MULTI-QUERY OPTIMIZATION
AND
APPLICATIONS

Submitted in partial fulfillment of the requirements

for the degree of
DOCTOROF PHILOSOPHY

by

PRASAN ROY

Department of Computer Science and Engineering
Indian Institute of Technology - Bombay

2000

Approval Sheet

The thesis entitled MLTI-QUERY OPTIMIZATION AND APPLICATIONS
by PRASAN ROY

is approved for the degree ofdZTOR OFPHILOSOPHY.

Examiners

Supervisor

Chairman

Date :

Place :

Abstract

Complex queries are becoming commonplace with the gronsegofidecision support systems.
These complex queries often have a lot of common sub-expres®ither within a single query,
or across multiple such queries. The focus of this work ispeesl up query execution by ex-

ploiting these common subexpressions.

Given a set of queries in a batch, multi-query optimizationsaat exploiting common sub-
expressions among these queries to reduce evaluatiorMalsitquery optimization has hither-
to been viewed as impractical, since earlier algorithmsevexhaustive, and explore a doubly
exponential search space. We present novel heuristicsiti-query optimization, and demon-
strate that optimization using these heuristics providgsificant benefits over traditional opti-

mization, at a very acceptable overhead in optimizatioetim

In online environments, where the queries are posed as aff@rtongoing stream instead of
in a batch, individual query response times can be greattyored by caching final/intermediate
results of previous queries, and using them to answer la@ni@s. An automatic caching system
that makes intelligent decisions on what results to cacheldvbe an important step towards
knobs-free operation of a database system. We describetamaiic query caching system
calledExchequemhich is closely coupled with the optimizer to ensure thatt¢hching system
and the optimizer make mutually consistent decisions, apdranentally illustrate the benefits

of this approach.

Further, because the presence of views enhances querymance, materialized views are
increasingly being supported by commercial databaselgatahouse systems. Whenever the

data warehouse is updated, the materialized views musbalspdated. We show how to find

an efficient plan for maintenance ofsatof views, by exploiting common subexpressions be-
tween different view maintenance expressions. These conmsubexpressions may be mate-
rialized temporarily during view maintenance. Our algums also choose additional subex-
pressions/indices to be materialized permanently (andtaaed along with other materialized
views), to speed up view maintenance. In addition to fasew vnaintenance, our algorithms

can also be used to efficiently select materialized viewpéed up query workloads.

Contents

1

Introduction 1
1.1 Problem Overview and Motivation 1
1.1.1 Transient Materialization 1
1.1.2 Dynamic Materialization 3
1.1.3 Permanent Materialization 4
1.2 Summary of Contributions 6
1.2.1 Multi-Query Optimization 6
1.2.2 QueryResultCaching 7
1.2.3 Materialized View Selection and Maintenance 9
1.3 Organizationofthe Thesis imn.. 12
Traditional Query Optimization 13
2.1 Background e 31
2.2 Design of a Cost-based Query Optimizer 15
221 OVEIVIEW o o e 15
2.2.2 LogicalPlanSpace 8 1
2.2.3 PhysicalPlanSpace 00 2 2
2.2.4 The Search Algorithm 72
2.2.5 Differences from the Original Volcano Optimizer 30
2.3 SUMMAIY e e e e 32

il CONTENTS
3 Multi-Query Optimization 34
3.1 SettingUpTheSearchSpace ao. 36

3.2 Reuse Based Multi-Query Optimization Algorithms 37

3.2.1 Optimization in Presence of Materialized Views 37

3.2.2 The Wolcano-SH Algorithm 38
3.2.3 The Wolcano-RU Algorithm 41
3.3 The Greedy Algorithm 43
3.3.1 Sharability 46
3.3.2 Incremental CostUpdate a7
3.3.3 The Monotonicity Heuristic 49
3.4 Handling Physical Properties 50
3.5 EXIENSIONS e 54
3.5.1 Selection of Temporary Indices 54
3.5.2 NestedQueries e 54
3.6 Performance Study e 56
3.6.1 BasicExperiments e 75
3.6.2 Scaleup Analysis 2 6
3.6.3 Effectof Optimizations. 64
3.6.4 DISCUSSION e 65
3.7 Related Work 6 6
3.8 Summary e e e 68
Query Result Caching 69
4.1 Cache-Aware Query Optimization uu... 71
4.1.1 Consolidated DAG 72
4.1.2 Query DAG Generation and Query/Cached Result Magchin 73

4.1.3 \olcano Extensions for Cache-Aware Optimization 74
4.2 Dynamic Characterization of CurrentWorkload 75

4.3 Cache Managementin Exchequer 76

CONTENTS iii

4.4 Differences fromPriorWork e 80
4.5 Experimental Evaluation of the Algorithms 82
451 TestQuery SEqQUENCES v v i v i e e e 2. 8
452 MetriC. e 85
45.3 Listofalgorithmscompared 85
45.4 ExperimentalResults 87
4.6 EXtensions. 94
A7 SUMMANY . . . o o e e e e e e e e e e e e e e e e e 95
5 Materialized View Maintenance and Selection 96
51 RelatedWork 011
5.2 Overviewof OurApproach 102
5.3 Setting up the Maintenance PlanSpace 104
5.3.1 SystemModel 104

5.3.2 Propagation-Based Differential Generation for énoental View Main-
tenance 105
5.3.3 Incorporating Incremental Plans in the Query DAG Rsentation 107
5.4 Maintenance Cost Computation i 109

5.5 Transient/Permanent Materialized View Selection111

5.5.1 The Basic Greedy Algorithm 111
55,2 Optimizations e 131
553 EXIENSIONS 114
5.6 PerformanceStudy 115
5.6.1 PerformanceModel. oo oL 151
5.6.2 PerformanceResults L. 116
S.7 SUMMAIY e e e e 123

6 Conclusions and Future Work 124

CONTENTS

TPCD-Based Benchmark Queries 128
A.1 Listof QueriesUsedinSection3.6. uu.... 128
A.2 List of View Definitions Used in Section5.6 131
List of Logical Transformations 133

Operator Cost Estimates 135

List of Figures

11
1.2
1.3

2.1
2.2

2.3
2.4
2.5
2.6
2.7

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

Example illustrating benefits of sharing computation 2
Example illustrating the benefit of caching intermesligsults 3
Example view maintenance pldfiergerefreshes a view givenits “delta”. 5
Overview of Cost-based Transformational Query Optatan 16

Logical Query DAG for AX B X C. Commutativity not shown; every join node

has another join node with inputs exchanges, below the sgoieadence node. . 19

Logical Plan Space Generationfobd®dBXC. 20
Algorithm for Logical Query DAG Generation. 21
Physical Query DAGfoA X B e 24
Algorithm for Physical Query DAG Generation 26
The Search Algorithm 28
The Volcano-SH Algorithm 40
The Volcano-RU Algorithm 42
The Greedy Algorithm 45
Incremental CostUpdate 48
Example Showing Cost Propagation through PhysicalMatpnce Nodes 52
Optimization of Stand-alone TPCD Queries 58
Execution of Stand-alone TPCD Queries on MS SQL Server. 59
Optimization of Batched TPCD Queries e o .. 61
Optimization of Scaleup Queries i 63

Vi

LIST OF FIGURES

3.10 Complexity of the Greedy Heuristic 63
4.1 Architecture of the Exchequer System, 70
4.2 (a) CDAGfor{ AXCNXD,ANXCNXE} (b) Unexpanded Ad B X C inserted

into CDAG (c) AXBX Cexpanded intoCDAG 73
4.3 The Greedy Algorithm for Cache Management 78
4.4 Distribution of distinct intermediate results genedatluring the processing of

the CubePoints and CubeSlicesworkloads 84
4.5 Performance on 900 Query CubePoints/Zipf-0.5 Workload 88
4.6 Performance on 900 Query CubePoints/Zipf-2.0 Workload 89
4.7 Performance on 900 Query CubeSlices/Zipf-0.5 Workload 89
4.8 Performance on 900 Query CubeSlices/Zipf-2.0 Workload 90
5.1 The Greedy Algorithm for Selecting Views for Transi®&/manent Materializa-

tON . . 112
5.2 Effect of Transient and Permanent Materialization 117
5.3 Effect of Adaptive Maintenance Policy Selection120
5.4 Scalability analysis on increasing number of views122
C.1 Constants e e 361
C.2 CostFormulae Parameters e 136

Chapter 1

Introduction

Complex queries are becoming commonplace, especiallyatieetadvent of automatic tools
that help analyze information from large data warehousdgesd& complex queries often have
several subexpressions in common since i) they make extense of views which are referred
to multiple times in the query and ii) many of them are comedanested queries in which parts
of the inner subquery may not depend on the outer query \tasathus forming a common

subexpression for repeated invocations of the inner query.

1.1 Problem Overview and Motivation

The focus of this thesis is to speed up query processing bingheomputation within or across
gueries by materializing intermediate results. This caddrye at three levels: transient, dynamic

and permanent.

1.1.1 Transient Materialization

Given a batch of queries to be executed, the results computéaty the execution can be materi-
alized on the disk as they are computed when refered for gtdifine, reused on later references
instead of being recomputed, and discarded at the end ok#doaiton. This is termed transient

materialization.

2 CHAPTER 1. INTRODUCTION

[A10 10[] 10 10D
(a) Traditional execution: No sharing (b) Execution with BC shared

Total Cost = 460 Total Cost = 370

Figure 1.1: Example illustrating benefits of sharing comaion

Example 1.1.1 Consider a batch of two queridsA X B X (), (B X C' X D)}. A tradi-
tional system will execute each of these queries indepelydesing the individual best plans as
suggested by the query optimizer; let these best plans bleoamsn Figure 1.1(a). The base
relationsA, B, C' and D each have a scan cost of 10 urit€ach of the joins have a cost of
100 units, giving a total execution cost of 460 units. On ttleephand, in the plan shown in
Figure 1.1(b), the intermediate resui® X (') is first computed and materialized on the disk at
a cost of 10. Then, it is scanned back twice — the first time itoyoth A in order to compute
(A X B X ('), and the second time to join with D in order to compgie X C' X D) — at

a cost of 10 per scan. Each of these joins have a cost of 10€. uFfie total cost of thison-
solidatedplan is thus 370 units, which is about 20% less than the casteofraditional plan of
Figure 1.1(a), demonstrating the benefit of sharing contjpumauring query processingl

The expressiofB X (') that is common between the two queries X B X (') and
(B X C' X D) in the above example is termed ags@mmon subexpressioWe address the
problem of finding the cheapest execution plan for a batchuefrigs, exploiting transiently
materialized common subexpressions; this is termmedti-query optimization Section 1.2.1
provides further details of our work on multi-query optimion.

Multi-query optimization is an important practical protileFor instance, SQL-3 stored pro-
cedures may invoke several queries, which can be executadvasch. Further, data analy-
sis/reporting often requires a batch of queries to be erecuRecent work on using relational

databases for storing XML data, has found that queries on XMta, written in a language

1The actual unit of measure is not relevant to this example

1.1. PROBLEM OVERVIEW AND MOTIVATION 3

Cost = 230 Cost = 230 Cost = 120 Cost =120

(a) Execution without query caching (b) BC cached during execution of BCD
reused during execution of ABC

Figure 1.2: Example illustrating the benefit of caching intediate results

such as XML-QL and containing regular path expressionstrareslated into a batch of rela-
tional queries; these queries have a large amount of ovardan benefit significantly from

multi-query optimization.

1.1.2 Dynamic Materialization

In online environments, where the queries are posed as apart ongoing stream instead
of in a batch as above, individual query response times cagréetly improved by caching
final/intermediate results of previous queries, and udiegitto answer later queries.

Given a sequence of queries arriving individually, eachcated on arrival, dynamic mate-
rialization involves materializing, in a limited-size ¢8; results computed during the execution
of individual queries. These results are used to computaepiappearing later in the sequence,

and may be discarded at a later point of time when they losettikty.

Example 1.1.2 Consider again the two queri¢® X C X D) and(A X B X (') of Exam-
ple 1.1.1, this time occurring one after another as a partwbkkload sequence. As earlier,
the queries are on the base relatiohsB, C' and D each having a scan cost of 10 each. The
execution of the two queries, when caching is not suppodests 230 for each query as shown
in Figure 1.2(a), totaling to 460. Contrast this with the@xen of the queries as shown in Fig-
ure 1.2(b). In this case, during the executio BfX C' X D), the intermediate resu{B X C)

is cached to the disk, at a cost of 10, and reused at a cost @rifupry; the total execution cost

4 CHAPTER 1. INTRODUCTION

for the two queries is now 370. This illustrates the benefitathing and reusing intermediate

results.c

We use the termjuery result cachingo mean caching of final and/or intermediate results of
gueries. Query result caching differs from multi-queryiomtation in that at the moment a given
query is being executed, later queries in the workload sezpiare not known. The main issue
in query result caching is thus to dynamically determineutiley of a result, so as to figure out
when to admit it into the cache and when to dispose it in fa¥@nother result. Further details

of our work on query result caching appear in Section 1.2.2.

1.1.3 Permanent Materialization

Permanent materialization involves precomputing resuits keeping them materialized on the
disk during the execution of the workload. However, unlil@sient and dynamic materializa-
tion, these results are never discarded. Permanently ialeted results are also calledaterial-
ized views

Materialized views have dependencies on the underlying baations — when these base
relations get updated, the system needs to refresh thege wieorder to maintain consistency.
The view can be refreshed by either recomputing it, or by dmstputing the incremental change
to the view (tuples to be inserted or deleted as a consequéiioe corresponding updates to the
base relations) and then integrating the change into the Vibis is termed/iew maintenance

In current generation database systems, the system athaioiscan decide to permanently
materialize a set of views, and the system must keep thegss giensistent by refreshing them.
Efficient techniques for view maintenance are needed beaahisreas the amount of data enter-
ing a warehouse, the query loads, and the need to obtaindatéoresponses are all increasing,
the time window available for making the warehouse up-te-tashrinking.

We address the problem of minimizing the total cost of mammtg the given set of views. In
order to do so, we show how to determine (a) for each matee@hiew, the best way to refresh
it in face of updates to the base relation; and (b) an additiset of results to materialize, per-

manently or transiently, to speed up the refresh procesdihgse decisions are interdependent

1.1. PROBLEM OVERVIEW AND MOTIVATION 5

initial set of materialized views
© incremental refresh recomputation recomputation

transiently materialized view >

. permanently materialized view

Figure 1.3: Example view maintenance pldergerefreshes a view given its “delta”.

and need to be taken in an interleaved manner. This is tematérialized view selection and
maintenanceFurther details of our approach for materialized view c#b® and maintenance is

presented in Section 1.2.3.

Example 1.1.3 Suppose we have three materialized viéiis= (A X B X C), V2 = (C' X

D X E)andV3 = (B X C X D X E), and relationsd and E' are updated. In this example,
we assume that the updatesA@nd E consist of inserts to the relations, and the other relations
are not changed. This reflects reality in data warehousestendnly a few of the relations are
updated. (However, our techniques do not have any restmgn what is updated, or what is
the form of the updates.)

If the maintenance plans of the three views are chosen imdiepely, the best view main-
tenance plan (incremental or recomputation) for each woeldhosen, without any sharing
of computation. In contrast, as an illustration of the kirfdotans our optimization methods
are able to generate, Figure 1.3 shows a maintenance pldahefaiews that exploits sharing
of computation. Here(A X B X () is refreshed incrementally, whilg” X D X FE) and
(BX C X DX FE) are recomputed.

Two extra views,(B X (') and (D X E) have been chosen to be materialized. Of these,
(B X () is materializedransiently and is disposed as soon as the views are refreshed; this
could happen because there are also updatd3 andC' which make it expensive to maintain
(B X (') as a materialized view.

The result(D X E) has been chosen to be materialipsimanentlyand is itself refreshed

6 CHAPTER 1. INTRODUCTION

incrementally given the updates to the relationlts full result is then used to recompui€

D X FE)aswellas(B X C' X D X E). If an incremental maintenance plan had been chosen
for (B X C X D X E), with recomputation chosen f¢€' X D X FE), the differential result

of (D X E) would have been used in the incremental maintenance plde tie full result of

(D X E) would be used in the recomputation plan.

1.2 Summary of Contributions

In this section we give a summary of the main contributionshef different chapters of the
thesis. Section 1.2.1 describes our work on multi-queryngpation which involves transient
materialization, Section 1.2.2 describes our work on quesylt caching which involves dy-
namic materialization, and Section 1.2.3 describes oukwarmaterialized view selection and
maintenance which involves transient materialization e & permanent materialization.

In addition to our technical contributions detailed bel@ampther of our contributions lies
in showing, for each of the above problems, how to enginesrtimal systems by adding just a
few thousand lines of code to existing state-of-the-artyjoptimizers (in particular, the Volcano
guery optimizer engine [23], which forms the core of the M&wft SQL-Server [22] and Tandem

ServerWare SQL [6] optimizers).

1.2.1 Multi-Query Optimization

In Chapter 3, we address the problem of optimizing a set ofigsi@xploiting the presence of
common subexpressions among the queries; this problerfersae to asnulti-query optimiza-
tion. Common subexpressions are possible eviemn a single query; the techniques we develop
deal with such intra-query common subexpressions as weltliffonal query optimizers are not
appropriate for optimizing queries with common subexpoess since they make locally optimal
choices, and may miss globally optimal plans.

The job of multi-query optimizer, over and above that of aediy query optimizer, is to (i)

recognize the possibilities of shared computation, andn@dify the optimizer search strategy

1.2. SUMMARY OF CONTRIBUTIONS 7

to explicitly account for shared computation and find a gliyt@ptimal plan.

The contributions of this work are as follows:

1. The search space for multi-query optimization is doubigomential in the size of the
gueries, and exhaustive strategies are therefore impadicéis a result, multi-query op-
timization was hitherto considered too expensive to beulsefVe show how to make

multi-query optimizatiorpractical, by developing novel heuristic algorithms.

Further, our algorithms can be easily extended to perforrtifguery optimization on
nested queries as well as multiple invocations of paranzegtrqueries (with different
parameter values). Our algorithms also take into accouartrginof computation based on
“subsumption” — examples of such sharing include computing; (F) from the result of
0A<10(E)-

Our algorithms are independent of the data model and thencodél, and are extensible

to new operators.

2. In addition to choosing what intermediate expressioalte$o materialize and reuse, our
optimization algorithms also choose physical propertsegh as sort order, for the ma-
terialized results. By modelling presence of an index asysiphl property, our algo-
rithms also handle the choice of what (temporary) indicesréate on materialized re-

sults/database relations.

We believe that in addition to our technical contributioaspther of our contributions lies in
showing how to engineer a practical multi-query optimizatsystem — one which can smoothly
integrate extensions, such as indexes and nested qudiogsng them to work together seam-

lessly.

1.2.2 Query Result Caching

In a traditional database engine, every query is processipbendently. In decision support
applications, queries often overlap in the data that thegssand in the manner in which they

utilize the data, i.e., there are common expressions beteyeeries. A natural way to improve

8 CHAPTER 1. INTRODUCTION

performance is to allocate a limited-size area on the didletased as a cache for results com-
puted by previous queries. The contents of the cache maylizedto speed up the execution of
subsequent queries. We use the teuery cachingo mean caching of final and/or intermediate
results of queries.

Most existing decision support systems support static \welgction: select a set of views
apriori, and keep them permanently on disk. The selectidraged on either (a) the intuition
of the systems administrator, or (b) recommendation of ismtwvizards” as supported by Mi-
crosoft SQL-Server [1] based on a workload history. The athge of query caching over static
view selection is that it can cater to changing workloads -e-data access patterns of the queries
cannot be expected to be static, and to answer all types okegiedficiently, we need to dynam-
ically change the cache contents.

In Chapter 4, we present the techniques needed (a) forigeetly and automatically manag-
ing the cache contents, given the cache size constrairmgsieaies arrive, and (b) for performing
guery optimization exploiting the cache contents, so asitomize the overall response time for
all the queries.

The contributions of this work are:

1. We show how to handle the caching of intermediate as wefiinas results of queries.
Intermediate results, in particular, require careful Haugdsince caching decisions are
typically made based on usage rates, and usage rates oh@tt&te results are dependent
on whatelseis in the cache. Techniques for caching intermediate reswdte proposed
in [10], but they are based only on usage rates and would lediagainst results that
are currently not in the cache. Our caching algorithms uphisticated techniques for
deciding what to cache, taking into account what other tesare cached. Moreover,
we show how to consider caching indices constructed on thi fllge same way as we

consider caching of intermediate results.

2. We show how to enable the optimizer to take into considerahe use of cached results
and indices, piggybacked on the optimization stéfh negligible overhead All prior

cache-aware optimization algorithms have a separate cashl matching step.

1.2. SUMMARY OF CONTRIBUTIONS 9

3. Our algorithms are extensible to new operations, unlikelmof the prior work on caching.
Moreover, prior work has mainly concentrated on cube gsgméhile cube queries are
important, general purpose decision support systems rapptst more general queries as
well. Our algorithms can handle any SQL query including egsiueries. To the best of
our knowledge, no other caching technique is capable ofllmgndaching of intermediate

results for such a general class of queries.

