transient materialization is allowed, but permanent materialization of

additional views is disallowed. This corresponds to using multi-query optimization in

view maintenance.� Transient and Permanent.Both transient and permanent materialization of additional re-

sults is allowed. This corresponds to the techniques proposed in this chapter.

118 CHAPTER 5. MATERIALIZED VIEW MAINTENANCE AND SELECTION

In all the cases, the maintenance policy of each of the views is decided based on whether recom-

putation and incremental computation is cheaper, given theconstraints in each case as above.

The results for the single view workload and the set of views workload are reported in Fig-

ure 5.2.

For the single-view workload, transient materialization is not useful if the view maintenance

plan used is recomputation, but when incremental computation is used, full results can poten-

tially be shared between differentials for updates to different base relations. Indeed, we found

several such instances at low update percentages. At higherupdate percentages we found fewer

such occurrences, and using only transient materialization did not offer much benefit. However,

permanent materialization of intermediate results reduces the overall materialization cost by up

to 50% for smaller update percentages (the smallest update percentage we considered was 1%).

These results clearly illustrate the efficacy of the methodsproposed in this chapter over and above

multi-query optimization (Chapter 3).

The set of views workload has a significant amount of overlap among the constituent views.

Thus, the substantial reduction, as high as 48%, in the overall maintenance cost due to only

transient materialization is as expected. Permanent materialization has a significant impact in

this case also, and further reduces the maintenance cost by up to another 17%, resulting in a total

reduction of up to 65%.

Recall from our discussion in Section 5.4 that all additional permanently materialized nodes

are always maintained incrementally, since if recomputation-based maintenance of these views

is cheaper than incremental maintenance, then they would bechosen for transient materialization

instead of permanent materialization. Now, the cost of incremental maintenance increases with

the size of the updates; for larger updates, recomputation of a permanently materialized view

is a better alternative than incremental maintenance, so a smaller fraction of views are perma-

nently materialized. These two facts together account for the slightly decreasing advantage of

transient cum permanent materialization over only transient materialization as update percent-

ages increase, as is clear from the convergence of the respective plots in Figure 5.2 for either

workload.

5.6. PERFORMANCE STUDY 119

Comparing across the two workloads reveals an interesting result: the cost of maintenance

without selecting additional materialized view is less forthe set of views than for the single view

workload, even though they have the same set of queries. The reason is that in the case of set

of views, the maintenance of a view can exploit the presence of existingmaterialized views,

even without selecting additional materialized views. Ouroptimizer indeed takes such plans into

consideration even when it does not select additional materialized views.

We also executed tests on anOnly Permanentvariant of our algorithms, where permanent

materialization is allowed, but transient materialization of additional views is disallowed. This

corresponds to using only permanent materialized view selection for optimization of view main-

tenance. However, since views for which the recomputation is cheaper than incremental main-

tenance can still be permanently materialized, the only difference from the case of transient and

permanent is that differential results cannot be shared.

For the single view benchmark there is no possibility of sharing differential results, since

each query can have only one occurrence of any expression involving a particular differential.

For the set of views benchmark, we found that the benefits of materializing differentials was

relatively low. Full results are more expensive to compute,and since they can be used with

differentials for all relations not used in their definition, they are also shared to a greater degree.

As a result full results are preferentially chosen for materialization, and differential results were

rarely chosen, and even when chosen gave only small benefits.Thus, in this case too the plots for

only permanent were almost identical to the plots for transient and permanent. To avoid clutter,

we omitted the plots for only permanent from our graphs.

To summarize this section, to the best of our knowledge ours is the first study that demon-

strates quantitatively the benefits of materializing extraviews (transiently or permanently) to

speed up view maintenance in a general setting. Earlier workon selection of materialized views,

as far as we are aware, has not presented any performance results except in the limited context

of data cubes or star schemas [11].

120 CHAPTER 5. MATERIALIZED VIEW MAINTENANCE AND SELECTION

 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Update Percentage

0

2000

4000

6000

8000

10000

E
st

im
at

ed
 M

ai
nt

en
an

ce
 C

os
t (

se
co

nd
s)

, S
in

gl
e

V
ie

w
s

forced incremental
forced recomputation
adaptive

 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Update Percentage

0

2000

4000

6000

8000

10000

E
st

im
at

ed
 M

ai
nt

en
an

ce
 C

os
t (

se
co

nd
s)

, S
et

 o
f V

ie
w

s

Single Views Set of Views

Figure 5.3: Effect of Adaptive Maintenance Policy Selection

Effect of Adaptive Maintenance Policy Selection

In the current database systems, the user needs to specify the maintenance policy (incremental

or recomputation) for a materialized view during its definition. In this section, we show that an

apriori fixed specification as above may not be the a good idea,and make a case for adaptively

choosing the maintenance policy for a view in an adaptive manner.

We explored the following variants of our algorithm:� Forced Incremental.All the permanent materialized views, including the views given ini-

tially as well as the views picked additionally by greedy, are forced to be maintained in-

crementally.� Forced Recomputation.Incremental maintenance is disallowed and all the permanent ma-

terialized views are forced to be recomputed.� Adaptive. The maintenance policy, incremental or recomputation, foreach permanently

materialized view is chosen based on the goal of minimizing the overall maintenance cost;

one or the other may be chosen for a given view at different update percentages. This

corresponds to the techniques proposed in the chapter.

5.6. PERFORMANCE STUDY 121

In all the cases, additional transient and materialized views were chosen by executing greedy

as described earlier in the chapter. The results of executing the above variants on each of our

workloads are plotted in Figure 5.3.