4. We have implemented the proposed techniques and prgseribanance study that clearly
demonstrates the benefits of our approach. Our study shawsnteelligent, workload
adaptive intermediate query result caching can be donesfamigh to be practical, and

leads to significant overall savings.

In this work, we confine our attention only to the issue of &fit query processing, ignoring up-
dates. Data Warehouses are an example of an applicatioe Wieecache replacement algorithm

can ignore updates, since updates happen only period{calte a day or even once a week).

1.2.3 Materialized View Selection and Maintenance

Materialization of views can help speed up query and updategssing. Views are especially
attractive in data warehousing environments because afubey intensive nature of data ware-
houses. However, when a warehouse is updated, the matedaliews must also be updated.
Typically, updates are accumulated and then applied toawlatehouse. Loading of updates
and view maintenance in warehouses has traditionally beee dt night. While the need to pro-
vide up-to-date responses to an increasing query loadvwamggand the amount of data that gets
added to data warehouses has been increasing, the timewawiable for making the ware-
house up-to-date has been shrinking. These trends calfffciert techniques for maintaining
the materialized views as and when the warehouse is updated.
Chapter 5 addresses the problem of efficiently maintainiagtaf materialized views. Al-

though the focus of our work is to speed up view maintenanaealgorithms can also be used to
choose extra transient and permanent views in order to sgeadvorkload containing queries

and updates (that trigger view maintenance).

10

CHAPTER 1. INTRODUCTION

Our contributions are as folows:

1. We show how to exploit transient materialization of conmmsabexpressions to reduce the

cost of view maintenance plans.

Sharing of subexpressions occurs when multiple views argleaintained, since related
views may share subexpressions, and as a result the maingeegpressions may also be
shared. Furthermore, sharing can occur even within thefpfamaintaining a single view

if the view has common subexpressions within itself.

The shared expressions could include differential expyassas well as full expressions

which are being recomputed.

. We show how to efficiently choose additional expressionpérmanent materialization to

speed up maintenance of the given views.

Just as the presence of views allows queries to be evaluatesl efficiently, the main-
tenance of the given permanently materialized views can &égenmore efficient by the
presence of additional permanently materialized views f#8. That is, given a set of
materialized views to be maintained, we choose additiolesisto materialize in order to
minimize the overall view maintenance costs. The exprassihosen for permanent ma-
terialization may be used in only one view maintenance pdamay be shared between

different views maintenance plans.

. We show how to determine the optimal maintenance plandoh endividual view, given

the choice of results for transient/permanent materitdina

Maintenance of a materialized view can either be daoeementallyor by recomputation
Incremental view maintenance involves computing the wfiéal (“delta’s) of a materi-
alized view, given the “delta’s of the base relations thatwused to define the views, and
merging it with the old value of the view. However, incremantiew maintenance may
not always be the best way to maintain a materialized vievewthe deltas are large the

view may be best maintained by recomputing it from the uptibese relations.

1.2. SUMMARY OF CONTRIBUTIONS 11

Our techniques determine the maintenance policy, increahenrecomputation, for each

view in the given set such that the overall combination hasitimimum cost.

4. We show how to make the above three choices in an integnaéether to minimize the

overall cost.

It is important to point out that the above three choices ajklfinterdependent, and must
be taken in such a way that the overall costs of maintainingt @fsviews is minimized.

Specifically:

e Given a subexpression useful during materialization oftiphel views, choosing
whether it should be transiently or permanently matermalizs an optimization prob-
lem, since each alternative has its cost and benefit. Traingmwvs are materialized
during the evaluation of the maintenance plan and discaaftedmaintenance of the
given views; such transient views themselves need not betaiaed. On the other
hand, the permanent views are materialized a priori, setiseno (re)computation
cost; however, there is a maintenance cost, and a storagémosh is long term in
that it persists beyond the view maintenance period) dukeag@érmanently materi-

alized views.

e The choice of additional views must be done in conjunctioth\selecting the plans
for maintaining the views, as discussed above. For instanptan that seems quite
inefficient could become the best plan if some intermedegalt of the plan is chosen

to be materialized and maintained.

We propose a framework that cleanly integrates the choieelditional views to be tran-
siently or permanently materialized, the choice of whetaah of the given set of (user-
specified) views must be maintained incrementally or by mgmatation, and the choice of

view maintenance plans.

5. We have implemented all our algorithms, and present apaénce study, using queries

from the TPC-D benchmark, showing the practical benefitauotechniques.

12 CHAPTER 1. INTRODUCTION

1.3 Organization of the Thesis

This thesis is organized as follows. Chapter 2 gives a baekfround overview of traditional
guery optimization. In particular, it describes our vernsid the Volcano optimization framework;
the work presented in later chapters is based on this framkew@hapter 3 gives the details
of our work on multi-query optimization. This is followed Wyhapter 4 which addresses the
query result caching problem. Chapter 5 describes how the-query optimization framework
is extended to address the materialized view selection aaidtemance problem. Finally, the

conclusions of the thesis and directions for future workeagspn Chapter 6.

Chapter 2
Traditional Query Optimization

This chapter sets the stage for the work covered in the rebedhesis. Section 2.1 gives a brief
overview of the important concerns and prior work in tramh@l query optimization. Section 2.2
describes the design and implementation of a query optilizager chapters of this thesis build

on the framework described in this section.

2.1 Background

In this section, we provide a broad overview of the main issagolved in traditional query
optimization and mention some of the representative worthénarea. This discussion will be
kept very brief; for the details we point to the compreheaswery readable survey by Chaudhuri
[7].

Traditionally, the core applications of database systeave lbeen online transaction pro-
cessing (OLTP) environments like banking, sales, etc. Tlezigs in such an environment are
simple, involving a small number of relations, say threewe.flFor such simple queries, the in-
vestment in sophisticated optimization usually did not ppyn the performance gain. As such,
only join-order optimization and that too in a constrainedrsh space was effective enough. The
seminal paper by Selinger et al. [51] presented a dynamgranoming algorithm for searching

optimal left-linear join ordered plans. The ideas presgirighis paper formed the basis of most

14 CHAPTER 2. TRADITIONAL QUERY OPTIMIZATION

optimization research and commercial development tilvayears back.

However, with the growing importance of online analyticabgessing (OLAP) environ-
ments, which routinely involve expensive queries, morehsijcated query optimization tech-
niques have become crucial. In order to be effective in s@chathding environments, the opti-
mizers need to look at less constrained search spaces witlosing much on efficiency. They
need to adapt to new operators, new implementations of thgsetors and their cost models,
changes in cost estimation techniques, etc. This callsxiensibility in the optimizer architec-
ture. These requirements led to the current generation @fyqouptimizers, of which two rep-
resentative optimizers are Starburst [40] and Volcano.[28hile the IBM DB2 optimizer [20]
is based on Startburst, the Microsoft SQL-Server optini22} is based on Volcano. The main
difference between the approaches taken by the two is theenamwhich alternative plans are
generated. Starburst generates the plans bottom-up -sthest plans for all expressions bn
relations are computed before expressions on morefthalations are considered. On the other
hand, Volcano generates the plans top-down — that is, it ct@sghe best plans for only those
expressions ot relations which are included in some expression on grehger/ relations
being expanded.

The need for effective optimization of large, complex gesfinas brought focus to the inti-
mately related problem of statistics and cost estimatidmis & because the cost-based decisions
of an optimizations can only be as reliable as its estimdtdseccost of the generated plans.

A plan is composed of operators (e.g. select, join, sortg ddst of an operator is a function
of the statistical summary of its input relations, whichludes the size of the relation, and for
each relevant attribute, the number of distinct values efatiribute, the distribution of these
attribute values in terms of an histogram, etc. While theieaxy of these statistics is crucial —
the plan cost estimate may be sensitive to these statistiesmaintenance of these statistics may
be very time consuming. The problem of efficiently maintaghreasonably accurate statistics
has received much attention in the literature; for the tketaie refer to the paper by Poosala et
al. [41].

Even if we have perfect information about the input relagianodeling the cost of the oper-

ators could still be very difficult. This is because a readtmaost model must take into account

2.2. DESIGN OF A COST-BASED QUERY OPTIMIZER 15

the affect of, for example, the buffering of the relationshie database cache, access patterns of
the inputs, the memory available for the operator’'s exeoutetc. Moreover, usually the plans
execute in a pipeline —that is, multiple operators may etessinultaneously. Given the system’s
bounded resources like CPU and main memory, the executitiresé operators may interfere,
affecting the execution cost of the plan. There has been mesdarch on cost modeling; an
authoritative, very comprehensive survey by Graefe [2@Yles the details of the prior work in

this area.

2.2 Design of a Cost-based Query Optimizer

In this section, we describe the design of a cost-basedftranational query optimizer, based
on the Volcano optimizer [23].

There are two main advantages of using Volcano as the basigrafork. The first is that
\Volcano has gained widespread acceptance in the industaystete-of-the-art optimizer; the
optimizers of Microsoft SQL Server [22] and Tandem Serve®\BQL Product [6] are based on
Volcano. Our work is easily integrable into such systemsco8dly, the Volcano optimization
framework is not dependent on the data model or on the exacotodel. This makes Volcano
extensible to new data models (e.g. use of Volcano optimoizdbr object oriented systems was
reported in [4]) and for new transformations, operatorsiamgementations.

The implementation of this query optimizer worked out toward 17,000 lines of C++ code.
Later chapters in this thesis, describing our work on nuuiry optimization, query result
caching and materialized view selection and maintenanadd bn the framework described
in this section. Each of these extensions could be impleadeintabout another 3,000 lines of

C++ code.

2.2.1 Overview

Figure 2.1 gives an overview of the optimizer. Given the inguery, the optimizer works in

three distinct steps:

16

CHAPTER 2. TRADITIONAL QUERY OPTIMIZATION

Physical Plan Space

F P11
Logical Plan Space

3 P

3 y QLT |

/ _ i

(Input Query)Q — > P*(Best Plan)
/' Pmi
—’_i/,’- Pm2
} ™ Pmn
Step 1 Step 2 Stép 3
Logical Plan Space GeneratioRhysical Plan Space Generation Best Plan Search

Figure 2.1: Overview of Cost-based Transformational Qu@pyimization

1. Generate all the semantically equivalent rewritings of ithygut query.

In Figure 2.10+, ..., Q,, are the various rewritings of the input qu&py These rewritings

are created by applying “transformations” on differenttpaf the query; a transformation
gives an alternative semantically equivalent way to compl given part. For example,
consider the queryA X (B X (). Thejoin commutativitytransformation says that

(B X C) is semantically equivalent t@' X B), giving (A X (C X B)) as a rewriting.

Anissue here is how to manage the application of the tram&ftion so as to guarantee that
all rewritings of the query possible using the given set ah&formations are generated, in

as efficient way as possible.

For even moderately complex queries, the number of posshletings can be very large.
So, another issue is how to efficiently generate and compeagtresent the set of rewrit-

ings.

This step is explained in Section 2.2.2.

2. Generate the set of executable plans for each rewriting ige@eé in the first step.

Each rewriting generated in the first step serves &anglatethat defines the order in

2.2. DESIGN OF A COST-BASED QUERY OPTIMIZER 17

which the logical operations (selects, joins, aggregaes)o be performed — how these
operations are to be executed is not fixed. This step gesdragossible alternative exe-
cution plans for the rewriting. For example, the rewriting¥ (C X B)) specifies thatl

is to be joined with the result of joining with B. Now, suppose the join implementations
supported are nested-loops-join, merge-join and hash-jdien, each of the two joins can
be performed using any of these three implementationg)givine possible executions of

the given rewriting.

In Figure 2.1,P,4, ..., Py are thek alternative execution plans for the rewritifyg, and

P, ..., Py, are then alternative execution plans fg},,.

The issue here, again, is how to efficiently generate thesgad also how to compactly

store the enormous space of query plans.

This step is explained in Section 2.2.3

3. Search the plan space generated in the second step for thse pen”.

Given the cost estimates for the different algorithms thmglement the logical operations,
the cost of each execution plans is estimated. The goal ®6thp is to find the plan with

the minimum cost.

Since the size of the search space is enormous for most guéres core issue here is
how to perform the search efficiently. The Volcano searcbralgm is based on top-down

dynamic programming (“memoization”) coupled with brarerid-bound.

Details of the search algorithm appear in Section 2.2.4.

For clarity of understanding, we take the approach of exegune step fully before moving
to the next in the rest of this chapter. This is the approael will be extended on in the
later chapters. However, this may not be the case in pradtigarticular, the original Volcano
algorithm does not follow this execution order; Volcangipeoach is discussed in Section 2.2.5.

In order to emphasize the “template-instance” relatigndt@tween the rewritings and the

execution plans, we hereafter refer to thentoggcal plansandphysical plansespectively.

18 CHAPTER 2. TRADITIONAL QUERY OPTIMIZATION

2.2.2 Logical Plan Space

The logical plan space is the set of all semantically egaivdbgical plans of the input query. We
begin with a description of thiegical transformationsised to generate the logical plan space.
The logical plan space is typically very large; a compactesentation of the same, called the
Logical Query DAGrepresentation is described next. Further, the algorithgenerate all the
logical plans possible given the set of transformations)gactly represented as a Logical Query
DAG, is presented. Lastly, we give the rationale of choo&iolgano optimization as the basis

of our work.

Logical Transformations

The logical transformations specify the semantic equivadebetween two expressions to the

optimizer. Examples of logical transformations are:
¢ Join Commutativity{A X B) — (B X A)
e Join Associativity((A X B) X C) — (A X (B X ()

e Predicate Pushdown:(A Xy, B) — (A Xy oy (B)) if all attributes used i’ are from

B.

The complexity of the logical plan generation step, desttibelow, depends on the given set
of transformations; an unfortunate choice of transfororaican lead to the generation of the
same logical plan multiple times along different paths. ldPédroft et al. [39] present a set of
transformations that avoid this redundancy.

The complete list of logical transformations used in oulroer is given in Appendix B.

Logical Query DAG Representation

A Logical Query DAG(LQDAG) is a directed acyclic graph whose nodes can be divideo
equivalence nodeand operation nodesthe equivalence nodes have only operation nodes as

children and operation nodes have only equivalence nodgsldsen.

2.2. DESIGN OF A COST-BASED QUERY OPTIMIZER 19

ABC . (root equivalence node)

Figure 2.2: Logical Query DAG for Ad B X C. Commutativity not shown; every join node has

another join node with inputs exchanges, below the samealguice node.

An operation node in the LQDAG corresponds to an algebragrain, such as joinX),
select §), etc. It represents the expression defined by the opertidits inputs. An equivalence
node in the LQDAG represents the equivalence class of lbgijaressions (rewritings) that
generate the same result set, each expression being defiredtld operation node of the
equivalence node, and its inputs. An important propertyhefltQDAG is that there are no two
equivalence nodes that correspond to the same result salgdrithm for expansion of an input
guery into its LQDAG is presented later in this section.

Figure 2.2 shows a LQDAG for the query!A B X C. Note that the DAG has exactly one
equivalence node for every subset{of, B, C'}; the node represents all ways of computing the
joins of the relations in that subset. Though the LQDAG i3 #wample represents only a single

query AX B X C, in general a LQDAG can represent multiple queries in a@lfsted manner.

Logical Plan Space Generation

The given query tree is initially represented directly ie tQDAG formulation. For example,
the query tree of Figure 2.3(a) for the quéry X B X (') is initially represented in the LQDAG
formulation, as shown in Figure 2.3(b). The equivalenceesaale shown as boxes, while the
operation nodes are shown as circles.

The initial LQDAG is then expanded by applying all possilsentsformations on every node
of the initial LQDAG representing the given query. In the exde, suppose the only transfor-

mations possible are join associativity and commutativityen the plangA X (B X C')) and

20 CHAPTER 2. TRADITIONAL QUERY OPTIMIZATION

(@) Initial Query (b) DAG representation of query (c) Expanded DAG after transformations
Figure 2.3: Logical Plan Space Generation foxkA X C.

((A X C) X B), as well as several plans equivalent to these modulo contivitjtaan be ob-
tained by transformations on the initial LQDAG of Figure @B These are represented in the
LQDAG shown in Figure 2.3(c).

Procedure EPANDDAG, presented in Figure 2.4, expands the input query’s LGQHAs in
Figure 2.3(b)) to include all possible logical plans for theery (as in Figure 2.3(c)h one pass
— that is, without revisiting any node. The procedure appie transformations to the nodes in
a bottom-up topological manner — that is, all the inputs obdenare fully expanded before the
node is expanded.

In the process, new subexpressions are generated. Somesef sbbexpressions may be
equivalent to expressions already in the LQDAG. Furthdoegpressions of the query may be
equivalent to each other, even if syntactically differérdr example, suppose the query contains
two subexpressions that are logically equivalent but sytiw@lly different (e.g.{(R X S) X T),
and(R X (S X T))). Before the second subexpression is expanded, the QueBnmAild con-
tain two different equivalence nodes representing the wib@spressions. Whenever it is found
that by applying a transformation to an expression in onévatgnce node leads to an expression
in the other equivalence node (in the above example, afidyiag join associativity), the two
equivalence nodes are deduced as representing the satanesunified that is, replaced by a
single equivalence node. The unification of the two equivadenodes may cause the unification
of their ancestors. For example, if the query had the sulessping A X ((R X S) X T)) and
(ANX (R X (S XT))),then the unification of the equivalence nodes contaififig< S) X T')

2.2. DESIGN OF A COST-BASED QUERY OPTIMIZER 21

Procedure EXPANDDAG
Input: eq, the root equivalence node for the initial LQDAG
Output: The expanded LQDAG
Begin
for each unexpanded logical operation node op € child(eq)
for each inpEq € input(op)
EXPANDDAG(inpEq)
apply all possible logical transformations to op
/* may create new equivalence nodes */
for each resulting logical expression £
if B ¢ LQDAG
add E’s root operation node to child(eq)
else if the previous instance E’ € eq’ where eq’ # eq
unify eq’ with eq /* may trigger further unifications */
mark op as expanded
End

Figure 2.4: Algorithm for Logical Query DAG Generation

and(R M (S X T)) will cause the equivalence nodes containing the above tlexquressions
to be unified as well. Thus, the unification has a cascadiregefip the LQDAG.

In order to efficiently check the presence of a logical exgimesin the LQDAG, a hash table
is used. Recall that an expression is identified by a logipatator (called theoot operato) and
its input equivalence nodes; for example, the expressior (B X (') is identified by the root
operator< and its two input equivalence nodes corresponding emd (B X C'). As such, the
has value of an expression is computed as a function of theitypf the root operator and the
id of its input equivalence nodes.

A logical space generation algorithm is calledmpleteiff it acts on the initial LQDAG
for a query@ and expands it into an LQDAG containing all possible logipkins possible
using the given set of transformations. We end this desonptith a proof of completeness of

EXPANDDAG.
Theorem 2.2.1 EXPANDDAG is complete.

Proof: Let D, denote the initial LQDAG for the quer§). EXPANDDAG acts onD, and, by

applying the given set of transformations as shown in theig@eode in Figure 2.4, generates

22 CHAPTER 2. TRADITIONAL QUERY OPTIMIZATION

a final expanded LQDA®@”. Now, consider any complete algorithm, calledM@PLETE, that
acts onD, and generates the LQDAG®. We show that all plans contained#f’ are contained
in DF, thus proving the theorem.

We trace the expansion @i, into D¢ by COMPLETE as follows:
Do 25 Dy 2 Dy 25 ... Iy D, = D°

where-= denotes the application of the transformatigntransforming a subpla®?'? below
the equivalence nodg in D;_; to a new semantically equivalent pl&f” belowe;, resulting
in D;.

Let k& be such that for all < &, all plans inD; are contained iD¥, but there exists a plan in
Dy, sayP, that is not contained iw”. We show, by contradiction, that suctk @annot exist.

Clearly, the planP*”, generated by the application of transformatigrto the subpla?'¢
of e, during the execution of GMPLETE, is a subplan of?. Let P’ denote the plan obtained
by replacing the subplaf of P by P?!4; P’ is contained inD,,_,. But then, by the choice
of k above,P’ is also contained itD®. This implies that (a) the subplaf’'® is present below
ex in DE, and that (b) the subplafR** is not present below; in D¥ — otherwise > would be
present inD¥, which a contradiction due to the choicelofNext, we use (b) to contradict (a).

When EXPANDDAG visits ¢, it applies all the available transformations, includifig to
the plans belowe, till no further new plans are generated. Singg" is not generated in this
exercise, this implies tha®?'? is also not present below; after it has been expanded as above.
Now, because EPANDDAG visits nodes in a bottom-up topological manner, neithanor any
of its descendents are visited later during the expansibis.ifplies that’?'? is never generated
during the execution of ®2ANDDAG and is therefore not present belewin D”, leading to a

contradiction.O

2.2.3 Physical Plan Space

The plans represented in the Logical Query DAG are only atletract, semantic level and,

in a sense, provide “templates” that guarantee semantieatoess for the physical plans. For

2.2. DESIGN OF A COST-BASED QUERY OPTIMIZER 23

instance, the logical plafiA X B) X ') only specifies the order in which the relations are to be
joined. It does not specify the actual execution in termdefalgorithms used for the different
operators; for example,d can be either a nested-loops join, a merge-join, an indegsted-
loops or a hash-join. As such, the cost for these plans isfungde Further, the logical plan does
not consider th@hysical propertie®f the results, like sort order on some attribute, into actou
since results with different physical properties are lafiicequivalent.

However, the physical properties are important since (ay tffect the execution costs of
the algorithms (e.g., the merge join does not need to soinptst if it is already sorted on the
appropriate attribute), and (b) they need to be taken inbowat when specified in the query
using theORDER BY clause.

In this section, we give the details of how the physical plpace for a query is generated.
Since the physical plan space is very large, a compact repeson for the same is needed.
We start with a description of the representation used inraplementation, called thehysical
Query DAG This representation is a refinement of the Logical Query BRAQDAG) represen-
tation for the logical plan space described in Section 2.ZRis is followed by a description
of the algorithm to generate the physical plan space in thysiPal Query DAG representation
given the LQDAG for the input query.

Physical Query DAG Representation

The Physical Query DAG (PQDAG) is a refinement of the LQDAGué&Bian equivalence node
in the LQDAG, and a physical properpyrequired on the result @f, there exists an equivalence
node in the PQDAG representing the set of physical plans dorputing the result oé with
exactlythe physical property. A physical plan in this set is identified by a child operatiate
of the equivalence node (called the physical plan’s rootatpen node), and its input equivalence
nodes.

For contrast, we hereafter term the equivalence nodes ih@i2AG logical equivalence
nodesand the equivalence nodes in the PQDAI@/sical equivalence nodeSimilarly, we here-

after term the operation nodes in the physical plansgsical operation noddas disambiguate

24 CHAPTER 2. TRADITIONAL QUERY OPTIMIZATION

[A B, null] [AB,sortAX]

SOrt<A.X>

Nested Loops Joi

Merge Join

[A null] SOMSAX>[A sotAX] - [B,null] SOM<B.Y>B sort B.Y]

Figure 2.5: Physical Query DAG fot X B

from the logical operation nodes in the logical plans.

The physical operation nodes can either beagprithmsfor computing the logical opera-
tions (e.g., the algorithm merge join for the logical oprnaix), or (b) enforcerghat enforce the
required physical property (e.g., the enforcer sort to mefohe physical property sort-order on
an unsorted result).

Figure 2.5 illustrates the PQDAG fdrd X4 x_py B). The dotted boxes are the logical
equivalence nodes, labelled alongside with the correspgneélational expressions. The solid
boxes within are the corresponding physical equivalencesdor the respective physical prop-
erties stated alongside. The circles denote the physi@htgrs: those within the dotted boxes
are the enforcers (sort operations), while those withirdidmhed box are the algorithms (nested

loops join and merge join) corresponding to the logical mo@rator as shown.

Physical Property Subsumption. Figure 2.5 shows two physical equivalence nodes corre-
sponding to the resu(td X B): one representing plans to compuyte X B) with no sort order,
and the other representing plans to comguteé< B) with the result sorted oA.X . Clearly, any
plan that compute&A X B) sorted ond.X can be used as a plan that compuytés< B) with

no sort order.

In general, we say that the physical equivalence nodebsumeshe physical equivalence

2.2. DESIGN OF A COST-BASED QUERY OPTIMIZER 25

nodee’ iff any plan that computescan be used as a plan that computethis defines gartial
orderon the set of physical equivalence nodes correspondingitea pgical equivalence node.

While finding the best plan for the physical equivalence nofiee Section 2.2.4), the pro-
cedure MINDBESTPLAN not only looks at the plans below but also at plans below physical
quivalence nodes that subsume, and returns the overall cheapest plan. To save on expensive
physical property comparisons during the search, the palysguivalence nodes corresponding
to the same logical equivalence node are explicitly stmectinto a DAG representing the partial
order.

Furthering the terminology, we say that the physical edaivee node strictly subsumethe
physical equivalence nodé iff ¢ subsumeg’, bute ande’ are distinct. Finally, we say that
immediately subsumesiff e strictly subsumes’ but there does not exist another distinct node

e’ such that strictly subsumes” ande” strictly subsumes'.

Physical Plan Space Generation

The PQDAG for the input query is generated from its LQDAG gdrtocedure RYSDAGGEN
listed in Figure 2.6.

Given a subgoale, p) wheree is a logical equivalence node in the LQDAG, and physical
property, PiySDAGGEN creates a physical equivalence node correspondiiig f9 if it does
not exist already, and then populates it with the physicahglthat compute with the given
physical property. Depending on the root operation nodedyan algorithm or an enforcer, the
corresponding physical plan is called aigorithm planor anenforcer plarrespectively.

An algorithm plan is generated by taking a logical plandais a template and instantiating it
as follows. The algorithm that forms the root of the physical plan implements the lalgipera-
tion o at the root of the logical plan, generating the result withghysical property. The inputs
of a are the physical equivalence nodes returned by recursreeations of RYSDAGGEN on
the respective input equivalence nodes wfith physical properties as required by

For each enforcef that enforces the physical propegtyan enforcer plan is generated with

f as the root operation node. The input ois the physical equivalence node returned by a

26 CHAPTER 2. TRADITIONAL QUERY OPTIMIZATION

Procedure PHYSDAGGEN
Input: e, a equivalence node in the Logical Query DAG,
p, the desired physical property
Output: n,, the equivalence node in the Physical Query DAG for e with physical property p,
populated with the corresponding plans
Begin
if an equivalence node n, exists for e with property p
return it
create an equivalence node n,,
for every operation node o below ¢
for every algorithm « for o that guarantees property p
create an algorithm node o, under n,,.
for each input ¢ of e
let o; be the ith input
let p; the physical property required from input ¢ by algorithm «
set input 7 of o, = PHYSDAGGEN(0;, p;)
for every enforcer f that generates property p
create an enforcer node o; under n,,
set the input of oy = PHYSDAGGEN(e, null)

I* null denotes “no physical property requirement” */
return n,,

End

Figure 2.6: Algorithm for Physical Query DAG Generation

2.2. DESIGN OF A COST-BASED QUERY OPTIMIZER 27

recursive invocation of PysDAGGEN on the same equivalence node with no required physical
property.

In the PQDAG of Figure 2.5, the logical equivalence ngdeX , x_py B) is refined into
the two physical equivalence nodes — one for no physicalgtg@mnd the other for sort order
on A.X. The logical join instantiated as nested loops join fornesrtot of the algorithm plan
for the former. For the latter, the same logical join instzietd as merge-join forms the root
of the algorithm plan while the sort operator forms the robthe enforcer plan. From the
PQDAG shown, it is apparent that the nested loops join regquip physical property on its input
relationsA and B, while the merge join requires its input relatioAsand B sorted on4..X and
B.X respectively.

The entire PQDAG is generated by invoking¥ssDAGGEN on the root of the input query’s
LQDAG, with the desired physical properties of the query.

2.2.4 The Search Algorithm

Each plan in the PQDAG has a cost computed recursively byhgdtde local cost of the physical
operator at the root to the cost of the subplans of each afjitsts! This section describes how
Volcano determines the plan with the least cost from theespégplans represented in the Phys-
ical Query DAG generated as above. The search algorithmsiscban dynamic programming —
specifically, it uses the technique miemoizatiorwherein the best plans for the nodes are saved
after the first computation, and reused when needed later.

We assume that the set of enforcers being considered aretisaicin any best plan, no
two enforcers can be cascaded together; hence the planemithcer cascades need not be
considered while searching for the best plan. This may ndtueealways. For example, the
index enforcer, that takes a sorted input and builds a cledtedex on the same, requires that
its input be sorted on the relevant attribute, and the best fdr the input may be an enforcer
plan with the sort operator as the root. We handle this bydhicing acompositeenforcer for

each possible cascade — in the above case, the sort-indeadeais handled by introducing a

1The formulae used to estimate the operator costs appeardarniix C.

28 CHAPTER 2. TRADITIONAL QUERY OPTIMIZATION

Procedure FINDBESTPLAN
Input: e, a physical equivalence node in the PQDAG
Output: The best plan for e
Begin

bestEnfPlan = FINDBESTENFPLAN (e)

bestAlgPlan = FINDBESTALGPLAN (e)

return the cheaper of bestEnfPlan and bestAlgPlan
End

Procedure FINDBESTENFPLAN
Input: e, a physical equivalence node in the PQDAG
Output: The best enforcer plan for e
Begin
if best enforcer plan for e is present /* memoized */
return best enforcer plan for e
bestEnfPlan = dummy plan with cost +oc
for each enforcer child op of e
planCost = cost of op
for each input equivalence node e; of op
inpBestPlan = FINDBESTALGPLAN (e;)
planCost = planCost + cost of inpBestPlan
if planCost < cost of bestEnfPlan
bestEnfPlan = plan rooted at op
memoize bestEnfPlan as best enforcer plan for e
return bestEnfPlan
End

Procedure FINDBESTALGPLAN
Input: e, a physical equivalence node in the PQDAG
Output: The best algorithm plan for e
Begin
if best algorithm plan for e is present /* memoized */
return best algorithm plan for e
bestAlgPlan = dummy plan with cost 400
for each algorithm child op of e
planCost = cost of op
for each input equivalence node e; of op
inpBestPlan = FINDBESTPLAN (e;)
planCost = planCost + cost of inpBestPlan
if planCost < cost of bestAlgPlan
bestAlgPlan = plan rooted at op
for each equivalence node ¢’ that immediately subsumes e
subsBestAlgPlan = FINDBESTALGPLAN(¢')
if cost of subsBestAlgPlan < cost of bestAlgPlan
bestAlgPlan = subsBestAlgPlan
memoize bestAlgPlan as best algorithm plan for e
return bestAlgPlan
End

Figure 2.7: The Search Algorithm

2.2. DESIGN OF A COST-BASED QUERY OPTIMIZER 29

sort-cum-index enforcer. The space of enforcer plans géeerusing the resulting enforcer set
contains the best enforcer plan.

Procedure NDBESTPLAN, shown in Figure 2.7, finds the best plan for an equivalence
nodee in the PQDAG. MNDBESTPLAN calls the proceduresiRDBESTENFPLAN and HND-
BESTALGPLAN that respectively find the best enforcer plan and algoritlam fore, and returns
the cheaper of the two plans.

FINDBESTENFPLAN looks at each enforcer child ef and constructs the best plan for that
enforcer by taking the best algorithm plan for its input pbgequivalence node. The cheapest
of these plans is the best enforcer plandor

FINDBESTALGPLAN looks at each algorithm child af, and builds the best plan for that
algorithm by taking the best plan for each of its input phgkexjuivalence nodes, determined by
recursive invocations ofINDBESTPLAN. Further, it looks at the best plan for each immediately
subsuming node (see Section 2.2.3), determined recwsiVak cheapest of all these plans is
the best algorithm plan far.

Observe that subsuming physical equivalence nodes arédeoad only while searching for
the best algorithm plan (inIRKDBESTALGPLAN) and not while searching for the best enforcer
plan (in AENDBESTENFPLAN). This is because an enforcer plan for the subsuming pHysica
equivalence node has a cost at least as much as the bestkeepiart for the subsumed physical

equivalence node.

Branch-and-Bound Pruning. Branch-and-bound pruning is implemented by passing a@a extr
parameter, theost limit, which specifies an upper limit on the cost of the plans to siciered.
The cost limit for the root equivalence node is initially mfy. When a plan for a physical
equivalence node with cost less than the current cost limit is found, its castdimes the new
cost limit for future search of the best plan for

The cost limit is propagated down the DAG during the seardh falips prune the search
space as follows. Consider the invocation afiBBESTPLAN on the physical equivalence node

e. In the call to FNDBESTENFPLAN, the cost limit for the input of the enforcep is the cost

2This is assuming that, for example, cost of sortiign A. X is at most that of sorting it 0f4. X, A.Y")

30 CHAPTER 2. TRADITIONAL QUERY OPTIMIZATION

limit for e minus the local cost op. Similarly, in FNDBESTALGPLAN invoked one, when
invoking ANDBESTPLAN on the:th input of an algorithm node childp of e, the cost limit for
the plan for theth input is the cost limit foe minus the sum of the costs of best plans for earlier
inputs toop as well as the local cost of computing. The recursive plan generation occurs only
till the cost limitis positive; when the cost limit becomesmpositive, the current plan is pruned.
If all the plans fore are pruned for the given cost limit, then the cost limit is\wwéo bound on the
best plan for — this lower bound is used to prune later invocationg aith higher cost limits.
Branch-and-bound pruning is not shown in the pseudocodd-fepBESTPLAN in Fig-

ure 2.7, for sake of simplicity.

2.2.5 Differences from the Original Volcano Optimizer

In this section, we point out the major differences betweanoptimizer and the Volcano opti-

mizer as described in [23].

Separation of Logical/Physical Plan Space Generation andearch

Our approach in this chapter has been to assume that thestieygseof (1) LQDAG generation,
(2) PQDAG generation, and (3) search for the best plan areutx@ one after another, inde-

pendently. In other words, the optimization task goes “tledirst” on the graph of Figure 2.1

— given the input query, first all its rewritings@;, . . ., @,, are generated, then all its execu-
tion plansPy4, ..., P,, are generated, and finally the best execution gtans identified and
returned.

This may not be the case in reality, where these three stepsntesleave. For example, on
the other extreme, the optimizer may choose to go “deptti-brsthe graph of Figure 2.1. First
@, is generated, then its corresponding execution pRps . ., Py, are generated and the best
plan so far identified. Then, the next rewritidg is generated, folowed by its corresponding
execution plans and the best plan so far is updated, if arlttie is seen. This repeats for all the
successive rewritings upt@,,, and finally the overall best plan is returned. This is esaliythe

\olcano algorithm, as described in [23]. This approach magdivantageous when the complete

2.2. DESIGN OF A COST-BASED QUERY OPTIMIZER 31

space of plans is too big to fit in memory, since here the revgstand the plans that have already

been found to be suboptimal can be discarded before the ehd afgorithm.

Unification of Equivalent Subexpressions

The original Volcano algorithm does not generate the uniti@DAG as explained in Sec-
tion 2.2.2. Instead, the generated LQDAG may have multipégchl equivalence nodes rep-
resenting the same logical expressions.

For example, consider the queiyd X B X C') U (B X C' X D)). The Volcano optimizer
does not consider the two occurence®dds refering to the same relation. Similarly for the two
occurences of’. Instead each occurrence Bfor C'is considered a distinct relation; effectively,
the query is interpreted 464 X B X C) U (B’ X C' X D)) whereB’ andC’ are clones oB
andC respectively. This does not alter the search space, sioggdekecution the two accesses
of B (or C') are going to be independent, anyway. However, by doingtdails to recognise
that the two subexpressions expressipAsX C') and (B’ X C’) are identical, and therefore
optimizes them independently.

In our version of Volcano, since the equivalent subexpogssare unified (see Section 2.2.2),
the subexpression is going to be optimized only once and é¢ise idan reused for both of its
occurrences. In general, the common subexpression maytse complex, and unification may

reduce the optimization effort significantly.

Separation of the Enforcer and Algorithm Plan Spaces

Our version of Volcano memoizes the best algorithm plan dsagethe best enforcer plan for
each physical equivalence node. On the other hand, Voldanessonly the overall best plan.
While searching for the best plan for, séy, X4 x—py B) sorted onA. X, Volcano explores
the enforcer plan with the sort operation.dnX as the root and the equivalence node for unsorted
result as input. In order to determine the best plan for tipsii node, in the naive case, it visits
the equivalence nodes that subsume the same. In partiduiplores the equivalence node

for the sort orderd. X as well, landing back where it had started and thus gets mtofanite

32 CHAPTER 2. TRADITIONAL QUERY OPTIMIZATION

recursion. Volcano tries to avoid this by passing down aregxarameter, thexcluding physical

property, to the search function. In the above example, the excluglhygical property is “sort

order onA. X" and helps the recursive call to determine the best planHerunsorted result
figure that the equivalence node with sort order4X should not be explored while looking
for the best plan.

However, this approach has its own problems. The best planftund for the equivalence
node with no sort order is subject to the exclusion of the géigsical property and may not
be its overall best plan; in particular, the merge-join dianthe result that is present below the
equivalence code for sort orddr X may be the overall best plan for the unsorted result, but has
not been considered above. Thus, at each equivalence hedmptimizer needs to memoize the
best plan for each excluded physical property apart fromotrezall best plan — a significant
amount of book-keeping.

Our version obviates the above problem, as discussed rearlection 2.2.4 by observing
that one need only consider algorithm plans as input to aoresf while looking for the best
enforcer plan. While searching for the best plan(fdrX B) sorted onA. X, the enforcer plan
considered only cosists of the sort operation over the bgstithm plan for the unsorted result.
In general, it can be seen that in Figure 2.7, neitheriaDIBESTPLAN, FINDBESTENFPLAN
and ANDBESTALGPLAN are ever invoked more than once on the same equivalence thode,

proving that the recursion always terminates.

2.3 Summary

In this chapter, we first gave a brief overview of the issudsaditional query optimization, and
pointed out the important research and development workignarea. We then gave a detailed
description of the design of our version of the Volcano quegtmizer, which provides the basic
framework for the work presented in this thesis. Later chipof this thesis modify this basic
optimizer, enabling it to perform multi-query optimizatioquery result cache management and
materialized view selection and materialization respebyi

For sake of simplicity, the later chapters restrict to thgidal plan space. The Query DAG

2.3. SUMMARY 33

refered hereafter will refer to the Logical Query DAG, uslexplicitly stated otherwise. How-

ever, the descriptions therein can be easily extendednmstef the physical plan space.

Chapter 3
Multi-Query Optimization

This chapter addresses the problem of optimizing a set of queries expipihe presence of
common sub-expressions among the queries; this problesfeised to asnulti-query optimiza-
tion. Common subexpressions are possible eviemn a single query; the techniques we develop
deal with such intra-query common subexpressions as well.

Traditional query optimizers are not appropriate for ofing queries with common sub
expressions, since they make locally optimal choices, aag miss globally optimal plans as

the following example demonstrates.

Example 3.0.1Let @; and(@, be two queries whose locally optimal plans (i.e., individoest
plans) are(R X S) X P and (R X T) X S respectively. The best plans fg); and Qs
do not have any common sub-expressions, hence they cararet ldbwever, if we choose the
alternative planR X S) X T (which may not be locally optimal) fof),, then, it is clear that
R X S is a common sub-expression and can be computed once andnusethiqueries. This
alternative with sharing o2 X S may be the globally optimal choice.

On the other hand, blindly using a common sub-expressionmaggiways lead to a globally
optimal strategy. For example, there may be cases wherestefgoining the expressioR X S

with 7" is very large compared to the cost of the p{@ X 7') X S; in such cases it may make

LJoint work with S. Seshadri, S. Sudarshan and Siddhesh BHeds of this chapter appeared in SIGMOD
2000 [47]

35

no sense to reusk X S even if it were availabled

Example 3.0.1 illustrates that the job of multi-query optien, over and above that of ordi-
nary query optimizer, is to (i) recognize the possibilittdshared computation, and (ii) modify
the optimizer search strategy to explicitly account forredacomputation and find a globally
optimal plan.

While there has been work on multi-query optimization in gast ([54, 56, 53, 13, 38)),
prior work has concentrated primarily on exhaustive alypons. Other work has concentrated
on finding common subexpressions as a post-phase to quemyizgiion [18, 59], but this gives
limited scope for cost improvement. The search space fotifguéry optimization is doubly
exponential in the size of the queries, and exhaustiveesgfieg are therefore impractical; as a
result, multi-query optimization was hitherto consideted expensive to be useful. We show
how to make multi-query optimizatiopractical, by developing novel heuristic algorithms, and
presenting a performance study that demonstrates theitigabbenefits.

We have decomposed our approach into two distinct tasksre¢ggnize possibilities of
shared computation (thus essentially setting up the sespabe by identifying common sub-
expressions), and (ii) modify the optimizer search striategexplicitly account for shared com-
putation and find a globally optimal plan. Both of the abowksaare important and crucial for
a multi-query optimizer but arerthogonal In other words, the details of the search strategy do
not depend on how aggressively we identify common sub-espyas (of course, the efficacy of
the approach does).