The graphs show that incremental maintenance may be much more expensive than recom-

putation; the incremental maintenance cost increases sharply for medium to large update per-

centages – in our case, beyond 30% for the single view workload, and beyond 20% for the

multi-view workload. In both the workloads, the adaptive technique performs better than both

forced incremental and forced recomputation; this extra improvement, up to 34% for the single-

view workload, is due to its ability to adaptively choose incremental maintenance for some of

the initial as well as additionally materialized views, andrecomputation for the others and al-

ways maintain a mix that leads to the lowest overall maintenance cost. However, the difference

between adaptive and forced recomputation for either workload decreases slightly with increas-

ing update percentage. This is because for large update percentages, incremental maintenance is

expensive, and hence every view is recomputed.

These observations clearly show that blindly favoring incremental maintenance over recom-

putation may not be a good idea (this conclusion is similar tothe findings of Vista [61]); and

make a case for adaptively choosing the maintenance policy for each view, as done by our al-

gorithms. It is also important to note that the ability to mixdifferent maintenance policies for

different subparts of the maintenance plan, even for a single view, is novel to our techniques, and

not supported by [61].

Overheads and Scalability Analysis

To see how well our algorithms scale up with increasing numbers of views, we used the fol-

lowing benchmark. The benchmark uses 22 relationsPSP1 to PSP22 with an identical schema(P; SP;NUM) denoting part id, subpart id and number. Over these relations, we defined a se-

quence of 10 viewsV1 to V10: the viewVi was a star query on four relationsPSP1, PSP2i,PSP2i+1 andPSP2i+2, with PSP1:SP joined withPSP2i:P , PSP2i+1:P , andPSP2i+2:P . We

then grouped these views into 10 sets, where thekth setSVk consisted of thek viewsV1; : : : ; Vk.

122 CHAPTER 5. MATERIALIZED VIEW MAINTENANCE AND SELECTION

0 2 4 6 8 10

Number of Views

0

1

2

3

O
pt

im
iz

at
io

n
M

em
or

y
R

eq
ui

re
m

en
t (

M
B

)

4 relation star

0 2 4 6 8 10

Number of Views

0

20

40

60

80

100

O
pt

im
iz

at
io

n
T

im
e

(s
ec

on
ds

)

Figure 5.4: Scalability analysis on increasing number of views

For eachSVk we measured (a) the memory requirements of our algorithm and(b) the time taken

by our algorithm, and report the same in Figure 5.4.

The figure shows that the memory consumption of our algorithmincreases practically linearly

with the number of views in the set. The reason for this is thatthe memory usage is basically

in maintaining the Query DAG, and for our view set, the increase in the size of the Query DAG

is constant per additional view added to the DAG (with a fixed number of base relations). The

memory requirement for the view setSV10, containing 10 views on a total of 22 relations, is only

about 3.2 MB.

Further, addition of a new view from our view set to the Query DAG increases the breadth of

the DAG, not its height (we think this is the expected case in reality – most views are expected

to be of similar size and with only partial mutual overlap). Since the height remains constant,

the time taken per incremental cost update (ref. Section 5.5.2) remains constant. However, the

number of these incremental cost updates increases quadratically with the size of the Query

DAG, as observed by in Chapter 3. This accounts for the quadratic increase in the time spent by

our algorithm with increasing number of views, as shown in Figure 5.4. However, despite the

quadratic growth, the time spent on the 22-relation 10-viewsetSV10 was less than a couple of

minutes. This is very reasonable for an algorithm that needsto be executed only occasionally,

and which provides savings of the order of 1000’s of seconds on each view refresh.

5.7. SUMMARY 123

Thus, we conclude that the memory requirements of our algorithm are reasonable and scale

well with increasing number of views. The time taken shows quadratic growth, but this growth

is slow enough to make the algorithm practical for large enough view sets; especially since the

tremendous cumulative reduction in the maintenance cost across multiple maintenance passes far

outweighs the time spent only once while executing the algorithm to make the reduction possible.

Finally, we tested the effect of our optimization of treating all the deltas of an expression as a

single unit of materialization instead of considering themseparately. We found that this reduced

the time taken for greedy optimization by about 30 percent, yet made no difference to the plans

generated. However, neither alternative found any significant benefits for materializing delta

results, whether as a single unit or separately, for reasonsthat we outlined earlier when discussing

the effect of “only permanent”. Optimization time can therefore be saved by not considering any

deltas as candidates for materialization; we found this reduces optimization times by a further

factor of 2 from those reported in our experiments.

5.7 Summary

The problem of finding the best way to maintain a given set of materialized views is an important

practical problem, especially in data warehouses/data marts, where the maintenance windows are

shrinking. We have presented solutions that exploit commonality between different tasks in view

maintenance, to minimize the cost of maintenance. Our techniques have been implemented on an

existing optimizer, and we have conducted a performance study of their benefits. As shown by the

results in section 5.6, our techniques can generate significant speedup in view maintenance cost,

and the increase in cost of optimization is acceptable.We therefore believe that our techniques

provide a timely and effective solution to a very important real problem.

Chapter 6

Conclusions and Future Work

In this thesis, we looked at ways to exploit shared computation in order to speed up query pro-

cessing. Review of transformational cost-based query optimization in terms of our version of the

Volcano algorithm [23] was provided in Chapter 2. The framework explained in that chapter is

extended in the later chapters to incorporate multi-query optimization, query result caching and

materialized view selection and maintenence.

In Chapter 3, we looked at multi-query optimization and introduced three novel heuristic

search algorithms, Volcano-SH, Volcano-RU and Greedy, forthe same. Among these, the Greedy

algorithm proved to be the most promising, and flexible enough to be applied to the problems

of query result caching and materialized view selection andmaintenance. One of the major

contributions of this work are a number of techniques to greatly speed up the greedy algorithm,

making use of the structure of the Query DAG on which our implementation is based.