The rest of this chapter is structured as follows: We desdrdw to set up the search space for
multi-query optimization in Section 3.1. Next, we presdmee heuristics for finding the globally
optimal plan. Two of the heuristics we present, Volcano-3id ®olcano-RU are lightweight
modifications of the Volcano optimization algorithm, and described in Section 3.2. The third
heuristic is a greedy strategy which iteratively picks thbexpression that gives the maximum
benefit (reduction in cost) if it is materialized and reudéd; strategy is covered in Section 3.3.
Our extensions to create indexes on intermediate relatiodsnested queries are discussed in

Sections 3.5. We describe the results of our performanady stuSection 3.6. Section 3.7

36 CHAPTER 3. MULTI-QUERY OPTIMIZATION

discusses related work. We summarize the chapter in Se&&on

3.1 Setting Up The Search Space

As we mentioned earlier, the job of a multi-query optimizeto (i) recognize possibilities of
shared computation (thus essentially setting up the sesgpabe by identifying common sub-
expressions) and (ii) modify the optimizer search strateggxplicitly account for shared com-
putation and find a globally optimal plan. Both of the abowksaare important and crucial for
a multi-query optimizer but arerthogonal In other words, the details of the search strategy do
not depend on how aggressively we identify common sub-espyas (of course, the efficacy of
the strategy does). We emphasize the search strategy cemtporthis thesis.

To apply multi-query optimization to a batch of queries, tlueries are represented together
in a single Query DAG, sharing subexpressions (ref. Se@i@r?). To make the Query DAG
rooted, a pseudo operation node is created, which doesngothut has the root equivalence
nodes of all the queries as its inputs. We extend the Query Dé&eration algorithm of Sec-
tion 2.2.2 to aid multi-query optimization by introducisgbsumption derivationghich identify
and add more CSEs into the Query DAG, thus increasing thapatef sharing within the plans.

For example, suppose two subexpressiehso,.5(F) ande2: o4.19(FE) appear in the
query. The result ot1 can be obtained from the result e by an additional selection, i.e.,
0a<s(F) = 0acs(0a<10(E)). To represent this possibility we add an extra operatioremod s
in the Query DAG, betweenl ande2. Similarly, givene3: o4_5(F) anded: o4-19(F), we
can introduce a new equivalence nede o 4_5,4-10(E) and add new derivations e ande4
from e5. The new node represents the sharing of accesses betweaamtbelection. In general,
given a number of selections on an expresgignwe create a single new node representing the
disjunction of all the selection conditions.

Similar derivations also help with aggregations. For extayipwe havee6: 4,0Gsum(sa) (F)
ande7: 4eGsum(sa)(£), We can introduce a new equivalence N@8e 4, qgcGsum(sa) (£) and
add derivations 0£6 ande7 from equivalence node8 by further groupbys odno andage.

The idea of applying an operation (suchas. 5 on one subexpression to generate another

3.2. REUSE BASED MULTI-QUERY OPTIMIZATION ALGORITHMS 37

has been proposed earlier [45, 54, 59]. Integrating suctormpinto the Query DAG, as we
do, clearly separates the space of alternative plans gepied by the Query DAG) from the
optimization algorithms. Thereby, it simplifies our opteaiion algorithms, allowing them to

avoid dealing explicitly with such derivations.

Physical Properties. Our search algorithms can be easily understood on the LioQigary
DAG representation (without physical properties), altiflothey actually work on Physical Query
DAGs (ref. Section 2.2.3). For brevity, therefore, we do exqtlicitly consider physical proper-

ties further.

3.2 Reuse Based Multi-Query Optimization Algorithms

In this section we study a class of multi-query optimizat@bgorithms based on reusing results
computed for other parts of the query. We present these essains of the Volcano optimization
algorithm. Before we describe the extensions, in Sectidri3we outline how to extend the basic
Volcano optimization algorithm to find best plans given sorodes in the DAG are materialized.
Sections 3.2.2 and 3.2.3 then present two of our heurigim#hms, Volcano-SH and Volcano-

RU.

3.2.1 Optimization in Presence of Materialized Views

We now consider how to extend Volcano to find best plans, dgivat(expressions corresponding
to) some equivalence nodes in the DAG are materializedr&etecost(m) denote the cost of
reusing the materialized result of, and letM denote the set of materialized nodes.

The only change from the algorithm presented in Chapter 2 fsliows. When computing
the cost of a operation nodg if an input equivalence nodeis materialized (i.e., in\/), use
the minimum ofreusecost(e) andcost(e) when computingost (o). Thus, we use the following
expression instead:

cost(0) = cost of executing) + Y. C(e;)
e; €children(o)

38 CHAPTER 3. MULTI-QUERY OPTIMIZATION

where

Clen) = cost(e;) ife; & M

min(cost(e;), reusecost(e;)) if e; € M

3.2.2 The Volcano-SH Algorithm

In our first strategy, which we call Volcano-SH, the expanB&ds is first optimized using the
basic Volcano optimization algorithm. The best plan coregdubr the virtual root is the com-
bination of the Volcano best plans for each individual quefe best plans produced by the
Volcano optimization algorithm may have common subexpoess Thus the consolidated best
plan for the root of the DAG may contain nodes with more thae parent, and is thus a DAG-
structured plaR. The Volcano-SH algorithm works on the above consolidatest pian, and
decides in a cost based manner which of the nodes to materaid share.

Since materialization of a node involves storing the rasuthe disk, and we assume pipelined
execution of operators, it may be possible for recomputaii@ node to be cheaper than the cost
of materializing and reusing the node. In fact, in our expents in Section 3.6, there were quite
a few occasions when it was cheaper to recompute an expnessio

Let us consider first a naive (and incomplete) solution. @bersan equivalence node
Let cost(e) denote the computation cost of nadd_et numuses(e) denote the number of times
nodee is used in course of execution of the plan. kettcost(e) denote the cost of materializing
nodee. As beforeyeusecost(e) denote the cost of reusing the materialized resuit dhen, we

decide to materialize if
cost(e) + matcost(e) + reusecost(e) x (numuses(e) — 1) < numuses(e) x cost(e)

The left hand side of this inequality gives the cost of malezing the result when first computed,
and using the materialized result thereafter; the rightlrede gives the cost of the alternative
wherein the result is not materialized but recomputed omyewge. The above test can be sim-
plified to

matcost(e)/(numuses(e) — 1) + reusecost(e) < cost(e) (3.1)

2The ordering of queries does not affect the above plan.

3.2. REUSE BASED MULTI-QUERY OPTIMIZATION ALGORITHMS 39

The problem with the above solution is thatmuses(e) andcost(e) both depend on what
other nodes have been materialized, For instance, suppoenis used twice in computing
nodee,, and nodes; is used twice in computing nodg. Now, if no node is materialized; is
used four times in computing. If e; is materializede; gets used twice in computireg, ande,
gets computed only once. Thus, materializingan reduce bothumuses(e;) andcost(es).

In generalnumuses(e) depends on which ancestorsecin the Volcano best plan are ma-
terialized, andcost(e) depends on which descendants have been materialized. fi€qBgi
numuses(e) can be computed recursively based on the number of uses ¢fatieats ofe:
numuses(root) = 1, while for all other nodespumuses(e) = 3 ,cparents(e) U(p), Where
U(p) = numuses(p) if p is not materialized, ane- 1 if p is materialized. Thus, computing
numuses requires us to know the materialization status of parents.ti@ other hand, as we
have seen earlietpst(e) depends on what descendants have been materialized.

A naive exhaustive strategy to decide what nodes in the Yoldzest plan to materialize
is to consider each subset of the nodes in the best plan, angute the cost of the best plan
given that all nodes in this subset are materialized at tlsircomputation; the subset giving the
minimum cost is selected for actual materialization. Utfoately, this strategy is exponential
in the number of nodes in the Volcano best plan, and there$overy expensive; we require
cheaper heuristics.

To avoid enumerating all sets as above, the Volcano-SH i#thigor which is shown in Fig-
ure 3.1, traverses the tree bottom-up. As each equivalesd®ens encountered in the traversal,
Volcano-SH decides whether or not to materiatiz&/hen making a materialization decision for
a node, the materialization decisions for all descendanédready known. When Volcano-SH
IS examining a node, let M denote the set of descendantseahat have been chosen to be
materialized. Based on this, we can comput€ (e) for a nodee, as described in Section 3.2.1.

To make a materialization decision for a nagdewve also need to knowumuses(e). Un-
fortunately,numuses(e) depends on the materialization status of its parents, whkiobt fixed
yet. To solve this problem, the Volcano-SH algorithm usesiaglerestimateumuses™ (e) of
number of uses of. Such an underestimate can be obtained by simply countengumber of

ancestors of in the Volcano best plan. We use this underestimate in ourfeosulae, to make

40 CHAPTER 3. MULTI-QUERY OPTIMIZATION

Procedure VoLCcANO-SH
Input: Consolidated Volcano best plan P for virtual root of DAG
Output: Set of nodes to materialize M, and the corresponding best plan P
Global variable: M, the set of nodes chosen to be materialized
Begin

M=¢

Perform prepass on P to introduce subsumption derivations

Let Croot = COMPUTEMAT SET(700t)

Set Croot = Croot + Y_genr(cost(d) + matcost(d))

Undo all subsumption derivations on P

where the subsumption node is not chosen to be materialized.

return (M,P)

End

Procedure COMPUTEMATSET
Input: e, equivalence node
Output: Cost of computing e
Global variable: M, the set of nodes chosen to be materialized
Begin
If cost(e) is already memoized, return cost(e)
Let operator o, be the child of e in P
For each input equivalence node e; of o,
Let C;= COMPUTEMATSET(e;) // returns computation cost of ¢;
If e; is materialized, let C; = reusecost(e;)
Compute cost(e) = cost of operation o, + Y, C;
If (matcost(e)/(numuses™ (e) — 1) + reusecost(e) < cost(e))
If e is not introduced by a subsumption derivation
add eto M // Decide to materialize e
else if cost(e) + matcost(e) + reusecost(e) x (numuses™ (e) — 1) is less than
savings to parents of e due to introducing materialized e
add eto M // Decide to materialize e
Memoize and return cost(e)
End

Figure 3.1: The Volcano-SH Algorithm

3.2. REUSE BASED MULTI-QUERY OPTIMIZATION ALGORITHMS 41

a conservative decision on materialization.
Based on the above, Wlcano-SH makes the decision on meaatien as follows: node is

materialized if
matcost(e)/(numuses™ (e) — 1) 4+ reusecost(e) < cost(e) (3.2)

Note that here we use the lower boundnuses™ (e) in place ofnumuses(e). Using the lower
bound guarantees that if we decide to materialize a nodesriaktation will result in cost sav-
ings.

The final step of Volcano-SH is to factor in the cost of compgtnd materializing all nodes
that were chosen to be materialized. Thus, to the cost ofgbadoroot computed as above, we
addy",,c s (cost(m) + matcost(m)), whereM is the set of nodes chosen to be materialized.

Let us now return to the first step of Volcano-SH. Note thatlhsic Volcano optimiza-
tion algorithm will not exploit subsumption derivationsjch as derivingr4.5(F) by using
oa<s(0a<10(E)), since the cost of the latter will be more than the former, img will not
be locally optimal.

To consider such plans, we perform a pre-pass, checkingufssusnption amongst nodes
in the plan produced by the basic Volcano optimization atgor. If a subsumption derivation
is applicable, we replace the original derivation by thessumption derivation. At the end of
Volcano-SH, if the shared subexpression is not chosen todterralized, we replace the deriva-
tion by the original expressions. In the above example, énpfepass we replaee,5(E) by
Oa<s(0ac10(E)). If 04<10(F) is not materialized, we replaeey.5(ca<10(E)) by 0 a<5(F).

The algorithm of [59] also finds best plans and then chooseéshvginared subexpressions to
materialize. Unlike Volcano-SH, it does not factor earfigterialization choices into the cost of

computation.

3.2.3 The Volcano-RU Algorithm

The intuition behind Volcano-RU is as follows. Considgr and@, from Example 3.0.1. With
the best plans as shown in the example, naniBIy S) X P and(R X T') X S, no sharing is

42 CHAPTER 3. MULTI-QUERY OPTIMIZATION

Procedure VoLCcANO-RU
Input: Expanded DAG on queries Q1, ..., Q (including subsumption derivations)
Output: Set of nodes to materialize M, and the corresponding best plan P
Begin
N = ¢ Il Set of potentially materialized nodes
For each equivalence node e, Set countle] = 0
Fori=1tok
Compute FB;, the best plan for @);, using Volcano, assuming nodes in N are materialized
For every equivalence node in P,
set count[e] = countle] + 1
If (cost(e) + matcost(e) + countle] * reusecost(e) < (countle] + 1) * cost(e))
/ Worth materializing if used once more
add e to set N
Combine Py,..., P, to get a single DAG-structured plan P
(M,P) = VOLCANO-SH(P) // Volcano-SH makes final materialization decision
End

Figure 3.2: The Volcano-RU Algorithm

possible with Volcano-SH. However, when optimizi@yg, if we realize thatk X S is already
used in in the best plan f@p,; and can be shared, the choice of p{&X S) X T may be found
to be the best fof),.

The intuition behind the Volcano-RU algorithm is therefa® follows. Given a batch of
gueries, Volcano-RU optimizes them in sequence, keepaul wf what plans have already been
chosen for earlier queries, and considering the possibiliteusing parts of the plans. The resul-
tant plan depends on the ordering chosen for the queriesstwmnrto this issue after discussing
the Volcano-RU algorithm.

The pseudocode for the Volcano-RU algorithm is shown in EEddi2. LetQ,,...,Q, be
the queries to be optimized together (and thus under the pamelo-root of the DAG). The
\Volcano-RU algorithm optimizes them in the sequenge. .., Q,. After optimizing @;, we
note equivalence nodes in the DAG that are part of the best Bldor (); as candidates for
potential reuse later. We maintain counts of number of usésese nodes. We also check if
each node is worth materializing, if it is used one more tifiso, we add the node t&/, and
when optimizing the next query, we will assume it to be alddanaterialized.

Thus, in our example earlier in this section, after finding liest plan for the first query, we

3.3. THE GREEDY ALGORITHM 43

check if R M S is worth materializing if it is used once more. If so we adif\f, and assume
it to be materialized when optimizing the second query.

After optimizing all the individual queries, the second paaf Volcano-RU executes Volcano-
SH on the overall best plan found as above to further detetegploit common subexpressions.
This step is essential since the earlier phase of Volcana®®s$ not consider the possibility of
sharing common subexpressions within a single query — atprice nodes are addedXoonly
after optimizing an entire query. Adding a nodeNan our algorithm does not imply it will get
reused and therefore materialized. Instead Volcano-SHemtie final decision on what nodes
to materialize. The difference from directly applying Vato-SH to the result of Volcano opti-
mization is that the pla® that is given to Volcano-SH has been chosen taking sharipgia$
of earlier queries into account, unlike the Volcano plan.

A related implementation issue is in caching of best plartsgnDAG. When optimizingy;
we cache best plans in nodes of the DAG that are descenda@ts ®¥hen optimizing a later
query@;, if we find a node that is not i; (the plan chosen for quer;) for some: < j, we
must recompute the best plan for the node; for, the set ofswdfienay have changed, leading
to a different best plan. Therefore we note with each caclesd fdan which query was being
optimized when the plan was computed; we recompute the glaecaired above.

Note that the result of Volcano-RU depends on the order irclvhueries are considered. In
our implementation we consider the queries in the order irthvthey are given, as well as in
the reverse of that order, and pick the cheaper one of thedswdtant plans. Note that the DAG
is still constructed only once, so the extra cost of consigethe two orders is relatively quite
small. Considering further (possibly random) orderingpassible, but the optimization time

would increase further.

3.3 The Greedy Algorithm

In this section, we present the greedy algorithm, which jolesan alternative approach to the al-
gorithms of the previous section. Our major contributioretiges in how tcefficiently implement

the greedy algorithm, and we shall concentrate on this &spec

44 CHAPTER 3. MULTI-QUERY OPTIMIZATION

In this section, we present an algorithm with a differentroptation philosophy. The algo-
rithm picks a set of nodeS to be materialized and then finds the optimal plan given thdées in
S are materialized. This is then repeated on different set®désS to find the best (or a good)
set of nodes to be materialized.

Before coming to the greedy algorithm, we present some defnsi, and an exhaustive algo-
rithm. As before, we shall assume there is a virtual root rfodthe DAG; this node has as input
a “no-op” logical operator whose inputs are the quefies. . ;.. Let () denote this virtual root
node.

For a set of nodes, let bestcost(Q, S) denote the cost of the optimal plan f@r given
that nodes irt' are to be materialized (this cost includes the cost of comguaind materializing
nodes inS). As described in the Volcano-SH algorithm, the basic otcaptimization algorithm
with an appropriate definition of the cost for nodesSican be used to finbestcost(Q, S).

To motivate our greedy heuristic, we first describe a simgleaastive algorithm. The ex-
haustive algorithm, iterates over each sulssef the set of nodes in the DAG, and chooses the
subsetS,,; with the minimum value fobestcost((), S). Thereforepestcost(Q), Sopt) is the cost
of the globally optimal plan fof).

It is easy to see that the exhaustive algorithm is doubly e&ptal in the size of the initial
guery DAG and is therefore impractical.

In Figure 3.3 we outline a greedy heuristic that attemptgpmaximateS,,, by constructing
it one node at a time. The algorithm iteratively picks nodeshaterialize. At each iteration, the
nodex that gives the maximum reduction in the cost if it is matéed is chosen to be added to
X.

The greedy algorithm as described above can be very exgeds® to the large number
of nodes in the seY and the large number of times the functi@sicost is called. We now
present three important and novel optimizations to thedyre¢dgorithm which make it efficient

and practical.

1. The first optimizationis based on the observation thattitees materialized in the globally

optimal plan are obviously a subset of the ones that are dfasome plan for the query.

3.3. THE GREEDY ALGORITHM 45

Procedure GREEDY
Input: Expanded DAG for the consolidated input query @
Output: Set of nodes to materialize and the corresponding best plan
Begin
X=¢
Y = set of equivalence nodes in the DAG

while (Y # ¢)
L1: Pick the node x € Y with the smallest value for bestcost(Q, {x} U X)
if (bestcost(Q, {x} U X) < bestcost(Q, X))
Y=Y-x; X=XU{x}
else Y = ¢ /* benefit < 0, so break out of loop */
return X
End

Figure 3.3: The Greedy Algorithm

Therefore, it is sufficient to initializ&” in Figure 3.3, with nodes that are shared in some
plan for the query. We call such nod&sarable nodes~or instance, in the expanded DAG
for ; and@, corresponding to Example 3.0.R,X S is sharable whilg? X T is not. We

present an efficient algorithm for finding sharable nodesaictin 3.3.1.

2. The second optimization is based on the observationtieat are many calls ti@stcost
at line L1 of Figure 3.3, with different parameters. A simpf&ion is to process each call
to bestcost independent of other calls. However, observe that the synowtifferencé in
the sets passed as parameters to successive cadlgtost is very small — sucessive calls
take parameters of the forbastcost(Q, {z} U X'), where onlyz varies. It makes sense for
a call to leverage the work done by a previous call. We desaihovel incremental cost
update algorithm, in Section 3.3.2, that maintains theesththe optimization across calls

to bestcost, and incrementally computes a new state from the old state.

3. The third optimization, which we call the monotonicityunistic, avoids having to invoke
bestcost(Q, {r} U X), for everyz € Y, in line L1 of Figure 3.3. We describe this

optimization in detail in Section 3.3.3.

3The symmetric difference of two sef§ and S, consists of elements that are in one of the two but not both;

formally the symmetric difference of sef§ andS, is (S; — S») U (S2 — S1), where— denotes set difference.

46 CHAPTER 3. MULTI-QUERY OPTIMIZATION

3.3.1 Sharability

In this subsection, we outline how to detect whether an edemnce node can be shared in some
plan. The plan tree of a plan is the tree obtained from the D&@Esired plan, by replicating
all shared nodes of the plan, to completely eliminate shafline degree of sharing of a logical
equivalence node in an evaluation pl&ns the number of times it occurs in the plan treefof
Thedegree of sharingf a logical equivalence node in an expanded DAG is the maximoithe
degree of sharing of the equivalence node amongst all ev@hyalans represented by the DAG.
A logical equivalence node sharableif its degree of sharing in the expanded DAG is greater

than one.

We now present a simple algorithm to compute the degree afhghaf each node and thereby
detect whether a node is shared. A sub—DAG of a nodensists of the nodes below along
with the edges between these nodes that are in the origin@l. CFor each node of the DAG,
and every equivalence noden the sub-DAG rooted at, let E[x][z] represent the degree of
sharing ofz in the sub—DAG rooted at. Clearly for all equivalence nodes F[z|[z] is 1. For a
given noder, all otherE[z][_] values can be computed given the val@gg]|[_| for all childreny

of z as follows.

If = is an operation node
Elz][z] = Sum{E[y|[z] | y € children(x)}
and ifz is an equivalence node,
E[z][z] = Maz{FE]y][z] | y € children(z)}
The degree of sharing of an equivalence nodethe overall DAG is given byF|r][z], wherer

is the root of the DAG.

Space is minimized in the above by computifipy:|[z] for onez at a time, discarding all but

E[r][] at the end of computation for onevalue.

In a reasonable implementation of the above algorithm,ithe tomplexity of computing
the row E[x] is proportional to (a) the number of non-zero entrie&in] (sayn.), and (b) the
number of children of (saye,). Thus, the overall complexity of the algorithm is proporal to

. neer. Sincen, is (very conservatively) bounded above by the number ofvadgmce nodes

3.3. THE GREEDY ALGORITHM 47

neq, andy_, e, equals the total number of edgeghe complexity i (n.4e).

However, typically,E is fairly sparse since the DAG is typically “short and fat” s the
number of queries grows, the height of the DAG may not in&gehst it becomes wider. Thus,
ny <K neg for mostzr, making this sharability computation algorithm fairly eféint in practice.
In fact, for the queries we considered in our performancdys{@ection 3.6), the computation

took at most a few tens of milliseconds.

3.3.2 Incremental Cost Update

The sets with whiclbestcost is called successively at line L1 of Figure 3.3 are closelstesl,
with their (symmetric) difference being very small. FondiL1 finds the node with the max-
imum benefit, which is implemented by callibgstcost(Q, {z} U X), for different values of
x. Thus the second parameteritstcost changes by dropping one nodgand adding another
z;11. We now present an incremental cost update algorithm thalbix the results of earlier
cost computations to incrementally compute the new plan.

Figure 3.4 outlines our incremental cost update algorithet.S be the set of nodes shared
at a given point of time, i.e., the previous call testcost was with S' as the parameter. The
incremental cost update algorithm maintains the cost ofprgimg every equivalence node, given
that all nodes inS are shared, and no other node is shared.d dte the new set of nodes that
are shared, i.e., the next call testcost hasS’ as the parameter. The incremental cost update
algorithm starts from the nodes that have changed in goomg & to S’ (i.e., nodes inS’ — S
andS — S’) and propagates the change in cost for the nodes upwardsheiaparents; these in
turn propagate any changes in cost to their parents if tsirchanged, and so on, until there is
no change in cost. Finally, to get the total cost we add the@osomputing and materializing
all the nodes irt".

If we perform this propagation in an arbitrary order therhie worst case we could propagate
the change in cost through a nodenultiple times (for example, once from a nogevhich is
an ancestor of another nodeand then fromz). A simple mechanism for avoiding repeated

propagation uses topological numbers for nodes of the DA@GING DAG generation the DAG

48 CHAPTER 3. MULTI-QUERY OPTIMIZATION

Procedure UPDATECOST
Input: S, previous set of shared nodes, corresponding best plan
S’, new set of shared nodes
Output: Best plan corresponding to S’
Begin
/I PropHeap is a priority heap (initially empty), containing
/I equivalence nodes are ordered by their topological sort number
add S — S"U S’ — S to PropHeap
while (PropHeap is not empty)
N = equivalence node with minimum topological sort number in PropHeap
Remove N from PropHeap
oldCost = old value of cost(V)
cost(N) = Min { cost(p) — p € children(N)} Il children(N) are operation nodes
if (cost(N) # oldCost) or N € (S — S")or N € (S’ — 9)
for every parent operation node p of N
cost(p) = cost of executing operation p + 3= . chiidren(p) (C(c))
where C(c) = cost(c) if ¢ ¢ S', and = min(reusecost(c), cost(c)) if c € S’
add p's parent equivalence node to PropHeap if not already present
TotalCost = compcost(root) + 3, (COSt(s) +matcost(s))
End

Figure 3.4: Incremental Cost Update

3.3. THE GREEDY ALGORITHM 49

is sorted topologically such that a descendant always ctiese an ancestor in the sort order,
and nodes are numbered in this order. As shown in Figure 8s4 ptopagation is performed in
the topological number ordering usigopHeap a heap built on the topological number. The
heap is used to efficiently find the node with the minimum togatal sort number at each step.
In our implementation, we additionally take care of physpraperty subsumption. Details
of how to perform incremental cost update on Physical QueiG® with physical property

subsumption are given in the appendix of this chapter.

3.3.3 The Monotonicity Heuristic

In Figure 3.3, the functiohestcost will be called once for each node ¥, under normal circum-
stances. We now outline how to determine the node with thdlsshaalue ofbestcost much
more efficiently, using the monotonicity heuristic.

Let us definéence fit(z, X) asbestcost(Q, X)—bestcost(Q, {x}UX). Notice that, minimiz-
ing bestcost in line L1 corresponds to maximizing benefit as defined here. Suppedeetiefit is
monotonic Intuitively, the benefit of a node is monotonic if it neveciaases as more nodes get
materialized; more formallyene fit is monotonic ivX D Y, benefit(x, X) < benefit(x,Y).

We associate an upper bound on the benefit of a nodeand maintain a heaf of nodes
ordered on these upper bourfd¥he initial upper bound on the benefit of a nodéiruses the
notion of the maximum degree of sharing of the node (which e&cdbed earlier). The initial
upper bound is then just the cost of evaluating the node Quithny materializations) times the
maximum degree of sharing. The he@ps now used to efficiently find the node € Y with
the maximumbene fit(x, X) as follows: Iteratively, the node at the topC is chosen, its current
benefit is recomputed, and the he&ais reordered. If, remains at the top, itis deleted from tfie
heap and chosen to be materialized and addéd. tAssuming the monotonicity property holds,
the other values in the heap are upper bounds, and ther#fierapden added toX above, is
indeed the node with the maximum real benefit.

If the monotonicity property does not hold, the node with maxm current benefit may not

4This cost heap is not to be confused with the heap on topabgiombering used earlier.

50 CHAPTER 3. MULTI-QUERY OPTIMIZATION

be at the top of the hedp, but we still use the above procedure as a heuristic for fqthe node
with the greatest benefit. Our experiments in Section 3.6otstnate that the above procedure
greatly speeds up the greedy algorithm. Further, for altiggeve experimented with, the results

were exactly the same even if the monotonicity heuristic maused.

3.4 Handling Physical Properties

The greedy algorithm described in Section 3.3 is in the cardkthe Logical Query DAG and
selects logical equivalence nodes to materialize. Howevegality, the algorithm works over the
Physical Query DAG instead, and selects the physical etpnga nodes to materialize. While
the core algorithm and the sharability and monotonicityirofations can be trivially restated
to address the above change of context, the incrementainmdation optimization needs to
be refined nontrivially to address the newer issues invglphnysical property subsumption and
enforcer plans. In this section, we explain these issuesl@sctibe the change to the incremental
recomputation algorithm.

Given the current best plan and an unmaterialized physigavalence node, the incremental
propagation algorithm is required to compute the new best plhen the given physical equiva-
lence node is additionally materialized.

The additional materialization may affect the best plansfiche physical equivalence nodes
for the same logical equivalence node. The propagationegsostarts by recomputing the best
plans for these nodes. This may further affect, transitjvible best plans of all the physical
equivalence nodes that belong to the logical equivalendesithat are ancestors of this logical
equivalence node. Thus, as in the algorithm describedegattie propagation occurs across
logical equivalence nodes — these nodes are visited baifpm-a topological manner in order
to prevent multiple visits of the same logical equivalencdes.

Let L be alogical equivalence node being visited during the gyapan, and let, F, . . ., Ej
be the physical equivalence nodes belongind toThe crux of this section is to show how to
compute the best plans for eahgiven (a) the best plans for all the physical equivalencessod

belonging toL’s children logical equivalence nodes, and (b) for each pasndF;, the cost of

3.4. HANDLING PHYSICAL PROPERTIES 51

computing aF; from E; —if E; is materialized then this cost includes the cost of readingnd
if E; is materialized then this cost includes the cost of mateinma) ;.

The first step is to compute the best algorithm plan for éaghhis is straightforward since
the costs of the inputs of all the algorithms bel@wis known — so we just need to recompute
the cost of the corresponding algorithm plans and pick tleaphst one.

An example scenario is shown in Figure 3.5(d);, E, and E3 are physical equivalence
nodes representing the same logical equivalence node vifghesht physical properties; among
these,E; and F; are specified as materialized, whi#g is not. For each paiFf); and E;, the
cost of obtainingtl; from E; is shown as the weight of directed edfe — E;. Further, the
best algorithm plans for eadh;, E, and E; are also shown with the respective plan costs noted
alongside.

The next step is to consider the enforcer plans for dgcs well and choose the overall best
plan. An obvious approach is to first compute the best enffquiea for E; by enumerating all
the enforcer plans and select the cheapest one; compagrgest enforcer plan with the best
algorithm plan forE; determined earlier will then give the node’s best plan. Wesitate this
approach by an example.

Consider again the scenario of Figure 3.5(&).s best algorithm plan has a cost &f E;
also has two enforcer plans. The first compuigausing its algorithm plan at a cost of and
then derivest; from the result at an additional cost ®funits — a total cost oft; the second
derivesFE, from Ej5 at a cost ofl — the cost of computingdy; is not added since it is marked
as materialized. Comparing the costs, the second enfolaerip chosen as the best plan for
computingF;. Similarly, F3’s best algorithm plan has a costdand its two enforcer plans are
as follows. The first computes, using its algorithm plan at a cost bfand derivegZ; from the
result at a cost of — a total cost oR. The second plan computés from materializedr, at a
cost of2. Breaking the tie among the two enforcer plans arbitratfig, second enforcer plan is
chosen as the best plan. Thus, the best plafvfaterives it from materialized’s while the best
plan for E5 derives it from materialized’, — this mutual derivation is clearly absurd.

The above example shows that while the approach descrilwe@ aorks for unmaterialized

nodes, it may not work for materialized nodes. We now givedatils of our approach of

52

CHAPTER 3. MULTI-QUERY OPTIMIZATION

1
D X

(d) (e) (f)

Figure 3.5: Example Showing Cost Propagation through ehi/Eiquivalence Nodes

3.4. HANDLING PHYSICAL PROPERTIES 53

computing the best plans for the materialized nodes.

We introduce a dummy “external” nod€ and, for each¥;, replace the best algorithm plan
for E; by its cost summary in terms of an edge frofto E; weighted by the cost of the algorithm
plan. Figure 3.5(b) shows the result of the above transfbaman our running example.

Next, for eachF;, we find theshortest patHrom E to E;; this shortest path represents the
best plan for computing; assuming none ok, Es, . .., E; are materialized. To keep track of
these shortest paths, we introduce another dummy Abded add an edge to eaéh from D
representing the shortest path found as above. The edgegbkted by the sum of the edges in
the shortest path.

Now, we consider the subgraph inducedbwand the materialized nodes amafig Es, . . ., E.
Each edge into the nodg; in this graph represents a way to compiite— if the edge is from
D, then it corresponds to computing the result franusing the plan represented by the shortest
path, and materializing it; otherwise if it is from some athsaterialized nodés; then it corre-
sponds to reading the result, derivifig from it, and materializing it. We need to pick a set of
edges, one into eadh; and without generating any cycles, such that the sum of ths @m the
edges (the total cost) is minimized. This correspondsrtoramum cost directed spanning tree
of the graph, which can be computed efficiently using Edmeatjorithm [17]. This spanning
tree gives us — after expanding out any edges oui? ofcluded in this tree into the correspond-
ing path — the best plan for each materialized node, takitydansideration other materialized
nodes.

For our running example, Figure 3.5(c) shows the subgragicied by the materialized nodes
E; andF, and the dummy nod®. Figure 3.5(d) shows the minimum cost directed spannirg tre
for the graph. The edge frofm to F; is expanded out to the path — E>; — E5in Figure 3.5(e).
The final best plan, obtained by replacing the edge+ F, by the best algorithm plan fafs,
is shown in Figure 3.5(f). This plan corresponds to compufia using its best algorithm plan,
computingFEs; using the enforcer plan containig’s algorithm plan and materializing it, and
computingF; from E,, available as materialized.

Note that the solution is heuristic to the extent that sonte@Materialized nodes may not be

needed in the overall best plan, and if eliminated, somertii@mum spanning tree may have

54 CHAPTER 3. MULTI-QUERY OPTIMIZATION

resulted. However, we do not know the set of nodes that wiluged. Hence, we conservatively
assume that all of them may be used, and compute the spameéngdross all the materialized

nodes.

3.5 Extensions

In this section, we briefly outline extensions to i) incorgter creation and use of temporary
indices, ii) optimize nested queries to exploit common supressions and iii) optimize multiple

invocations of parameterized queries.

3.5.1 Selection of Temporary Indices

Costs may be substantially reduced by creating (temporadiges on database relations or
materialized intermediate results. To incorporate indgdgaion, we model the presence of an
index as a physical property, similar to sort order. Sinceadgorithms are actually executed
on the physical DAG, they choose not only what results to nadize but also what physical
properties they should have. Index selection then fallsasugimply a special case of choosing
physical properties, with absolutely no changes to ourrélyos.

Note that our framework allows us to consider material@abf indices even if the corre-

sponding relation is not materialized, which is useful figoaithms such as index-only joins.

3.5.2 Nested Queries

One approach to handling nested queries is to use decaretathniques (see, e.g. [55]). The
use of such decorrelation techniques results in the quanghiensformed to a set of queries,
with temporary relations being created. Now, the querieegeed by decorrelation have several
subexpressions in common, and are therefore excellenidztad for multi-query optimization.
One of the queries in our performance evaluation bringshas{oint.

Correlated evaluation is used in other cases, either bedausay be more efficient on the

guery, or because it may not be possible to get an efficierdrdsated query using standard

3.5. EXTENSIONS 55

relational operations [43]. In correlated evaluation, ilested query is repeatedly invoked with

different values for correlation variables. Consider tiléofving query.

Query: select * froma, b, c
where a.x = b.x and b.y = c.y and
a.cost = (select mn(al.cost) from a as al, b as bl

where al.x = bl.x and bl.y = c.y)

One option for optimizing correlated evaluation of this guis to materialize: X b, and share it
with the outer level query and across nested query invagsitin index oru X b, on attribute
b.y is required for efficient access to it in the nested querygesthere is a selection dry from
the correlation variable. If the best plan for the outer leneery uses the join ordén X b) X ¢,
materializing and sharing X b may provide the best plan.

In general, parts of the nested query that do not depend orathe of correlation variables
can potentially be shared across invocations [43]. We nawdiow to extend our algorithms to
consider such reuse across multiple invocations of a ngstey. The key intuition is that when
a nested query is invoked many times, benefits due to maratiah must be multiplied by the
number of times it is invoked; results that depend on caticalavariables, however, must not be
considered for materialization. The nested query invaeatimization techniques of [43] then
fall out as a special case of ours.

The inner subquery forms part of a predicate of some seleioperation of an outer
guery. This predicate has a pointer to an equivalence nadéams the root of the Query DAG
for the inner subquery. Common results between the Query éiGhe inner subquery and
outer query are unified. Thus, unlike optimizers that penftsock at a time optimization, we
can share optimization effort between the outer and the isufequery.

In the Query DAG for the inner subquery, the predicate forlacter a join operation node
can contain a reference to a correlation variable from therayuery. Let us call such a node a
referencemode. Clearly, the result of an expression that containfeagmcer node varies across
different calls to the subquery (depending on the value etctirrelation variable) and therefore

can not be materialized and shared across calls with diffgr@rameter values. Hence, we tag

56 CHAPTER 3. MULTI-QUERY OPTIMIZATION

the equivalence node under which a referencer node occursliss all its ancestor nodes in the
inner subquery’s Query DAG as non-materializable. Suchitegcan be performed efficiently
while the inner subquery’s Query DAG is being constructed.

The cost of the inner subquery is the product of (a) the castebest plan in the inner Query
DAG, and (b) an estimate of the number of times the inner seitygs invoked.

After the above constructions, the rest of our optimizaatgorithms are used unchanged,
except that they do not consider materializing nodes taggetn-materializable. An important
point to note here is that the above construction allows héwe computation not only across
multiple invocations of the inner subquery, but also betwde inner subquery and the outer
query (see Example 3.0.1).

Extensions that allow memoization of results of the differmvocation of the inner sub-
query (or even intermediate results of these invocaticas))g with the corresponding corre-
lation variable values, are possible. These will reducentiraber of times the inner subquery
is evaluated [51]. Such optimizations are independent@bititimizations we present, and can
be used in conjunction. Note that if inner subquery’s resate memoed, the inner subquery is

invoked as many times as there are distinct parameter values

Parameterized Queries. Our algorithms can also be extended to optimize multipledations

of parameterized queries. Parameterized queries areequbkat take parameter values, which are

used in selection predicates; stored procedures are a coraxaople. Parts of the query may

be invariant, just as in nested queries, and these can beitexpby multi-query optimization.
Although there has been much work on optimizing parametdrgueries (e.g., [19]), to the

best of our knowledge all the work in this area aims at findimg Ibest way of executing an

individual instance, not at multiquery optimization agosultiple executions.

3.6 Performance Study

Our algorithms were implemented by extending and modifginlcano-based query optimizer

we had developed earlier. All coding was done in C++, withliheic optimizer taking approx.

3.6. PERFORMANCE STUDY 57

17,000 lines, common MQO code took 1000 lines, Volcano-S#i \@icano-RU took around
500 lines each, and Greedy took about 1,500 lines.

The optimizer transformation rule set is listed in AppenBix Implementation algorithms
included sort-based aggregation, merge join, nested loapsndexed join, indexed select and
relation scan. The cost estimation formulae for these epesappear in Appendix C. Our imple-
mentation incorporates all the techniques discussed srctiapter, including handling physical
properties (sort order and presence of indices) on basentardniediate relations, unification and

subsumption during DAG generation, and the sharabilitgrtigm for the greedy heuristic.

The block size was taken as 4KB and our cost functions assiiiei§ available to each
operator during execution (we also conducted experimeittslarger memory sizes up to 128
MB, with similar results). Standard techniques were usedkeftimating costs, using statistics
about relations. The cost estimates contain an /0O comp@meha CPU component, with seek
time as 10 msec, transfer time of 2 msec/block for read andetfnlock for write, and CPU
cost of 0.2 msec/block of data processed. We assume thahedete results are pipelined
to the next input, using an iterator model as in Volcano; thieysaved to disk only if the result
is to be materialized for sharing. The materialization ésshe cost of writing out the result

sequentially.

The tests were performed on a single processor 233 Mhz Peihtimachine with 64 MB

memory, running Linux. Optimization times are measured B8 @me (user+system).

3.6.1 Basic Experiments

The goal of the basic experiments was to quantify the berefitiscost of the three heuristics
for multi-query optimization, Volcano-SH, Volcano-RU a@teedy, with plain Volcano-style
optimization as the base case. We used the version of VolRahahich considers the forward
and reverse orderings of queries to find sharing possdsliand chooses the minimum cost plan

amongst the two.

58 CHAPTER 3. MULTI-QUERY OPTIMIZATION

<o
w 1 s _
o] g 2000)
& 1507 S 1.000
2 - _
7] a n 0.500
3 m Volcano b 7
O 1004 = Volcano-SH & 0-2507 = Volcano
© 1 @ Volcano-RU £ 0.125+ @ Volcano-SH
o O Greed £ 3 Volcano-RU
& reedy 'E 0.062+ O Greedy
£] S 0.031+
Z 50 =
w | N 0.016-
| M| R
0- 02 Q2D Qi1 015

Q2 Q2-D Q11 Q15

Figure 3.6: Optimization of Stand-alone TPCD Queries

Experiment 1 (Stand-Alone TPCD)

The workload for the first experiment consisted of four geerased on the TPCD bench-
mark [60]. The queries are listed in Appendix A. We used th€DRlatabase at scale of 1
(i.e., 1 GB total size), with a clustered index on the primiaeys for all the base relations. The
results are discussed below and plotted in Figure 3.6.

TPCD query Q2 has a large nested query, and repeated irvosati the nested query in a
correlated evaluation could benefit from reusing some oirttegmediate results. For this query,
though Volcano-SH and Volcano-RU do not lead to any imprametover the plan of estimated
cost 126 secs. returned by Volcano, Greedy results in a pglaiitlo significantly reduced cost
estimate of 79 secs. Decorrelation is an alternative teetaterd evaluation, and Q2-D is a (man-
ually) decorrelated version of Q2 (due to decorrelation;B actually a batch of queries).
Multi-query optimization also gives substantial gains be tlecorrelated query Q2-D, resulting
in a plan with estimated costs of 46 secs., since decowalatisults in common subexpressions.

Clearly the best plan here is multi-query optimization dedpwith decorrelation.

Observe also that the cost of Q2 (without decorrelationhv@treedy is much less than
with Volcano, and is less than even the cost of Q2-D with pMafcano — this results in-
dicates that multi-query optimization can be very usefubiher queries where decorrelation
is not possible. To test this, we ran our optimizer on a vare@drQ2 where then clause is

changed tanot in clause, which prevents decorrelation from being introdugghout introduc-

3.6. PERFORMANCE STUDY 59

[e)

o

o
|

600

=m No-MQO

400 o MQO

200+

Total Execution Time (secs)

[[n

Q2 Q2-D Q11 Q15

o
|

Figure 3.7: Execution of Stand-alone TPCD Queries on MS S@ue

ing new internal operators such as anti-semijoin [43]. Vée aéplaced the correlated predicate
PS_PARTKEY = P.PARTKEY by PS_ PARTKEY # P_.PARTKEY . For this mod-
ified query, Volcano gave a plan with estimated cost of 6295 .5 while Greedy was able to

arrive at a plan with estimated cost 7331, an improvementropst a factor of 9.