In Chapter 4, we presented new techniques for query result caching, based on the core frame-

work developed in Chapter 3, which can help speed up query processing in data warehouses. The

novel features incorporated in our system, Exchequer, include optimization aware cache main-

tenance and the use of a cache aware optimizer. In contrast, in existing work, the module that

makes cost-benefit decisions is part of the cache manager andworks independent of the optimizer

which essentially reconsiders these decisions while finding the best plan for a query.

In Chapter 5, we presented techniques that exploit commonality between different tasks to

125

speed up view maintenance, and also select additional viewsfor materialization to minimize

the overall cost of maintenance. These techniques, which are extensions of the core techniques

developed in context of multi-query optimization in Chapter 3, can generate significant speedup

in view maintenance cost, and the increase in cost of optimization is acceptable.

Our algorithms are based on the AND/OR Query DAG representation of queries, making

them easily extensible to handle new transformations, operators and implementations. Our algo-

rithms also handle index selection and nested queries, in a very natural manner. We also devel-

oped extensions to the Query DAG generation algorithm as proposed for Volcano [23] to detect

all common sub expressions and include subsumption derivations. Further, our algorithms are

easy to implement on a Volcano-type query optimizer (e.g. the Cascades optimizer of Microsoft

SQL-Server [22] and the optimizer of the Tandem ServerWare SQL Product [6]), requiring ad-

dition of only a few thousand lines of code.

Future Work

Our current work on multi-query optimization (Chapter 3) does not take space constraints into

account. While changing our techniques given a constraint on the total size of all materialized

results is straightforward (use benefit-per-unit size instead of benefit in the Greedy algorithm, as

in the case of Query Result Caching), it would be too pessimistic. This is because it is seldom

the case that the materialized results are to be used all at the same time. As such, it should be

possible to schedule the execution such that first use of a materialized resulte, the point whene gets materialized, follows the last use of another resulte0, the point whene0 can be disposed;

thus, the same disk space can be used for bothe ande0. Determining such plans requires an

interleaving of query optimization and scheduling, and promises to be an interesting problem to

explore.

Moreover, during query execution, pipelining can be generalized to incorporate multiple con-

sumers (multiple parts of the query that share an intermediate result) without materialization e.g.,

the Redbrick data warehouse product allows a scan of a base relation to be shared by multiple

consumers. In this thesis, we have assumed that sharing always results in materialization; Dalvi

126 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

et al. [14] have extended this work to incorporate shared pipelines. Another followup work by

Hulgeri et al. [30] incorporates into our work the issues of allocation of memory to individual

operators executing in a pipeline. Furthermore, the materialization cost can be eliminated or

reduced in some cases by piggybacking the materialization with the actions of an operator that

uses the expression. For instance, if an expression is the input to a sort, it can be materialized by

simply saving runs generated during sorting, at no extra cost.

In query result caching, we can compactly represent large workloads by making use of the

fact that many queries (or parts of queries) in a large workload are likely to be the same except for

values of selection constants. We can unify such selectionsand replace them by a parameterized

selection, thereby collapsing many selections into a single parameterized selection that is invoked

as many times as the number of selections we replaced.

Also, when we run short of cache space, instead of discardinga stored result in its entirety,

it should be possible to (a) replace it by a summarization, or(b) discard only parts of the result.

We can implement the latter by partitioning selection nodesinto smaller selects and replacing

the original select by a union of the other selects. Two issues in introducing these partitioned

nodes are: (a) What partition should we choose? and (b) If thetop level is not a select, we can

still choose an attribute to partition on, but which should this be?

An important direction of future work is to take updates intoaccount in Query Result Caching,

thus integrating the techniques developed in Chapter 4 and Chapter 5. We need to develop tech-

niques for: (a) taking update frequencies into account whendeciding whether to cache a par-

ticular result, and (b) decide when and whether to discard orrefresh cached results. We could

refresh cached results eagerly as updates happen, or updatethem lazily, when they are accessed.

Another aspect of the integration could be to take into account the query workloads apart from

the materialized views in order to determine what additional views to materialize.

Finally, Query DAG generation can be extended to includequery splitting[15] as well. For

example, givene1: �A<5(E) ande2: �A<10(E), an alternative plan fore2 can be obtained by

introducing theremainderexpressione3:�5�A<10(E) in the Query DAG, and taking its union

with e1, i.e., �A<10(E) � �A<5(E) [�5�A<10(E). However, this plan, along with the plan�A<5(E) � �A<5(�A<10(E)) introduced by the subsumption derivations, leads to a cycleinvolv-

127

ing e1 ande2, countering our assumptions about the Query DAG. We are currently working on

approaches to address the above problem.

Appendix A

TPCD-Based Benchmark Queries

A.1 List of Queries Used in Section 3.6

Q2

SELECT P_PARTKEY

FROM PART, PARTSUPP, SUPPLIER, NATION, REGION

WHERE P_PARTKEY = PS_PARTKEY

AND S_SUPPKEY = PS_SUPPKEY

AND P_SIZE = 10

AND S_NATIONKEY = N_NATIONKEY

AND N_REGIONKEY = R_REGIONKEY

AND R_NAME = 1

AND PS_SUPPLYCOST IN (

SELECT MIN(PS_SUPPLYCOST)

FROM PARTSUPP, SUPPLIER, NATION, REGION

WHERE P_PARTKEY = PS_PARTKEY

AND S_SUPPKEY = PS_SUPPKEY

AND S_NATIONKEY = N_NATIONKEY

AND N_REGIONKEY = R_REGIONKEY

AND R_NAME = 1

GROUP BY PS_CONST

);

Q3

SELECT O_SELKEY

FROM CUSTOMER, ORDERS, LINEITEM

WHERE C_SELKEY = 1

A.1. LIST OF QUERIES USED IN SECTION 3.6 129

AND C_CUSTKEY = O_CUSTKEY

AND L_ORDERKEY = O_ORDERKEY

AND O_SELKEY < 13

AND L_SELKEY > 12;

Q5

SELECT MAX(O_SELKEY)

FROM CUSTOMER, ORDERS, LINEITEM, SUPPLIER, NATION, REGION

WHERE C_CUSTKEY = O_CUSTKEY

AND O_ORDERKEY = L_ORDERKEY

AND L_SUPPKEY = S_SUPPKEY

AND C_NATIONKEY = S_NATIONKEY

AND S_NATIONKEY = N_NATIONKEY

AND N_REGIONKEY = R_REGIONKEY

AND R_REGIONKEY = 1

AND O_SELKEY < 5

GROUP BY N_NATIONKEY;

Q7

SELECT S_SUPPKEY

FROM SUPPLIER, LINEITEM, ORDERS, CUSTOMER, NATION, NATION1

WHERE S_SUPPKEY = L_SUPPKEY

AND O_ORDERKEY = L_ORDERKEY

AND C_CUSTKEY = O_CUSTKEY

AND S_NATIONKEY = NATION.N_NATIONKEY

AND C_NATIONKEY = NATION1.N1_NATIONKEY

AND ((NATION.N_NATIONKEY = 1 AND NATION1.N1_NATIONKEY = 2)

OR (NATION.N_NATIONKEY = 2 AND NATION1.N1_NATIONKEY = 1))

AND L_SELKEY > 16;

Q8

SELECT P_PARTKEY

FROM PART, SUPPLIER, LINEITEM, ORDERS, CUSTOMER, NATION, NATION1, REGION

WHERE P_PARTKEY = L_PARTKEY

AND S_SUPPKEY = L_SUPPKEY

AND L_ORDERKEY = O_ORDERKEY

AND O_CUSTKEY = C_CUSTKEY

AND C_NATIONKEY = NATION.N_NATIONKEY

AND NATION.N_NATIONKEY = R_REGIONKEY

AND R_REGIONKEY = 2

AND S_NATIONKEY = NATION1.N1_NATIONKEY

AND O_SELKEY > 16

AND P_SELKEY < 3;

130 APPENDIX A. TPCD-BASED BENCHMARK QUERIES

Q9

SELECT P_SELKEY

FROM PART, SUPPLIER, LINEITEM, PARTSUPP, ORDERS, NATION

WHERE S_SUPPKEY = L_SUPPKEY

AND PS_SUPPKEY = L_SUPPKEY

AND PS_PARTKEY = L_PARTKEY

AND P_PARTKEY = L_PARTKEY

AND O_ORDERKEY = L_ORDERKEY

AND S_NATIONKEY = N_NATIONKEY

AND P_SELKEY > 251;

Q10

SELECT MIN(CUSTOMER.C_CUSTKEY)

FROM CUSTOMER, ORDERS, LINEITEM, NATION

WHERE CUSTOMER.C_CUSTKEY = ORDERS.O_CUSTKEY

AND LINEITEM.L_ORDERKEY = ORDERS.O_ORDERKEY

AND ORDERS.O_SELKEY = 1

AND LINEITEM.L_SELKEY < 7

AND CUSTOMER.C_NATIONKEY = NATION.N_NATIONKEY

GROUP BY CUSTOMER.C_CUSTKEY, NATION.N_NATIONKEY;

Q11

SELECT MIN(PARTSUPP.PS_SUPPKEY)

FROM PARTSUPP, SUPPLIER, NATION

WHERE PARTSUPP.PS_SUPPKEY = SUPPLIER.S_SUPPKEY

AND SUPPLIER.S_NATIONKEY = NATION.N_NATIONKEY

AND NATION.N_NATIONKEY = 7

GROUP BY PARTSUPP.PS_PARTKEY;

SELECT PARTSUPP.PS_SUPPKEY

FROM PARTSUPP, SUPPLIER, NATION

WHERE PARTSUPP.PS_SUPPKEY = SUPPLIER.S_SUPPKEY

AND SUPPLIER.S_NATIONKEY = NATION.N_NATIONKEY

AND NATION.N_NATIONKEY = 7;

Q14

SELECT LINEITEM.L_PARTKEY

FROM LINEITEM, PART

WHERE LINEITEM.L_PARTKEY = PART.P_PARTKEY

AND LINEITEM.L_SELKEY = 20;

A.2. LIST OF VIEW DEFINITIONS USED IN SECTION 5.6 131

A.2 List of View Definitions Used in Section 5.6

SELECT MIN(CUSTOMER.C_SELKEY)

FROM CUSTOMER, ORDERS, LINEITEM, NATION

WHERE CUSTOMER.C_CUSTKEY = ORDERS.O_CUSTKEY

AND LINEITEM.L_ORDERKEY = ORDERS.O_ORDERKEY

AND CUSTOMER.C_NATIONKEY = NATION.N_NATIONKEY

GROUP BY CUSTOMER.C_CUSTKEY, NATION.N_NATIONKEY;

SELECT MIN(CUSTOMER.C_SELKEY)

FROM CUSTOMER, ORDERS, LINEITEM

WHERE CUSTOMER.C_CUSTKEY = ORDERS.O_CUSTKEY

AND LINEITEM.L_ORDERKEY = ORDERS.O_ORDERKEY

GROUP BY CUSTOMER.C_CUSTKEY

HAVING CUSTOMER.C_CUSTKEY > 2;

SELECT MIN(PARTSUPP.PS_SUPPKEY)

FROM PARTSUPP, SUPPLIER, NATION

WHERE PARTSUPP.PS_SUPPKEY = SUPPLIER.S_SUPPKEY

AND SUPPLIER.S_NATIONKEY = NATION.N_NATIONKEY

AND NATION.N_NATIONKEY = 7;

SELECT COUNT(SUPPLIER.S_SUPPKEY)