We next considered the TPCD queries Q11 and Q15, both of wiaee common subex-
pressions, and hence make a case for multi-query optimizati For Q11, each of our three
algorithms lead to a plan of approximately half the cost @ taturned by Volcano. Greedy
arrives at similar improvements for Q15 also, but Volcahb-&hd Volcano-RU do not lead to
any appreciable benefit for this query.

Overall, Volcano-SH and Volcano-RU take the same time aadesps Volcano. Greedy takes
more time than the others for all the queries. In terms ofikeddime taken, Greedy needed a
maximum of about 5 times as much time as Volcano, but took ammax of just over 2 seconds,
which is very small compared to its benefits. The total spageired by Greedy ranged from
1.5 to 2.5 times that of the other algorithms, and again tlselake values were quite small (up
to just over 130KB).

Results on Microsoft SQL-Server 6.5:

To study the benefits of multi-query optimization on a redbflase, we tested its effect on

5As mentioned earlier, we use the term multi-query optiniiato mean optimization that exploits common

subexpressions, whether across queries or within a query.

60 CHAPTER 3. MULTI-QUERY OPTIMIZATION

the queries mentioned above, executed on Microsoft SQLeB€érs, running on Windows NT,
on a 333 Mhz Pentium-Il machine with 64MB memory. We used tRED database at scale
1 for the tests. To do so, we encoded the plans generated edysneto SQL. We modeled
sharing decisions by creating temporary relations, pdapgausing and deleting them. If so
indicated by Greedy, we created indexes on these tempaatyons. We could not encode the
exact evaluation plan in SQL since SQL-Server does its owimnmigation. We measured the

total elapsed time for executing all these steps.

The results are shown in Figure 3.7. For query Q2, the timentakduced from 513 secs. to
415 secs. Here, SQL-Server performed decorrelation onrtgmal Q2 as well as on the result
of multi-query optimization. Thus, the numbers do not matcin cost estimates, but clearly
multi-query optimization was useful here. The reductiontfe decorrelated version Q2-D was
from 345 secs. to 262 secs; thus the best plan for Q2 ovevalh en SQL-Server, was using
multi-query optimization as per Greedy on a decorrelateshyjurhe query Q11 speeded up by
just under 50%, from 808 secs. to 424 secs. and Q15 from 63teet® secs. using plans with
sharing generated by Greedy.

The results indicate that multi-query optimization givengicant time improvements on a
real system. It is important to note that the measured bsref underestimates of potential
benefits, for the following reasons. (a) Due to encoding afisiy in SQL, temporary relations
had to be stored and re-read even for the first use. If sharegmg wcorporated within the
evaluation engine, the first (non-index) use can be pipgjireducing the cost further. (b) The
operator set for SQL-Server 6.5 seems to be rather restriated does not seem to support
sort-merge join; for all queries we submitted, it only usealéx)nested-loops. Our optimizer
at times indicated that it was worthwhile to materialize taktion in a sorted order so that it
could be cheaply used by a merge-join or aggregation overhigh we could not encode in
SQL/SQL-Server.

In other words, if multi-query optimization were properiytégrated into the system, the
benefits are likely to be significantly larger, and more cstesit with benefits according to our

cost estimates.

3.6. PERFORMANCE STUDY 61

Q
_ 5]
) o I
0 6004 &, 8.000 _ 1
7} (@]
8 = 4.000
= i w 2.000- _
8 m Volcano & 1.0004
3 400- @ Volcano-SH £ 500 -xo:cano SH
h 5 ! o] @ Volcano-
5 Volcano-RU £ 0.250 o Volcano-RU
= O Greedy = 0.1254 O Greedy
£ 200 § 0.062-
£ =
= @S 0.031-
4 = 0.0164

£

S 0.008

0 (@]
BQl BQ2 BQ3 BQ4 BQ5

BQl BQ2 BQ3 BQ4 BQ5

Figure 3.8: Optimization of Batched TPCD Queries

Experiment 2 (Batched TPCD Queries)

In the second experiment, the workload models a system vdemeral TPCD queries are exe-
cuted as a batch. The workload consists of subsequences @fignies Q3, Q5, Q7, Q9 and Q10
from TPCD; none of these queries has any common subexpnassithin itself. These queries
are listed in Appendix A. Each query was repeated twice witfer@nt selection constants.
Composite query BQi consists of the first i of the above qeeaed we used composite queries
BQ1 to BQ5 in our experiments. Like in Experiment 1, we usedfRCD database at scale of 1
and assumed that there are clustered indices on the priragsydf the database relations.

Note that although a query is repeated with two differenti®alfor a selection constant, we
found that the selection operation generally lands up abtitiem of the best Volcano plan tree,
and the two best plan trees may not have common subexpression

The results on the above workload are shown in Figure 3.8o%xthe workload, Volcano-
SH and Volcano-RU achieve up to only about 14% improvemeet Wolcano with respect to the
cost of the returned plan, while incurring negligible owealls. There was no difference between
\Volcano-SH and Volcano-RU on these queries, implying thaaghof plans for earlier queries
did not change the local best plans for later queries. Grpedgrms better, achieving up to 56%
improvement over Volcano, and is uniformly better than ttileeotwo algorithms.

As expected, Volcano-SH and Volcano-RU have essentialysime execution time and

space requirements as Volcano. Greedy takes about 15 secooritie largest query in the set,

62 CHAPTER 3. MULTI-QUERY OPTIMIZATION

BQ5, while Volcano takes slightly more than 1 second on tineesdHowever, the estimated cost
savings on BQ5 is 260 seconds, which is clearly much morettieaextra optimization time cost

of 14 secs. Thus the extra time spent on Greedy is well spantlagly, the space requirements
for Greedy were more by about a factor of three to four ovec&ob, but the absolute difference

for BQ5 was only 60KB. The benefits of Greedy, therefore, tyeautweigh the cost.

3.6.2 Scaleup Analysis

To see how well our algorithms scale up with increasing nusibéqueries, we defined a new
set of 22 relationg*S P, to PSP, with an identical schem@P, SP, NU M) denoting part id,
subpart id and number. Over these relations, we defined a&segwf 18 component queries
SQ, to SQqs: component quenp@); was a pair of chain queries on five consecutive relations
PSP, to PSP, 4, with the join condition beingd®?SP;.SP = PSP;;,.P,forj =i..i + 3. One

of the queries in the pai¥Q; had a selectio®SP;. NUM > a; while the other had a selection
PSP,.NUM > b; wherea; andb; are arbitrary values with; # b;.

To measure scaleup, we use the composite quétigsto CQs, whereC'Q); is consists of
queriesSQ4 to SQ4;_». Thus,CQ; usesti+ 2 relationsPS P, to PSPy;. -, and has2: — 16 join
predicates andi; — 4 selection predicates. Query CQ5, in particular, is on 2&ti@hs and has
144 join predicates and 36 select predicates. The size @2lhase relation®SP;, ..., PSPy
varied from 20000 to 40000 tuples (assigned randomly) wattuples per block. No index was
assumed on the base relations.

The cost of the plan and optimization time for the above waaklis shown in Figure 3.9.
The relative benefits of the algorithms remains similar @t th the earlier workloads, except
that Volcano-RU now gives somewhat better plans than Valeaid. Greedy continues to be
the best, although it is relatively more expensive. Therogttion time for Volcano, Volcano-
SH and Volcano-RU increases linearly. The increase in apétion time for Greedy is also
practically linear, although it has a very small superdineomponent. But even for the largest
query, CQ5 (with 22 relations, 144 join predicates and 36ctgiredicates) the time taken was

only 35 seconds. The size of the DAG increases linearly fisrdéguence of queries. From the

3.6. PERFORMANCE STUDY 63

800

? o 8 30
o %
w N —
= 600 . v
8 m Volcano £ m Volcano
= 20
O @ Volcano-SH @ Volcano-SH
O 400 o Volcano-RU % o Volcano-RU
Q =
] O Greedy ﬁ O Greedy
£ = 10
B 200~ E
w %
(@]
0- ol | menl | mmd
CQl CQ2 CQ3 CQ4 CQ5 CQl CQ2 CQ3 CQ4 CQ5
Figure 3.9: Optimization of Scaleup Queries
] 2000
150000 1 _
1 1500
100000]
] . O Greed
o Greedy 1000 reedy

50000}

CQl CQ2 CQ3 CQ4 CQ5 CQl CQ2 CQ3 CQ4 CQ5

Number of Cost Propagations
Number of Cost Recomputations

Figure 3.10: Complexity of the Greedy Heuristic

above, we can conclude that Greedy is scalable to quite targey batch sizes.

To better understand the complexity of the Greedy heurmtiche scaleup workload, in
addition to the optimization time we measured the total nemnalb times cost propagation occurs
across equivalence nodes, and the total number of times@osinputation is initiated. The
result is plotted in Figure 3.10. Note that in addition to thee of the DAG, the number of

sharable nodes also increases linearly across queriesdOQQ3.

Greedy was considered expensive by [57] because of its wasst complexity: it can be as
much asO(k?e), wherek is the number of nodes in the DAG which are sharable, aisdthe
number of edges in the DAG. However, for multi-query optiatian, the DAG tends to be wide
rather than tall — as we add queries, the DAG gets wider, butdatght does not increase, since

the height is defined by individual queries.

64 CHAPTER 3. MULTI-QUERY OPTIMIZATION

The result shows that for the given workload, the numberro&$ cost propagation occurs
across equivalence nodes, and the number of times cost petation is initiated both increase
almost linearly with number of queries. The observed comiplas thus much less than the
worst case complexity.

The number of times costs are propagated across equivatedes is almost constant per
cost recomputation. This is because the number of noded)A6 affected by a single ma-
terialization does not vary much with number of queries,alihs exploited by incremental cost
recomputation. The height of the DAG remains constant ésihe number of relations per query

is fixed, which is a reasonable assumption).

3.6.3 Effect of Optimizations

In this series of experiments, we focus on the effect of iidial optimizations on the optimiza-
tion of the scaleup queries. We first consider the effect @itlonotonicity heuristic addition to
Greedy. Without the monotonicity heuristic, before a nalmaterialized the benefits would be
recomputed for all the sharable nodes not yet materialiéth the monotonicity heuristic addi-
tion, we found that on an average only about 45 benefits wemnputed each time, across the
range of CQ1 to CQ5. In contrast, without the monotonicityristic, even at CQ2 there were
about 1558 benefit recomputations each time, leading to amizgation time of 77 seconds for
the query, as against 8 seconds with monotonicity. Scalkeafso much worse without mono-
tonicity. Best of all, the plans produced with and withow thonotonicity heuristic assumption
had virtually the same cost on the queries we ran. Thus, tmtonicity heuristic provides very
large time benefits, without affecting the quality of ther@a@enerated.

To find the benefit of the sharability computation, we meastine cost of Greedy with the
sharability computation turned off; every node is assumdgktpotentially sharable. Across the
range of scaleup queries, we found that the optimizatioe timreased significantly. For CQ2,
the optimization time increased from 35 secs. to 46 secs.s,[$harability computation is also
a very useful optimization.

In summary, our optimizations of the implementation of thieegly heuristic result in an

3.6. PERFORMANCE STUDY 65

order of magnitude improvement in its performance, and atiea for it to be of practical use.

3.6.4 Discussion

To check the effect of memory size on our results, we ran allahove experiments increasing
the memory available to the operators from 6MB to 32MB andhierrto 128MB. We found
that the cost estimates for the plans decreased slightiyhbuelative gains (i.e., cost ratio with
respect to Volcano) essentially remained the same thraudbothe different heuristics.

We stress that while the cost of optimization is independétiite database size, the execution
cost of a query, and hence the benefit due to optimizatiorgrigpupon the size of the underlying
data. Correspondingly, the benefit to cost ratio for our @lgms increase markedly with the
size of the data. To illustrate this fact, we ran the batchB€D query BQ5 (considered in
Experiment 2) on TPCD database with scale of 100 (total 906B). Volcano returned a plan
with estimated cost of 106897 seconds while Greedy obtapiarawith cost estimate 73143
seconds, an improvement of 33754 seconds. The extra tinmé dpang optimization is 14
seconds, as before, which is negligible relative to the.gain

While the benefits of using MQO show up on query workloads wiimmon subexpressions,
a relevant issue is the performance on workloads with ran@pexistent overlaps. If itis known
apriori that the workload is not going to benefit from MQO rilvee can set a flag in our optimizer
that bypasses the MQO related algorithms described in liaipter, reducing to plain Volcano.

To study the overheads of our algorithms in a case with nargipave took TPCD queries
Q3, Q5, Q7, Q9 and Q10, renamed the relations to remove allapgebetween queries, and
created a batch consisting of the queries with relationamsd. The overheads of Volcano-SH
and Volcano-RU are neglibible, as discussed earlier. Badmano optimization took 650 msec,
while the Greedy algorithm took 820 msec. Thus the overhesdaround 25%, but note that the
absolute numbers are very small. With no overlap, the siayatbetection algorithm finds no
node sharable, causing the Greedy algorithm to terminateeiiiately (returning the same plan
as Volcano). Thus, the overhead in Greedy is due to (a) exgantthe entire DAG, and (b) the

execution of the sharability detection algorithm. Of thvgihead, cause (a) is predominant, and

66 CHAPTER 3. MULTI-QUERY OPTIMIZATION

the sharability computation was quite cheap on queriesngteharing.

In our experiments, Volcano-RU was better than Volcano-8i o a few cases, but since
their run times are similar, Volcano-RU is preferable. Ehexist cases where Volcano-RU finds
out plans as good as Greedy in a much less time and using nascsdace; but on the other hand,
in the above experiments we saw many cases where additiorggtment of time and space in
Greedy pays off and we get substantial improvements in te. pl

To summarize, for very low cost queries, which take only ageaonds, one may want to use
Volcano-RU, which does a “quick-and-dirty” job; espegyadb if the query is also syntactically
complex. For more expensive queries, as well as “cannediepithat are optimized rarely but

executed frequently over large databases, it clearly msdese to use Greedy.

3.7 Related Work

The multi-query optimization problem has been addressgBinb4, 56, 53, 13, 38, 10, 64, 59].
The work in [54, 56, 53, 13, 38] describe exhaustive algarghthey use an abstract represen-
tation of a query); as a set of alternative plai#3 ;, each having a set of tasks; ,, where the
tasks may be shared between plans for different queriesy dbenot exploit the hierarchical
nature of query optimization problems, where tasks havéasib. Finally, these solutions are
not integrated with an optimizer.

The work in [59] considers sharing only amongst the bestptdieach query — this is similar
to Volcano-SH, and as we have seen, this often does not yielddst sharing.

The problem of materialized view/index selection [45, 48, 8, 34, 26] is related to the
multi-query optimization problem. The issue of materiatiziiew/index selection for the special
case of aggregates/data-cubes is considered in [29, 27ingoeimented in Redbrick Vista [11].
The view selection problem can be viewed as finding the bésifssib-expressions to mate-
rialize, given a workload consisting of both queries andaips. The multi-query optimization
problem differs from the above since it assumes absencedztep, but it must keep in mind
the cost of computing the shared expressions, whereasdheselection problem concentrates

on the cost of keeping shared expressions up-to-date. Isdasiateresting to note that multi-

3.7. RELATED WORK 67

guery optimization is needed for finding the best way of pgatismg updates on base relations
to materialized views [44].

Several of the algorithms presented for the view selectroblpm ([29, 27, 26]) are simi-
lar in spirit to our greedy algorithm, but none of them ddsed how to efficiently implement
the greedy heuristic. Our major contribution here lies irkimg the greedy heuristic practical
through our optimizations of its implementation. We showho integrate the heuristic with the
optimizer, allowing incremental recomputation of benefithich was not considered in any of
the earlier work, and our sharability and monotonicity opgations also result in great savings.
The lack of an efficient implementation could be one reasothi® authors in [57] to claim that
the greedy algorithm can be quite inefficient for selectireyws to materialize for cube queries.
Another reason is that, for multi-query optimization of mad SQL queries (modeled by our
TPC-D based benchmarks) the DAG is “short and fat”, wherea&®for complicated cube
queries tend to be taller. Our performance study (Secti6pidicates the greedy heuristic is
quite efficient, thanks to our optimizations.

Another related area is that of caching of query results. Mése multiquery optimization
can optimize a batch of queries given together, cachingstakeequence of queries over time,
deciding what to materialize and keep in the cache as eaaly quprocessed. Related work in
caching includes [10, 64, 33]. The work in [64, 33] considamty queries that can be expressed
as a single multi-dimensional expression. The work in [Idfjrasses the issue of management
of a cache of previous results but considers only selege@trgoin (SPJ) queries. We consider a
more general class of queries.

Our multi-query optimization algorithms implement quemtimization in the presence of
materialized/cached views, as a subroutine. By virtue akimg on a general DAG structure,
our techniques are extensible, unlike the solutions of {&] fLO]. The problem of detecting
whether an expression can be used to compute another halsesscstudied in [35, 62, 52];
however, they do not address the problem of choosing whatatenmalize, or the problem of
finding the best query plans in a cost-based fashion.

Recently, [43] considers the problem of detecting invararts of a nested subquery, and

teaching the optimizer to choose a plan that keeps the avgpart as large as possible. Perform-

68 CHAPTER 3. MULTI-QUERY OPTIMIZATION

ing multi-query optimization on nested queries automdticlves the problem they address.
Our algorithms have been described in the context of a Voldike optimizer; at least two

commercial database systems, from Microsoft and Tandesralsano based optimizers. How-

ever, our algorithms can also be modified to be added on topistireg System-R style bottom-

up optimizers; the main change would be in the way the DAGpsagented and constructed.

3.8 Summary

We have described three novel heuristic search algoritiohsano-SH, Volcano-RU and Greedy,
for multi-query optimization. We presented a a number ohtegues to greatly speed up the
greedy algorithm. Our algorithms are based on the AND/ORMQIAG representation of
gueries, and are thereby can be easily extended to handlepenators. Our algorithms also
handle index selection and nested queries, in a very nataaher. We also developed ex-
tensions to the DAG generation algorithm to detect all comraob expressions and include
subsumption derivations.

Our implementation demonstrated that the algorithms caadded to an existing optimizer
with a reasonably small amount of effort. Our performancelgtusing queries based on the
TPC-D benchmark, demonstrates that multi-query optingras practical and gives significant
benefits at a reasonable cost. The benefits of multi-queign@ation were also demonstrated
on a real database system. The greedy strategy uniformly tp@vbest plans, across all our
benchmarks, and is best for most queries; Volcano-RU, wikicheaper, may be appropriate for
inexpensive queries.

Our multi-query optimization algorithms were partiallyopotyped on Microsoft SQL Server
in summer ‘99, and are currently being evaluated by Microgwfpossible inclusion in SQL
Server.

In conclusion, we believe we have laid the groundwork foicpcal use of multi-query op-
timization, andmulti-query optimization will form a critical part of all gery optimizers in the

future

Chapter 4

Query Result Caching

Data warehouses are becoming increasingly important pidtsta analysis for decision support.
The typical processing time of decision support queriegedrom minutes to hours. This is due
to the nature of complex queries used for decision makinge dim of the work presented in
this chapte’is to improve query response times by caching final as wehlt@smediate results

produced during query processing.

In a traditional database engine, every query is processkgbendently. In decision support
applications, queries often overlap in the data that thegssxand in the manner in which they
utilize the data, i.e., there are common expressions beteyeeries. A natural way to improve
performance is to allocate a limited-size area on the didletased as a cache for results com-
puted by previous queries. The contents of the cache mayiltzedtto speed up the execution
of subsequent queries. We use the teumery cachingn this chapter to mean caching of final

and/or intermediate results of queries.

Most exisiting decision support systems suppmbatic view selectionselect a set of views
apriori, and keep them permanently on disk. The selectidraged on either (a) the intuition
of the systems administrator, or (b) recommendation of is@twizards” as supported by Mi-
crosoft SQL-Server [9] based on a workload history. The athge of query caching addressed

in this work over static view selection is that it can catecl@anging workloads — the data ac-

1Joint work with Krithi Ramamritham, S. Seshadri and S. Ssidan.