FROM SUPPLIER, LINEITEM, ORDERS

WHERE SUPPLIER.S_SUPPKEY = LINEITEM.L_SUPPKEY

AND ORDERS.O_ORDERKEY = LINEITEM.L_ORDERKEY

AND LINEITEM.L_SELKEY > 16

GROUP BY SUPPLIER.S_NATIONKEY, LINEITEM.L_ORDERKEY;

SELECT MIN(PARTSUPP.PS_SUPPLYCOST)

FROM PARTSUPP , PART , LINEITEM , ORDERS

WHERE PARTSUPP.PS_PARTKEY > 10

AND PART.P_PARTKEY = PARTSUPP.PS_PARTKEY

AND LINEITEM.L_PARTKEY = PARTSUPP.PS_PARTKEY

AND ORDERS.O_ORDERKEY = LINEITEM.L_ORDERKEY

GROUP BY PART.P_PARTKEY;

SELECT PARTSUPP.PS_SUPPLYCOST

FROM PARTSUPP , LINEITEM , ORDERS

WHERE PARTSUPP.PS_PARTKEY > 10

AND LINEITEM.L_PARTKEY = PARTSUPP.PS_PARTKEY

AND ORDERS.O_ORDERKEY = LINEITEM.L_ORDERKEY;

132 APPENDIX A. TPCD-BASED BENCHMARK QUERIES

SELECT PARTSUPP.PS_SUPPLYCOST

FROM PART , SUPPLIER , PARTSUPP , NATION , REGION

WHERE PART.P_PARTKEY = PARTSUPP.PS_PARTKEY

AND SUPPLIER.S_SUPPKEY = PARTSUPP.PS_SUPPKEY

AND SUPPLIER.S_NATIONKEY = NATION.N_NATIONKEY

AND NATION.N_REGIONKEY = REGION.R_REGIONKEY;

SELECT PARTSUPP.PS_SUPPLYCOST

FROM PART , PARTSUPP , LINEITEM , SUPPLIER

WHERE PART.P_PARTKEY = PARTSUPP.PS_PARTKEY

AND SUPPLIER.S_SUPPKEY = PARTSUPP.PS_SUPPKEY

AND LINEITEM.L_PARTKEY = PARTSUPP.PS_PARTKEY;

SELECT PARTSUPP.PS_SUPPLYCOST

FROM PARTSUPP , PART , LINEITEM , ORDERS

WHERE PARTSUPP.PS_PARTKEY > 10

AND PART.P_PARTKEY = PARTSUPP.PS_PARTKEY

AND LINEITEM.L_PARTKEY = PARTSUPP.PS_PARTKEY

AND ORDERS.O_ORDERKEY = LINEITEM.L_ORDERKEY;

SELECT PARTSUPP.PS_SUPPLYCOST

FROM PART , SUPPLIER , PARTSUPP

WHERE PART.P_PARTKEY = PARTSUPP.PS_PARTKEY

AND SUPPLIER.S_SUPPKEY = PARTSUPP.PS_SUPPKEY;

Appendix B

List of Logical Transformations

In this section, we list the main logical transformations used to generate the logical plan space.

These transformations are augmented by the subsumption transformations mentioned in Chap-

ter 3. Note that, for space efficiency, we do not representA 1 B andB 1 A separately; the

transformations stated below take care of this fact.

Select Predicate Pushdown��(A 1theta0 B) ! A 1�^�0 B��(A� B) ! A 1� B
Join Predicate PushdownA 1� B ! ��A(A) 1�0 ��B(B)
where1 �A ^ �0 ^ �B � �, attr(�A) � attr(A), attr(�B) � attr(B), attr(�0) 6� attr(A), andattr(�0) 6� attr(B).
Further,A is used instead of��A is �A � true. Similarly for ��B and��C . Also, if �0 � true
then� is used instead of1�0.

1attr(X) is the set of attributes of relationX ; attr(�) is the set of attributes referenced in predicate�.

134 APPENDIX B. LIST OF LOGICAL TRANSFORMATIONS

Join Left AssociativityA 1 (B 1 C) ! (A 1 B) 1 C! (A 1 C) 1 B
Join Right Associativity(A 1 B) 1 C ! A 1 (B 1 C)! B 1 (A 1 C)
Join Exchange(A 1 B) 1 (C 1 D) ! (A 1 C) 1 (B 1 D)! (B 1 C) 1 (A 1 D)! (A 1 D) 1 (B 1 C)! (B 1 D) 1 (A 1 C)

Appendix C

Operator Cost Estimates

In this appendix, we present formulae giving the cost estimates for the various physical operators

considered by our optimizer. Our performance studies in earlier chapters (ref. Section 3.6.1

and Section 4.5.4) attest to the accuracy of these cost estimates. Figure C.1 gives the values of

the constants involved in the formulae along with their values, and Figure C.2 summarizes the

parameters used in the cost formulae.

In the discussion below, the inputs are assumed to be available in a stream; the operator does

not pay any cost for reading in the inputs. Similarly, the output is streamed out and the operator

does not pay any cost for writing the output. The cost is in terms of the response time measured

in milliseconds.

Assuming that, on the average, the operators executeI instructions per byte of data processed,

then with a block size ofB KB/block and CPU speed ofP MIPS, we get the computation cost

asI �B=P ms/block. Thus, in terms ofCIO andN , the total costC (in ms) is computed as:C = CIO + I �B �N=P
The sections below give, for each operator, the formulae forCIO, the I/O cost (in milliseconds)

andN , the blocks of memory processed by the CPU.

Relation Scan. Each block of the relation read and processed once.CIO = R � So

136 APPENDIX C. OPERATOR COST ESTIMATES

R readtime (ms) 2 msW writetime (ms) 4 msK seektime (ms) 8 msF index fanout 20B size of a block in kilobytes 4 KBP CPU speed in MIPS 100 MIPSM available main memory (number of blocks) 8000 blocksI average number of instructions executed per byte of data5

Figure C.1: Constants

Sik size of thekth input (number of blocks)Tik size of thekth input (number of tuples)So size of the output (number of blocks)To size of the output (number of tuples)Dik number of distinct values in thekth input

Figure C.2: Cost Formulae Parameters

137N = So
Result Materialization. Each block of the relation processed and written once.CIO = W � SoN = So
Sort. In memory sort if the relation fits in the main memory. Otherwise, merge sort with faninM � 1. CIO = 8><>: 0 if So �M(R +W) � So � dlogM�1(So=M)e otherwiseN = log2(To) � So + 1
Clustered Index Creation on Sorted Relation. The input is already sorted on the relevant

attribute. The index B-Tree is created bottom-up.

Size of clustered index (in number of blocks)= So�(1+1=F+1=F 2+: : :) = So�F=(F�1).CIO = W � So � F=(F � 1)N = 0
Clustered Index Creation on Unsorted Relation. The input is first sorted. Then the index is

created bottom-up. The overall cost is the total of the sorting cost and the index creation cost.CIO = (R +W) � So � dlogM�1(So=M)e+W � So � F=(F � 1)N = log2(To) � So + 1
Selection. The input streaming in is filtered using the predicate and theresult streamed out. No

I/O occurs. CIO = 0N = Si0 + So

138 APPENDIX C. OPERATOR COST ESTIMATES

Index based Select. We assume at least first level of the clustered is in memory. IfSo <0:25 �M , assume lower levels are also partially cached.CI = 8>>>>><>>>>>: 0 if Si0 < 0:25 �Mmax(0; dlogF (Si0)e) if 0:25 �M � Si0 < 0:75 �MdlogF (Si0)e otherwiseCIO = So(K +R) � CI +R � SoN = So
Merge Join. Both the inputs are streaming in already sorted. We introduce an arbitrary factor

of 2 to account for merge processing costs per block of output.CIO = 0N = 2 � So
Nested Loops Join. Since the inputs are streaming in, we do not pay the read cost for the outer

relation. If both inputs are smaller thatO:5 �M , the join occurs in-memory without any need of

I/O. CIO = 8><>: 0 if Si0 < 0:5 �M or Si1 < 0:5 �MR � (Si0 � Si1)=(M � 1) otherwiseN = 8>>>>><>>>>>: Si0 � Ti1 + So if Si0 < 0:5 �MTi0 � Si1 + So if Si0 � 0:5 �M andSi1 < 0:5 �MTi0 � Ti1 + So otherwise

Indexed Nested Loops Join. Input 0 is the probe and input 1 is indexed on the join attribute.

The total number of block accessesBI , assuming nothing is available in the cache is given by:BI = Ti0 �max(0; dlogF�1(Si1)e) + Si1=Di1B�I is the effective number block accesses taking into account the buffering.B�I = 8><>: S2i1=M if Si1 < 0:5 �M andBI > S2i1=MBI otherwise

139CIO = (K +R) �B�IN = Ti0 � 0:05 + So
Hashing based Aggregation. We assume hybrid hashing, with half of the availableM buffers

are used in the hybrid portion.CIO = 8><>: (R +W) � (Si0 � 0:5 �M) if So � 0:5 �M0 otherwiseN = Si0 � 0:01 + So
Sort based Aggregation. The input is streaming in sorted, so no I/O is involved.CIO = 0N = Si0 + So

References

[1] AGRAWAL , S., CHAUDHURI , S., AND NARASAYYA , V. Automated Selection of Materi-

alized Views and Indexes in Microsoft SQL Server. InIntl. Conf. Very Large Databases

(2000).

[2] A SHWIN, S., ROY, P., SESHADRI, S.,AND SUDARSHAN, S. Garbage collection in object

oriented databases using transactional cyclic reference counting. InIntl. Conf. Very Large

Databases(1997).

[3] BLAKELEY, J., COBURN, N., AND LARSON, P. A. Updating derived relations: Detecting

irrelevant and autonomously computable updates. InIntl. Conf. Very Large Databases

(1986).

[4] BLAKELEY, J. A., MCKENNA, W. J.,AND GRAEFE, G. Experiences Building the Open

OODB Query Optimizer. InACM SIGMOD Intl. Conf. on Management of Data(Washing-

ton, DC., 1993), pp. 287–295.

[5] BOBROWSKI, S. Using materialized views to speed up queries.Oracle Magazine(Sept.

1999). http://www.oracle.com/oramag/oracle/99-Sep/59bob.html.

[6] CELIS, P. The Query Optimizer in Tandem’s new ServerWare SQL Product. In Intl. Conf.

Very Large Databases(1996).

[7] CHAUDHURI , S. An overview of query optimization in relational systems. In ACM

SIGACT-SIGART-SIGMOD Symposium on Priciples of Database Systems(1998).

140

REFERENCES 141

[8] CHAUDHURI , S., KRISHNAMURTHY, R., POTAMIANOS, S., AND SHIM , K. Optimizing

queries with materialized views. InIntl. Conf. on Data Engineering(Taipei, Taiwan, 1995).

[9] CHAUDHURI , S., AND NARASAYYA , V. An Efficient Cost-Driven Index Selection Tool

for Microsoft SQL Server. InIntl. Conf. Very Large Databases(1997).

[10] CHEN, C. M., AND ROUSSOPOLOUS, N. The implementation and performance evaluation

of the ADMS query optimizer: Integrating query result caching and matching. InIntl. Conf.

on Extending Database Technology (EDBT)(1994).

[11] COLBY, L., COLE, R. L., HASLAM , E., JAZAYERI , N., JOHNSON, G., MCKENNA,

W. J., SCHUMACHER, L., AND WILHITE , D. Redbrick Vista: Aggregate computation and

management. InIntl. Conf. on Data Engineering(1998).