70 CHAPTER 4. QUERY RESULT CACHING

Update
Transaction DB base relations + delta relations
—>

Y Y

query execution plan +

Query Optimizer & | cache management plan E ion Enai Query Result
» Cache Mgr g xecution Engine -
i current A cached relations
cache state relations to be cached
Y Y
Result Cache

Figure 4.1: Architecture of the Exchequer System

cess patterns of the queries cannot be expected to be stadidp answer all types of queries

efficiently, we need to dynamically change the cache costent

The techniques needed for (a) for intelligently and autiacady managing the cache con-
tents, given the cache size contraints, as queries arndg)a for performing query optimization
exploiting the cache contents, so as to minimize the oversfionse time for all the queries, form
the crux of this work. These techniques form a part of the Egcief query caching system. The

architecture of the Exchequer system is portrayed in Figure

Query results are cached on a fixed-size disk area, calledshk cache Thus the caching of
a result incurs an overhead of writing the result to diskhé tached result is to be indexed, the
caching overhead includes the index creation overhead.efAlithe cached result corresponds
to index probes if it is indexed, a full scan otherwise. Owhtgques also apply to -memory
caching as well as to hybrid two-level (disk cum main-memagching. These variants are
discussed in Section 4.6.

The cache manager and the optimizer are tightly integrgedthe optimizer optimizes an
incoming query based on the current cache state, and (bathe enanager decides which results
to cache and which cached results to evict based on the veatkehich depends on the sequence
of queries in the past).

We assume that the workload presents queries in an ordeyedrsse, and only one query is

2Efficiently eXploiting caCHEd QUETry Results

4.1. CACHE-AWARE QUERY OPTIMIZATION 71

processed at a time. Extending for concurrent optimizadiwh execution, wherein new queries
arrive and are to be optimized and executed while a previaasygs being optimized and exe-
cuted, is a topic of future study. In particular, we assuna¢ the cache contents do not change
between the optimization and execution of a query. The tesuk cached without any projec-
tions, to maximize the number of queries that can benefit faocached result. Extensions to
avoid caching very large attributes are possible.

In addition to the above functionality, a caching systenusthalso support invalidation or re-
fresh of cached results in the face of updates to the undertyatabase. In this chapter, however,
we will confine our attention only to the issue of efficient guprocessing, ignoring updates.
Data Warehouses are an example of an application where the caplacement algorithm can

ignore updates, since updates happen only periodicallye(arday or even once a week).

The Rest of The Chapter: Section 4.1 describes how Exchequer performs cache-awarg q
optimization. In order to perform workload-adaptive cajiit is essential to dynamically main-
tain a characterization of the current workload; how Exeleg@chieves this is discussed in Sec-
tion 4.2. Next, Section 4.3 outlines Exchequer’s cache mament algorithm. Differences of
this work from earlier related work are covered in detail econ 4.4. Results of experimental
evaluation of the proposed algorithms are discussed inddest5. The chapter is summarized

in in Section 4.7.

4.1 Cache-Aware Query Optimization

This section explains how cache-aware query optimizasorarried out in Exchequer. Sec-
tion 4.1.1 describes théonsolidated DAGan auxiliary Query DAG (ref. Section 2.2.2) that is
used to keep track of the queries in the workload as well asahke contents. In Section 4.1.2,
we outline how a Query DAG for the query is generated and naeldth the Consolidated DAG;

as we shall show, this takes care of cached result matchohgxressing the query in terms of
these cached results. Next, in Section 4.1.3, we describbdfer’s variant of the Volcano

guery optimization algorithm that uses this Query DAG to fine best plan for the query in the

72 CHAPTER 4. QUERY RESULT CACHING

presence of the cached results.

4.1.1 Consolidated DAG

We now introduceCDAG, the Consolidated DAG. CDAG is an auxilliary Query DAG stwe
underlying Exchequer’s algorithms. CDAG contains (a) ladl queries in the workload (in the
ideal case, when space is not at premium; a more practiehative is discussed below), and
(b) the set of results present in the cache.

CDAG is used (a) to perform cache-aware query optimizaaisrexplained in Section 4.1.2;
(b) to determine if a new query has occured earlier in the iwak — this is needed in order to
maintain query statistics used to characterize the wodklaa explained in Section 4.2; and (c)
to make dynamic caching decisions, as explained in Sectin 4

Given the large number of queries involved, the space oaerloé CDAG is a concern if
all alternative plans of all the queries are to be stored.réttice, therefore, we (a) keep only
the best planof each query in the CDAG, and (b) specify a static space canstand consider
only a restricted set of queries to represent the workloadhat the resulting CDAG fits in the
given space. Queries may be displaced if they are not exppéateecur often in the current
workload; how this can be determined is explained in Secti@ Note that most commercial
database systems maintaipracedure cach¢8] to cache the optimized plans of the queries in
the workload; these procedure caches clearly have sinmtaresoverhead.

Due to the displacement of queries (because of the spacta@ots as discussed above), as
well as due to the evolution with time of the set of cached Iteswe need to delete and insert
gueries from CDAG. Since parts of CDAG may be shared by maltjperies and cached results,
deletion of intermediate nodes of CDAG is done using a refseounting mechanism.

Equivalence nodes in CDAG that correspond to cached rem@ltmarked as such; this allows
us to (a) keep track of the cached results for use in the caslage optimization algorithm as
will be explained in Section 4.1.2, and (b) specify the neeskonfiguration of the cache by
marking and unmarking the equivalence nodes as will be exgdan Section 4.3.

Figure 4.2(a) shows a CDAG for the query $ét X C X D, A X C X E}, and the cached

4.1. CACHE-AWARE QUERY OPTIMIZATION 73

ACD ACE ABC ACD ACE
O o [
Mo .aM b4) QAN
.AC\\ \\\ AB -AC\\\
! (cached) \ ! (cached) .
AN \ > L AL \
o (8] [0

(a) (b)
Figure 4.2: (a) CDAG fo{f AX CX D, AXCNXE} (b) Unexpanded A< B X C inserted into
CDAG (c) AX B X C expanded into CDAG

result setf A X C}.

4.1.2 Query DAG Generation and Query/Cached Result Matchig

When a new query arrives, it is added to CDAG and expandedtg@uery DAG. A fallout of
the support for unification in our version of the Volcano aptier (ref. Section 2.2.2) is that since
the equivalence nodes in the Query DAG for a query may unifi @iCDAG equivalence node
that corresponds to a result present in the cache, we autathaget rewritings of the query in
terms of the cached results. Moreover, unification allowsougetermine if the new query has
occured earlier in the workload, since in this case, the egoivalence node of the Query DAG
will unify with the root equivalence node correspondingtie guery in CDAG. This is needed
in order to maintain the statistics needed to characteniezevbrkload (Section 4.2).

As an example, consider again the CDAG of Figure 4.2(a),Herquery se{A X C X D,
A X C X E}, and the cached result sgA X C}. Now, when the query Ad B X C arrives, its
initial unexpanded representation is created and adddtet€DAG as shown in Figure 4.2(b).
The next step is the expansion of this query tree into the YD&G for the query shown in
Figure 4.2(c). This is achieved by applying all possiblesfarmations on every equivalence
node of the query tree. In our example, we assume that thetngformations applied are
join associativity and commutativity. (To avoid cluttenetfigure does not show the results of
applying commutativity on the respective expressionsthéprocess, when the expression (A

X C) X B is generated, the new expressionAC is found to already exist in the CDAG. It turns

74 CHAPTER 4. QUERY RESULT CACHING

out that the equivalence node fo#AC is marked as present in the cache (see Figure 4.2(c)); the
expression (A4 C) X B represents a rewriting of the query in terms of the cachsdltré X C.

Exchequer also detects and handdebsumptiorderivations. For example, suppose two
subexpressionsl: o4.5(F) ande2: o4.19(F) appear in the query. The result of can be
obtained from the result of2 by an additional selection, i.e1,.5(F) = 0a<5(0a<10(E)). TO
represent this possibility, we add an extra operation nodg betweerel ande2 in the Query
DAG. Similarly, givene3: o4-_5(E) ande4: 04-19(F), we introduce a new equivalence node
eb: oa—sva—10(E) and add new derivations eB ande4 from e5. In general, given a number of
selections on an expressién we create a single new equivalence node representingdjumdi
tion of all the selection conditions. Similar derivatiorsahelp with aggregations. For example,
if we havee6: 4,0Gsum(sa)(F) ander: 4.Gsum(say(E), we introduce a new equivalence node
8. dno,ageFsum(sary (/) @and add derivations aof6 ande7 from equivalence node8 by further
groupbys onino andage.

Subsumption derivations are important because (a) thewakuse of cached results even
though the cached result does not exactly match a subelgnegshe query, but can be used to
compute the same; and dually, (b) they make explicit theeifit ways in which a result may
be used, which is important for determining the benefit ohaag the result while making the
dynamic caching decisions as explained in Section 4.3.

Volcano neither performs unification nor introduces substion derivations — these exten-
sions were proposed as a part of our earlier work on multigaptimization (Chapter 3). The
novelty here is to show how this Query DAG framework can beduseperform matching of
gueries and cached results during optimizatigtih neglegible overhead on the optimizer

In the following section, we discuss how the Query DAG for tiev query, generated as

explained in this section, is used to generate the best ptahé query in a cache-aware manner.

4.1.3 Volcano Extensions for Cache-Aware Optimization

Exchequer makes use of the above Query DAG representatibnsas a variant of the Volcano

optimization algorithm (see Chapter 2) to optimize the tpger

4.2. DYNAMIC CHARACTERIZATION OF CURRENT WORKLOAD 75

The main extension to Volcano for Exchequer involves caeréing possible use of cached
results while determining the minimum-cost plan for a quély find the cost of a node given
a set of equivalence nodéswhose results are present in the cache, we use the Volcaho cos
formulae stated above for the query, with the following ajen

For the equivalence node whose result is present in the cacheletsecost(e) denote the
cost of reusing the cached result. When computing the caeh @peration node, if an input
equivalence node € S, the minimum ofreusecost(e’) andcost(e’) is used forcost(o). Thus,
we use the following expression instead:

cos{o) = cost of executin) + ., cchitgren(0)C (€:)

cost(e;) ife,; ¢S

min(cost(e;), reusecost(e;)) ife; €S
Thus, the extended optimizer computes best plans for they quéhe presence of cached results.

whereC'(e;) = {

The extra optimization overhead is quite small.

4.2 Dynamic Characterization of Current Workload

In this section, we outline how Exchequer characterizeslyimamically changing workload that
are needed to make dynamic caching decisions.

Consider a point in time just before the arrival of e query ;. We model the future
workload at this point as a sequence of queries picked framesiixed set according to some
fixed probability distribution. Thus, in this model, the séqueries and probability distribution
together fully characterize the workload at this point; lkwer, neither of these are known, and
need to be predicted. These predictions need to be dynangdanast be continuously updated
to keep track of the changing workload as time progresses.

Our predictions for the future are entirely based on the.pastsuch, we predict the set of
future queries as the set of queries present in CDAG at tlengivint in time. We denote this set
by U;. Further, let the estimate of the probability distributetrthis point be denoted b¥,. We
assume the presence of (a) an arbitrary non-empty initiadfsgueries/;, and (b) an arbitrary

initial probability distribution,P;, oni{;. In the discussion below, we show héy and P; are

76 CHAPTER 4. QUERY RESULT CACHING

updated td/4; ., and P, ; respectively on the arrival of the quet;.

WhenQ); arrives, it is optimized; the unification extension of Valcaalgorithm, described
in Section 4.1.2, enables us to determine whether oénet U;. If (Q; € U;, the CDAG remains
unchanged:; if notp; is added to CDAG.Thus, we havé/;,; = U; U {Q;}.

For a given® € U; 1, P;11(Q) is computed using a simple exponential smoothing estimator
on the serieg;(Q)):_, where the indicator functiof, (Q) is 1 if Q = Q;, and 0 otherwise.
Formally?

(1-a)F(Q) if Q# Qi
Pii(@Q) =1 o if Q@ =Q;andQ; ¢ U;
(1-a)F(Q)+a ifQ=Q;andQ; €UY;
The smoothing factot: € [0, 1] denotes the bias of the estimator in favour of the recentiggier
in the workload; we choose = 0.05 in our experiments. The exponential smooting estimator
was chosen because of its simplicity and low overhead.

The probability estimates need to be maintained dynanyiealthe workload progresses. An
option is to compute this estimate on the arrival of each esgige query using the equations
above for each query in the current CDAG. This is clearly nable due to the large number of
queries involved. In practice, therefore, these estimatesnaintained lazily and computed only

when accessed.

4.3 Cache Management in Exchequer

Consider an arbitrary query; in the workload. The algorithm outlined in this section atpgs

to determine the intermediate results computed duringXéewgion of(); that are worth caching;
the goal being to minimize thexpectedexecution cost of an arbitrary query in the future work-
load. This involves comparing the expected benefit of carhie results with (a) the cost in-

volved in storing them on the disk, and (b) the loss due to thglaicement of previously cached

3possibly replacing some other queries due to space cartstraihis case is not considered in the presented

scheme for sake of simplicity; it is trivial extension to theme.
41t can be verified thaP; ; is a valid probability distribution if?; is one.

4.3. CACHE MANAGEMENT IN EXCHEQUER 77

results in order to accomodate these results, if neceshagyto cache space constraints.

As outlined in Section 4.2, the future workload at the pofrebacution of(); is characterized
by (a) the set of queridg; ; and (b) the probability distributio®;,; onif; ;. LetS be the set
of results present in the cache when a qugharrives, as a part of the predicted worklogll.is
then optimized using the resultséhas explained in Section 4.1. The expected execution cost of
the best plan fof)’ chosen by the optimizer is given BYq ¢y, (cost(Q, S) * Pi11(Q)), where
cost(Q, S) is the cost of computing the quefy given the set of cached resulfs However,
sinceld;,, contains a large number of queries, computation of the aboweis expensive. Thus,
we identify arepresentative seRR, a subset of/; ; containing/V queries that are most likely to
occur as the next query (as suggested by the distribéionon/; ;) and compute the sum with
respect toR — this is justified since the distributioR; ; is most likely skewed due to locality
of reference; therefore, restricting the sum with respethé most probable queries should give
a reasonable approximation of the actual expected cost. hWe dompute an approximation
expcost(S) of the expected execution cost as:

expeost(S) = Y (cost(Q, S) * Piy1(Q))

QER

The algorithm described below, thus, chooses thé& skt minimizes:apcost(S); Exchequer’s
execution engine reconfigures the cache accordingly dtinegxecution of);.

Given a set of resultS already chosen for caching by the algorithm, and a resuttne fit(z, S),
the benefit of additionally caching nodeis defined as the decreasecirpcost(S) (the payoff),

minus the cost of caching, if it is not already present in the cache (the investmerajnfally:

,

expcost(S) — expcost({z} U S)

, if z is present in the cache
benefit(z,S) =
expcost(S) — (expcost({x} U S) + matcost(x))

if = is not present in the cache

\

wherematcost(x) is the cost of caching the new resultwhich involves writingr to the disk.
The benefit measured as above is conservative since it dbasoatize thenatcost(z) over

multiple uses; computing a tighter measure of benefit ismoaksince it is difficult to compute

78 CHAPTER 4. QUERY RESULT CACHING

Procedure GREEDY
Input: C, the set of candidate results for caching
Output: S, the set of results to be cached

Begin
S=¢
while (C # ¢)
Among results y € C
L1: Pick the result = with the maximum benefit(z,S)/size(zx)
[* i.e., maximum benefit per unit space */
if (benefit(z,S) < 0or size({z} US) > CacheSize)
break; /* No further benefits to be had, stop */
C=C—z; S=SU{x}
return S
End

Figure 4.3: The Greedy Algorithm for Cache Management

apriori how many times the resuttis going to be used between its admission into the cache and
its replacement. However, in practice, we find that amartjziatcost(x) does not have much
effect; this is because for mastwith highbene fit(x, S), matcost(z) is relatively insignificant.
Figure 4.3 outlines an algorithm, hereafter called Gre#tht, takes as input @andidate set
of results,C, and heuristically selects (for caching) the sulssef C with the maximum benefit
overall under the cache space constraint'atheSize. The purpose of Greedy is to weigh the
benefits of caching the intermediate results that are cosdpaiiring the execution of the best
plan of ; against the benefit of retaining results that are alreadyeéncache. As such, the

candidate sef contains:
1. The final and intermediate results in the best pla@ ofand

2. The set of results that was selected as having the maxinremefibby the preceding invo-

cation of the algorithm (this set is present in the cache).

Greedy works iteratively as follows. Starting withempty, in each iteration, the algorithm
greedily selects the nodeamong the results i@ that, if cached, gives the maximupenefit per
unit spaceand moves it fron€ to S. The algorithm terminates wh&hbecomes empty, benefit

becomes zero/negative, or the size of the nodesenceed the cache size, whichever is earlier.

4.3. CACHE MANAGEMENT IN EXCHEQUER 79

The final value ofS is the set of results to be placed in the cache, and is ret@®#te output of
the algorithm.
After S has been computed by Greedy, the best plaf);a executed. Two variants of the

Exchequer algorithm are possible depending upon what hsechduring the execution:

e Exchequer/NoFullCache:Only computed intermediate results that are includefl are

added to the cache; no additional nodes are admitted eveerd ts space in the cache.

e Exchequer/FullCache: Apart from computed intermediate results that are includes]
other computed results are also admitted to the cache & tkexnough free space in the

cache.

The idea behind Exchequer/FullCache is to keep the cachecapied as possible at all times;
however, the experimental results in Section 4.5 show thsatdoes not provide any significant
benefit.

In order to make the decisions regarding the eviction ofltesuthe cache not i5, we use
Largest Cache Space/Least Recently Used (LCS/LWkirein the largest results are preferen-
tially evicted, and amongst all results of the same sizelghst recently used one is evicted. We
chose this policy because of its low overhead, since it doeseed any statistical information.
Moreover, this policy has been shown to work best among adfagternatives considered by

ADMS [10].

Optimizations of Greedy Algorithm: Two important optimizations to a greedy algorithm for
multi-query optimization, originally proposed in the cext of multi-query optimization (Chap-

ter 3), can be adapted for the purpose of selecting the chchabes efficiently:

1. Since there are many calls benefit(and thereby taexpcost) at line L1 of Figure 4.3,
with different parameters, a simple option is to proces$ &atl to expcost independent
of other calls. Our optimization is tecrementallyupdate the costs, maintaining the state
of the Query DAG (which includes previously computed besinplfor the equivalence

nodes) across calls tapcost. Details can be found in Chapter 3.

80 CHAPTER 4. QUERY RESULT CACHING

2. With the greedy algorithm as presented above, in eacitiberthe benefit of every can-
didate result that is not yet cached is recomputed since yt maae changed. If we can
assume that the benefit of a result cannot increase wheneanesult is chosen to be
cached (while this is not always true, it is often true in pis®) there is no need to re-
compute the benefit of a resuttif the new benefit of some resuitis higher than the
previously computed benefit of It is clearly preferable to cachgat this stage, rather
thanx — under the above assumption, the benefit @ould not have increased since it

was last computed.

4.4 Differences from Prior Work

Much of the earlier work on caching has been for specializgdieations (e.g. data cubes [16,
33, 50], or [10] which handles only select-project-join gas, or [15, 32, 31] which handle just
selections). While specialized queries are importanteg@rpurpose decision support systems
must support more general queries as well. Our algorithm$iaadle any SQL query, including
nested queries. Moreover, our technigues are extensilileainnew operators can be added
easily, due to the use of the Query DAG framework.

Further, most of the earlier work does not take caching @rimediate results into account
(e.g. WatchMan [49]), or has relatively simple cache regaent algorithms, which do not take
into account the fact that the benefit of a cached result mpgriton what else is in the cache
(e.g. ADMS [10]). Dynamat [33] uses sophisticated cachéamnent techniques, specifically
computing benefits of cached results taking other cacheentsitnto account. However, their
techniques are restricted to the case where each resuliecderived directly from exactly one
parent (and indirectly from any ancestor). Our techniquesat have this restriction.

In earlier work, usage statistics are maintained for eache@result, which are used to com-
pute a replacement metric for the same; the replacemenicrigetariously taken as the cached
results last use, its frequency of use in a given windowaits of use, etc. Our techniques do not
maintain statistics at the granularity of the cached resinistead, the statistics maintained at the

granularity of the queries are used to decide on admissidrrgplacement of the intermediate

4.4. DIFFERENCES FROM PRIOR WORK 81

results.

Furthermore, in earlier work that considers general qedeeay. WatchMan [49]), the cached
results are matchexyntactically Our work carries out sematic matching of cached resulisigur
cache-aware query optimization.

It is important to contrast the caching problem with the matized view/index selection
problem, where the cache contents do not vary and the queikloaol is known fully apriori
(e.g., see [44, 34, 26] for general views, [29, 27, 57] fomdatbes, and [9] for index selection).
Techniques for materialized view/index selection use stjglated ways of deciding what to
materialize, where the computation of the benefit of mdienmy a view takes into account what
other views are materialized. The major disadvantage t€stache contents is that they cannot
cater to changing workloads — the data access patterns glugmes cannot be expected to be
static, and to answer all types of queries efficiently, wednedynamically change the cache
contents. Moreover, the cost of materializing the selecteds is ignored.