[12] COLBY, L., GRIFFIN, T., LIBKIN , L., MUMICK , I. S., AND TRICKEY, H. Algorithms for

deferred view maintenance. InACM SIGMOD Intl. Conf. on Management of Data(1996).

[13] COSAR, A., L IM , E.-P., AND SRIVASTAVA , J. Multiple query optimization with depth-

first branch-and-bound and dynamic query ordering. InIntl. Conf. on Information and

Knowledge Management (CIKM)(1993).

[14] DALVI , N., SANGHAI , S., ROY, P., AND SUDARSHAN, S. Pipelining in multi-query

optimization. Tech. rep., Indian Institute of Technology,Bombay, 2000. Submitted for

publication.

[15] DAR, S., FRANKLIN , M. J., JONSSON, B. T., SRIVASTAVA , D., AND TAN , M. Semantic

data caching and replacement. InIntl. Conf. Very Large Databases(1996).

[16] DESHPANDE, P. M., RAMASAMY , K., SHUKLA , A., AND NAUGHTON, J. F. Caching

multidimensional queries using chunks. InACM SIGMOD Intl. Conf. on Management of

Data (1998).

[17] EDMONDS, J. Optimum branchings.J. Research of the National Bureau of Standards 71B

(1967).

142 REFERENCES

[18] FINKELSTEIN, S. Common expression analysis in database applications. InACM SIGMOD

Intl. Conf. on Management of Data(Orlando,FL, 1982), pp. 235–245.

[19] GANGULY, S. Design and analysis of parametric query optimization algorithms. InIntl.

Conf. Very Large Databases(New York City, New York, August 1998).

[20] GASSNER, P., LOHMAN , G. M., SCHIEFER, K. B., AND WANG, Y. Query optimization

in the ibm db2 family.Data Engineering Bulletin 16, 4 (1993).

[21] GRAEFE, G. Query Evaluation Techniques for Large Databases.ACM Computing Surveys

25, 2 (1993).

[22] GRAEFE, G. The Cascades Framework for Query Optimization.Data Engineering Bulletin

18, 3 (1995).

[23] GRAEFE, G., AND MCKENNA, W. J. The Volcano Optimizer Generator: Extensibility

and Efficient Search. InIntl. Conf. on Data Engineering(1993).

[24] GRIFFIN, T., AND L IBKIN , L. Incremental maintenance of views with duplicates. InACM

SIGMOD Intl. Conf. on Management of Data(1995).

[25] GUPTA, A., AND MUMICK , I. S. Maintenance of materialized views : Problems, tech-

niques, and applications.IEEE Data Engineering Bulletin (Special issue on Materialized

Views and Data Warehousing) 18(2) 18, 2 (June 1995).

[26] GUPTA, H. Selection of views to materialize in a data warehouse. InIntl. Conf. on

Database Theory(1997).

[27] GUPTA, H., HARINARAYAN , V., RAJARAMAN , A., AND ULLMAN , J. Index selection for

olap. InIntl. Conf. on Data Engineering(Binghampton, UK, April 1997).

[28] GUPTA, H., AND MUMICK , I. S. Selection of views to materialize under a maintenance

cost constraint. InIntl. Conf. on Database Theory(1999), pp. 453–470.

REFERENCES 143

[29] HARINARAYAN , V., RAJARAMAN , A., AND ULLMAN , J. Implementing data cubes ef-

ficiently. In ACM SIGMOD Intl. Conf. on Management of Data(Montreal, Canada, June

1996).

[30] HULGERI, A., SESHADRI, S., AND SUDARSHAN, S. Memory cognizant query optimiza-

tion. In International Conference on Management of Data (COMAD)(2000). (to appear).

[31] KAPITSKAIA , O., NG, R. T., AND SRIVASTAVA , D. Evolution and Revolutions in LDAP

Directory Caches. InIntl. Conf. on Extending Database Technology (EDBT)(2000).

[32] KELLER, A. M., AND BASU, J. A predicate-based caching scheme for client-server

database architectures.VLDB Journal 5, 1 (1996).

[33] KOTIDIS, Y., AND ROUSSOPOULOS, N. DynaMat: A dynamic view management system

for data warehouses. InACM SIGMOD Intl. Conf. on Management of Data(1999).

[34] LABIO , W., QUASS, D., AND ADELBERG, B. Physical database design for data ware-

houses. InIntl. Conf. on Data Engineering(1997).

[35] LARSON, P. A., AND YANG, H. Z. Computing queries from derived relations. InIntl.

Conf. Very Large Databases(Stockholm, 1985), pp. 259–269.

[36] LEHNER, W., SIDLE , R., PIRAHESH, H., AND COCHRANE, R. Maintenance of Auto-

matic Summary Tables in IBM DB2/UDB. InACM SIGMOD Intl. Conf. on Management

of Data(2000).

[37] MUMICK , I. S., QUASS, D., AND MUMICK , B. S. Maintenance of data cubes and sum-

mary tables in a warehouse. InACM SIGMOD Intl. Conf. on Management of Data(1997),

pp. 100–111.

[38] PARK , J., AND SEGEV, A. Using common sub-expressions to optimize multiple queries.

In Intl. Conf. on Data Engineering(Feb. 1988).

144 REFERENCES

[39] PELLENKOFT, A., GALINDO -LEGARIA, C. A., AND KERSTEN, M. The Complex-

ity of Transformation-Based Join Enumeration. InIntl. Conf. Very Large Databases

(Athens,Greece, 1997), pp. 306–315.

[40] PIRAHESH, H., HELLERSTEIN, J. M., AND HASAN, W. Extensible/Rule Based Query

Rewrite Optimization in Starburst. InACM SIGMOD Intl. Conf. on Management of Data

(San Diego, 1992), pp. 39–48.

[41] POOSALA, V., IOANNIDIS, Y., HAAS, P., AND SHEKITA , E. Improved histograms for

selectivity estimation of range predicates. InACM SIGMOD Intl. Conf. on Management of

Data (1996).

[42] QUASS, D., GUPTA, A., MUMICK , I., AND WIDOM , J. Making views self-maintainable

for data warehousing. InIntl. Conf. on Parallel and Distributed Information Systems(1996).

[43] RAO, J.,AND ROSS, K. Reusing invariants: A new strategy for correlated queries. InACM

SIGMOD Intl. Conf. on Management of Data(1998).

[44] ROSS, K., SRIVASTAVA , D., AND SUDARSHAN, S. Materialized view maintenance and

integrity constraint checking: Trading space for time. InACM SIGMOD Intl. Conf. on

Management of Data(May 1996).

[45] ROUSSOPOLOUS, N. View indexing in relational databases.ACM Trans. on Database

Systems 7, 2 (1982), 258–290.

[46] ROY, P., SESHADRI, S., SUDARSHAN, S.,AND ASHWIN, S. Garbage collection in object

oriented databases using transactional cyclic reference counting.VLDB Journal 7, 3 (1998).

[47] ROY, P., SESHADRI, S., SUDARSHAN, S., AND BHOBHE, S. Efficient and extensible

algorithms for multi-query optimization. InACM SIGMOD Intl. Conf. on Management of

Data (2000).

REFERENCES 145

[48] SALEM , K., BAYER, K., COCHRANE, R., AND L INDSAY, B. How to roll a join: Asyn-

chronous incremental view maintenance. InACM SIGMOD Intl. Conf. on Management of

Data (2000).

[49] SCHEUERMANN, P., SHIM , J., AND V INGRALEK , R. WATCHMAN: A data warehouse

intelligent cache manager. InIntl. Conf. Very Large Databases(1996).

[50] SCHEUERMANN, P., SHIM , J., AND V INGRALEK , R. Dynamic caching of query results

for decision support systems. InIntl. Conf. on Scientific and Statistical Database Manage-

ment(1999).

[51] SELINGER, P., ASTRAHAN, M. M., CHAMBERLIN , D. D., LORIE, R. A., AND PRICE,

T. G. Access path selection in a relational database management system. InACM SIGMOD

Intl. Conf. on Management of Data(1979), pp. 23–34.

[52] SELLIS, T. Intelligent caching and indexing techniques for relational database systems.

Information Systems(1988), 175–185.

[53] SELLIS, T., AND GHOSH, S. On the multi query optimization problem.IEEE Transactions

on Knowledge and Data Engineering(June 1990), 262–266.

[54] SELLIS, T. K. Multiple query optimization.ACM Transactions on Database Systems 13,

1 (Mar. 1988), 23–52.

[55] SESHADRI, P., PIRAHESH, H., AND LEUNG, T. Y. C. Complex query decorrelation. In

Intl. Conf. on Data Engineering(1996).

[56] SHIM , K., SELLIS, T., AND NAU , D. Improvements on a heuristic algorithm for multiple-

query optimization.Data and Knowledge Engineering 12(1994), 197–222.

[57] SHUKLA , A., DESHPANDE, P., AND NAUGHTON, J. F. Materialized view selection for

multidimensional datasets. InIntl. Conf. Very Large Databases(New York City, NY, 1998).

[58] SOUKUP, R., AND DELANEY, K. Inside Microsoft SQL Server 7.0. Microsoft Press, 1999.

146 REFERENCES

[59] SUBRAMANIAN , S. N., AND VENKATARAMAN , S. Cost based optimization of decision

support queries using transient views. InACM SIGMOD Intl. Conf. on Management of

Data (1998).

[60] TPC. TPC-D Benchmark Specification, Version 2.1, Apr. 1999.

[61] V ISTA, D. Integration of incremental view maintenance into queryoptimizers. InIntl.

Conf. on Extending Database Technology (EDBT)(1998).

[62] YANG, H. Z., AND LARSON, P. A. Query transformation for psj queries. InIntl. Conf.

Very Large Databases(Brighton, August 1987), pp. 245–254.

[63] YANG, J., KARLAPALEM , K., AND L I , Q. Algorithms for materialized view design in

data warehousing environment. InIntl. Conf. Very Large Databases(1997).

[64] ZHAO, Y., DESHPANDE, P., NAUGHTON, J. F., AND SHUKLA , A. Simultaneous opti-

mization and evaluation of multiple dimensional queries. In ACM SIGMOD Intl. Conf. on

Management of Data(Seattle, WA, 1998).

Acknowledgements

I thank S. Sudarshan and S. Seshadri for introducing me to thefield of databases, and for their

continuous enthusiasm, patience and guidance for the last five years. I have been very fortunate to

have Sudarshan as my thesis advisor; his appreciation and understanding were necessary to drive

things till the finishing line. Many thanks to Krithi Ramamritham for his interest, encouragement

and insights. It was a pleasure working with him. I thank D.B.Phatak for inducting me into

the fold of IIT-Bombay; but for him, I would have missed a lot.Moreover, I have valued his

encouragement and support during my entire stay.

The Informatics Lab at IIT-Bombay is a fun place to work in, thanks to the excellent graduate

and undergraduate students working here. I thank all my labmates, past and present, with whom

I have had the chance to work with during my stay; in particular, P.P.S. Narayan – who taught

me a lot aboutreal system development – and Siddhesh Bhobe, Pradeep Shenoy andHoshi

Mistry who collaborated with me on parts of this thesis. Thanks to fellow Ph.D. students Bharat

Adsul and Arvind Hulgeri for their company. I thank Arvind further for our several technical

discussions; they helped a lot.

I am grateful to Paul Larson for calling me all the way to Redmond for a summer internship

at Microsoft Research, and for giving me a chance to hack intothe Microsoft SQL-Server code

and prototype my ideas; it was a very valuable experience.

This work was supported in part by an IBM Ph.D. fellowship.

Prasan Roy