Another related area is multi-query optimization (MQO),esh (e.g., the work presented in
Chapter 3) the optimizer takes the cost of temporarily nizing the selected views, but still
makes a static decision on what to materialize based on ag$etedf queries. Still, as we saw
in Section 4.3, dynamic cache management can benefit frore sbthe techniques developed
for the efficient implementation of MQO. In particular, theg@dy algorithm presented in Sec-
tion 4.3 is derived from the Greedy algorithm used in ourieasvork on MQO (Chapter 3).
However, that algorithm was concerned with minimizing tb&ak one-time execution cost of
the queries in a given batch, with no restriction on the gjerspace. The Greedy algorithm
presented in Section 4.3, on the other hand, is concernédwitimizing the cost of amfinite
workload, where each query can occur multiple times, undedfconstraints on the storage
space for cached results. This leads to a very differenonaif the “benefit” of sharing a result.
Apart from this, a major design issue in this work is to makeésiy suitable for online operation,
as is apparent from our discussion in Section 4.3.

Recently, there has been some interest in caching in cootdDAP queries [31]; these
gueries are simple in nature and involve only multi-atti@xselects on a single table. The caching

algorithm proposed in [31] performs complete reorgantatf the cache contents (callesl/-

82 CHAPTER 4. QUERY RESULT CACHING

olution) whenever the estimated benefit of the cached data drops belgnamically estimated
value. In between revolutions, the cache contents undaggemental modifications (calledo-
lution). Exchequer performs only evolution; our experiences wétorming revolutions as well

are presented in Section 4.6.

4.5 Experimental Evaluation of the Algorithms

In this section we describe our experimental setup and thdtseobtained. Our algorithms
were implemented as extensions of the multi-query optitiinacode (Chapter 3) that we have
integrated into our Volcano-based query optimizer. Theadagtimizer took approx. 17,000
lines of C++ code, with caching code taking about 3,000 lines

The block size was taken as 4KB and our cost functions asshiei§ available to each
operator during execution (we also conducted experimeitts wemory sizes up to 128 MB,
with similar results). Standard techniques were used ftomasing costs, using statistics about
relations. The cost estimates contain an I/O component &ElA component, with seek time
as 10 msec, transfer time of 2 msec/block for read and 4 misek/bor write, and CPU cost
of 0.2 msec/block of data processed. We assume that inte&ataadsults are pipelined to the
next input, using an iterator model as in Volcano. Cachingsalt has the cost of writing out the
result sequentially to the disk.

The tests were performed on a Sun workstation with UltraSpaB33Mhz processor, 256MB
RAM, running Solaris 2.7.

4.5.1 Test Query Sequences

We tested our algorithms with streams of 1000 randomly geadrqueries on a TPCD-based
star schema similar to the one proposed by [50]. The schema bantraDrdersfact table, and
four dimension tableRart, Supplier, CustomandTime The size of each of these tables is the
same as that of the corresponding table in the 100 MB TPCRHitdbase. This corresponds to
base data size of approximately 40 MB (there are other tablde TPCD-0.1 database which

4.5. EXPERIMENTAL EVALUATION OF THE ALGORITHMS 83
account for the remaining 60MB). Each generated query wésedrm:

SELECT SUM QUANTI TY)

FROM ORDERS, SUPPLI ER, PART, CUSTOVER, TI ME
WHERE j oi n-1ist AND sel ect-1list

GROUP BY groupby-1i st;

The join-list enforces equality between attributes of the order factetalold primary keys of
the dimension tables. We picfsuppkey, partkey, custkey, month, yeas the set of group-
by attributes7. An additional attribute from each of PART, SUPPLIER and JO®ER was
picked to form the list of select attributels

The groupby-listwas generated by picking a subsetoht random. Theelect-listi.e. the
predicates for the selects, were generated by selectinguatts at random froml and G’ and
creating equality or inequality predicates on these atteusing random values picked from the
respective domains. The select predicates involvingoagts inA define different cubes. Thus,
in effect, the workload models simultaneous analysis ofrgelamumber of distinct cubes. A
query is thus defined uniquely by the pgelect-list, groupby-list)Even though our algorithms
can handle a more general class of queries, the above clasbefqueries was chosen so that
we can have a fair comparison with DynaMat [33] and Watchnj&aap

There are two independent criteria based on which the (salect-list, groupby-listyvas

generated.

1. The kind of predicates comprising the select-list.

Accordingly, we classify the workloads as:

e CubePointsPredicates are restricted to equalities, or
e CubeSlicesPredicates are a random mix of equalities and inequalities.
Figure 4.4 gives the distribution of the distinct internmegds results computed during the

processing of the CubePoints and CubeSlices workloadse ®iach predicate in Cube-

Points is a highly selective equality, the size of most mtediate results is small, at most

84 CHAPTER 4. QUERY RESULT CACHING

1000

1004 x
] 4 900 Query CubePoints
X 900 Query CubeSlices

Number of Results
X

1 T

———— X .
0% 8% 32% 64% 128%

Result Size (% of DB Size)

Figure 4.4: Distribution of distinct intermediate resusnerated during the processing of the

CubePoints and CubeSlices workloads

10% of the database size. On the other hand, since Cube8boégins inequalities as
well, a number of larger intermediate results, with sizeouf1% of the database size, are

also present.

2. The distribution from which the attributes and values arekpd up in order to form the

groupby-listand the predicates in the select-list.
We consider a moderately skewed and a highly skewed workloaskd on the Zipfian
distribution®
e Zipf-0.5: Uses Zipfian distribution with parameter 0.5. This workléesdhoderately
skewed.

e Zipf-2.0: Uses Zipfian distribution with parameter 2.0. This workldacdhighly

skewed.

The distribution additionally rotates after every intdrga128 queries, i.e. the most fre-

guent subset of groupbys becomes the least frequent, aiie aélst shift up one position.

SZipfian distribution with parameter on {1, ...,n} specifiep(k) oc k=

4.5. EXPERIMENTAL EVALUATION OF THE ALGORITHMS 85
Thus, within each block of 128 queries, some groupby contiming and selection con-
stants are more likely to occur than others.

Based on the four combinations that result from the abover@;j the following four work-

loads are considered in the experiments:

e CubePoints/Zipf-0.5a moderately skewed workload of CubePoints,
e CubePoints/Zipf-2.0a highly skewed workload of CubePoints,
e CubeSlices/Zipf-0.5a moderately skewed workload of CubeSlices, and

e CubeSlices/Zipf-2.0a highly skewed workload of CubeSlices

4.5.2 Metric

The metric used to compare the goodness of caching alg@iththetotal response time of a set
of queries We report the total response time for a sequence of 900egidrat enter the system
after a sequence of 100 queries warm up the cache. Thiséstanse time is as estimated by the
optimizer and hence denoted estimated cosih the experimental results presented in Section
4.5.4. These estimates are the same as used in Section 36 dathonstrated there, are a close

approximation to the real execution costs on Microsoft S§gtver 6.5.

4.5.3 List of algorithms compared

We consider the following three variants of Exchequer; th&t two were described in Sec-

tion 4.3:

¢ Exchequer/FullCache: Apart from computed intermediate results that are includes]
other computed results are also admitted to the cache & tkexnough free space in the

cache. This is the variant actually used in the Exchequeesys

e Exchequer/NoFullCache: Only computed intermediate results that are included in the
candidate sef are added to the cache; no additional nodes are admittedifemme is

space in the cache.

86 CHAPTER 4. QUERY RESULT CACHING

e Exchequer/FinalResldentical to Exchequer/FullCache, except that only thd fiesults
are cached. This variant is considered to illustrate theachpf caching intermediate

results.

The size of the representative set is set to 10 for each oéthasants. As a part of the
experimental study in Section 4.5.4, we evaluate thesanariagainst each other as well as

against the following prior approaches.

e LCS/LRU: This approach uses the caching policy found to be the besDiM& [10],
namely replacing the result occupying tlaegest cache spac@.CS), picking theleast
recently usedLRU) result in case of a tie. The incoming query is optimizaking the
cache contents into account. The final as well as intermedéstults in the best plan are

considered for admission into the cache based on LCS.

e DynaMat: We simulate DynaMat [33] by considering only the top-levakry results
(in order to be fair to DynaMat, our benchmark queries wereseh to have either no
selection or only single value selections). The originahBMat performs matching of
cube slices using R-trees on the dimension space. In ouemmaitation, query matching
is performed semantically, using our unification algorittrather than syntactically. We
use our algorithms to optimize the query taking into accdhatcurrent cache contents;
this covers the subsumption dependency relationshipscgipmaintained in [33]. The
replacement metric is computed as:

(number-of-accessescost-of-computation)/(query-result-size)

where the number of accesses are from the entire historgiadxs so far).

e WatchMan: Watchman [49] also considers caching only the top levelyjuesults. The
original Watchman does syntactic matching of queries, saitmantic matching left for fu-
ture work. We improve on that by considering semantic maght he difference between
our implementation of DynaMat and WatchMan is in the repiaget metric: instead of
considering the number of accesses as in the Dynamat imptatien, our WatchMan

implementation considers the rate of use on a window of lestdtcesses for each query.

4.5. EXPERIMENTAL EVALUATION OF THE ALGORITHMS 87

The replacement metric for Watchman is thus:

(rate-of-usex cost-of-computation)/(query-result-size)
where the cost of computation is with respect to the curraohe contents. The original
algorithms did not consider subsumption dependenciesdsgtivthe queries; our imple-

mentation considers aggregation subsumption among theequdries considered.

Given the enhancements mentioned above, our implememsatibthe above algorithms are
slightly more sophisticated than the originally proposetsions.

It is important to investigate the promise dynamic matezr&al view selection hold over static
materialized view selection. In order to do so, we considernersion of static view selection

wizard as follows:

e Static: We use Exchequer/NoFullCache on the first 100 queries in tr&lead, with
the representative set consisting of all queries so farerAfie 106" query, the cache
contents are fixed and never changed in the duration of thaineémg workload. The cost

of computing the materialized views is not added in the ettenicost of the workload.

In order to evaluate the absolute benefits and competitifitiie algorithms considered. we

also consider the following baseline approaches:

e NoCache:Queries are run assuming that there is no cache. This givegar bound on

the running time of any well-behaved caching algorithm.

¢ InfCache: The purpose of this simulation is to give a lower bound on threimg time of
any caching algorithm. We assume an infinite cachedanalotinclude the materialization
cost. Each new result is computed and cached the first tinoeitrs, and reused whenever

it occurs later.

4.5.4 Experimental Results
The goal of this section is to study the following issues:

1. Merit of intermediate result caching over exclusivelyafiresult caching.

88 CHAPTER 4. QUERY RESULT CACHING

---@-- NoCache

— - - DynaMat

- -+— - LCS/LRU

e — *— Exchequer/FinalRes

e - x—- WatchMan
~ -~ ¢ —+— Exchequer/FullCache
—+ —e— Exchequer/NoFullCache
---- Static
---6-- InfCache

5000

900 Query CubePoint/Zipf-0.5: Estimated Cost (seconds)

0

0% 8% 32% 64% 128%

Cache Size (% of DB Size)

Figure 4.5: Performance on 900 Query CubePoints/Zipf-CoB8dad

2. Merit of dynamic intermediate result caching over steggult caching, for moderately and

highly skewed workloads.
3. Merit of cost-benefit based approach over simpler pditie LCS/LRU.

4. Merit of keeping the cache full by caching additional fesin case the results selected by
greedy do not fill up the entire cache (as in Exchequer/Fah€nover caching only the

results selected by greedy, as in Exchequer/NoFullCache).
5. Whether the overheads incurred by Exchequer/FullCachaceptable.

We experiment with different cache sizes, correspondimpughly 0%, 32% and 64% and
128% of the total database size of approximately 40 MB. Fohed these cache sizes, the
set of 9 algorithms mentioned in Section 4.5.3 (viz. NoCa€EhmaMat, LCS/LRU, WatchMan,
Exchequer/FinalRes, Exchequer/FullCache, Exchequé&uNDache, Static and InfCache) were
executed on the four workloads listed in Section 4.5.1. Bsalts for CubePoints/Zipf-0.5 and
CubePoints/Zipf-2.0 workloads are shown in Figure 4.5 aiguifié 4.6 respectively, while the
results for CubeSlices/Zipf-0.5 and CubeSlices/Zipf&® shown in Figure 4.7 and Figure 4.8

4.5. EXPERIMENTAL EVALUATION OF THE ALGORITHMS

7 SEEREEEEE R L R LR R R PR °
" --T-m = u
1 W e =
10000
| ---®-- NoCache
— - - DynaMat
- - +— - LCS/LRU

— -o— - Exchequer/FinalRes

- - - WatchMan

—+— Exchequer/FullCache
—e— Exchequer/NoFullCache
---- Static

---¢-- InfCache

900 Query CubePoint/Zipf-2.0: Estimated Cost (seconds)

0 ———
0% 8% 32% 64%
Cache Size (% of DB Size)

Figure 4.6: Performance on 900 Query CubePoints/Zipf-28Wwad

e v e ff e e e)

---@-- NoCache

— - - DynaMat

- -+— - LCS/LRU

— -o— - Exchequer/FinalRes

- x—- WatchMan

—+— Exchequer/FullCache
—e— Exchequer/NoFullCache
---- Static

5000 ---#-- InfCache

900 Query CubeSlice/Zipf-0.5: Estimated Cost (seconds)

0% 8% 32% 64%
Cache Size (% of DB Size)

0

Figure 4.7: Performance on 900 Query CubeSlices/Zipf-Coskivad

90

CHAPTER 4. QUERY RESULT CACHING

L e R R -
| --9-- NoCache
10000 _ — - DynaMat
“‘~~‘* — +—-LCS/LRU
— -o— - Exchequer/FinalRes
- x—- WatchMan

—® _—+— Exchequer/FullCache
—e— Exchequer/NoFullCache
---- Static

---¢-- InfCache

5000

900 Query CubeSlice/Zipf-2.0: Estimated Cost (seconds)

0

32% 64%
Cache Size (% of DB Size)

0% 8%

Figure 4.8: Performance on 900 Query CubeSlices/Zipf-200klad

respectively.

Effect of Intermediate Result Caching. For all the four workloads, DynaMat, WatchMan and
Exchequer/FinalRes which cache only the full query resaétform very poorly. This is because
though there is a large amount of overlap among the querieadh workload, there is hardly
any repetition of the same query. In fact, because of thetgatedicates involving the se (ref.
Section 4.5.1), the subsumption possibilities among tkalte (that can be exploited by these
algorithms) are minimal.

The importance of intermediate result caching can be gabgdtie fact that even Static,
which maintains dixed set of intermediate results, consistently performs fatelbeéhan these
algorithms. This is because the intermediate results chaystatic, though fixed, can be used by
a greater number of queries in the workload. This clearly alestrates the heavy improvement

in performance that can be achieved using intermediatét iszhing.

Effect of Dynamic Caching. We now compare the performance of Static with that of the-algo

rithms which dynamically maintain the cached results, k{2S/LRU, Exchequer/NoFullCache

4.5. EXPERIMENTAL EVALUATION OF THE ALGORITHMS 91

and Exchequer/FullCache.

Recall that Static builds up the cache contents using theyglistribution of the first 100
gueries, and keeps it fixed for the duration of the remaini®@ Queries. However, each of the
workloads changes the skew after every 128 queries, makmgdching decisions by Static
mostly ineffective. Naturally, therefore, we find that taeynamic intermediate result caching
algorithms consistently perform much better than Staticafbthe workloads considered, with
the sole exception of CubeSlices/Zipf-0.5.

In the case of CubeSlices/Zipf-0.5, Static performs béitin LCS/LRU for the whole range
of cache sizes considered. This is because CubeSlice®)Apiorkload contains large interme-
diate results with high benefit due to subsumption. Whil¢iStaches these results, LCS/LRU
does not because of its bias against larger results. Swngdsisfor small cache sizes on the
CubesSlices/Zipf-0.5 workload, even Exchequer/NoFulli&sand Exchequer/FullCache perform
better than Static. This is because for small cache sizesetlarge cache results lead to signifi-
cant overheads due to their repeated materialization apesial in the dynamic algorithms, and
the fixed caching approach of Static holds an advantage. WHoawir larger cache sizes, Ex-
chequer/NoFullCache and Exchequer/FullCache are ablaiotamn these larger results in the
cache longer, leading to the sharp gain in performance de¢icS

Thus, overall, we conclude that dynamic intermediate cad te large improvements over
static caching. For consistent behaviour, however, it ipartant that the intermediate result
caching policy be intelligent, taking into account the cestsus benefit of caching the results,

unlike LCS/LRU. This is further discussed next.

Need for Cost-Benefit Based Algorithms. We now compare the sophisticated approach of
Exchequer/FullCache, with the much simpler approach of /LE&S. We find that while Ex-
chequer/FullCache performs very well for all the four woidds, the relative performance of
LCS/LRU varies from very good to poor (even worse than Statiarkedly depending upon the
distribution of the intermediate results (ref. Figure 4aajl the skew of the workload.

On the CubePoints workloads (both Zipf-0.5 and Zipf-2.033/LRU performs extremely

well; in fact its performance is close to that of ExchequeliFache for this workload. This

92 CHAPTER 4. QUERY RESULT CACHING

is because the size of the intermediate results in theseloanlk is small; moreover, because
of the predicates being exclusively equalities, subsurngtiays little role and therefore larger
results have small benefit given the space they occupy. Dmusiese workloads, the LCS/LRU
strategy of preferably caching smaller results pays weidl the advantage due to occasional
high benefit larger results cached by Exchequer/FullCachetimuch. Thus, for the workloads
having small intermediate results and low subsumption dppdies, the benefits offered by
the more sophisticated Exchequer/FullCache over muchlsimb@S/LRU are modest. On the
CubeSlices workloads, however, Exchequer/FullCacheopadg much better than LCS/LRU.
This is because, due to subsumption, the larger results &dugher benefit, but LCS/LRU
preferentially maintains smaller results in cache.

LCS/LRU works on the assumption that smaller intermediageilts have high benefit. In
the cases when this assumption is satisfied, the perforn@dideS/LRU is almost as well as
Exchequer/FullCache. However, in case this assumptioa doehold and larger intermediate
results have greater benefit, LCS/LRU does not perform vietchequer/FullCache explicitly
takes into account the costs and benefits of intermediaiéiseghile taking the caching decisions
and, unlike LCS/LRU, does not rely on an ad-hoc rule. This@sakmuch less sensitive to the
size of intermediate results, and it performs much betten thther earlier algorithms on all
the four workloads. Thus, at the cost of the extra sophisticaExchequer/FullCache gives
a performance that is not only better, but is much more stéddae that given by the simpler
LCS/LRU.

Effect of Caching Additional Results in Available Extra Space. The two variants of the
basic Exchequer algorithm, Exchequer/NoFullCache andhé&oaer/FullCache, differ in the de-
cision about whether or not to make extra investments byiogaudditional results in the cache
that may remain unfilled after all the results selected bye@yeare cached; this extra space is
managed using LCS/LRU. Exchequer/FullCache makes thestnvent expecting to benefit in
the future due to having more results in the cache. On the btred, Exchequer/NoFullCache
is more conservative and does not make this investment.

Our results show that Exchequer/FullCache benefits signifiig in performance over Ex-

4.5. EXPERIMENTAL EVALUATION OF THE ALGORITHMS 93

chequer/NoFullCache by making use of the extra cache spHgere are instances when the
investment does not pay off, as in the case of CubePoinfsliZtpfor the cache size of 128%,

and the performance actually deteriorates. But this oonasioss is neglegible as compared
to the benefits obtained, as can be seen by comparing thesgofjfiixchequer/FullCache and

Exchequer/NoFullCache for all the four workloads.

It may be argued that since Exchequer/NoFullCache selestdts for caching after carefully
weighing their benefits against their costs, the extra beda@ to caching additional results
should be minimal. However, the accuracy of these beneffisrt#s on the how accurately the
past workload estimates the future workload (ref. Secti@j. 4n face of sudden changes in the
workload skew (recall that each of our workloads changew sifeer a block of 128 queries),
the estimate may be inaccurate for a certain transientghebBairing this period, therefore, the
benefit may not be accurate. Caching additional resultscesdthe impact of such occasional

inaccuracies, and makes the caching policy more stable.

Space and Time Overheads. As an estimate of the memory overhead of the Exchequer al-
gorithm, we determined the space taken by CDAG during thewian of the Exchequer algo-
rithm; recall that the CDAG includes the best plans for theg@ries in the representative set,
the expanded DAG for the current query, and the best plarthéaesults currently in the cache.
For the run of Exchequer/FullCache on the CubeSlices/Zipfworkload, the maximum size of
CDAG was approximately 23M of memory, and was independetti@tache size.

The time taken by Exchequer/FullCache depends on the caohesiace the Greedy algo-
rithm (ref. Section 4.3) chooses results only till theiresdoes not exceed the cache size. The
table below shows the average optimization costs and agdiion times per query for Exche-
guer/FullCache on the 900 query CubeSlices/Zipf-2.0 vaattifor different cache sizes; the

corresponding numbers for other workloads are similar.

Cache Size (% of DB Size)
Metric 0% | 8% | 32% | 64% | 128%

Avg. Optimization Time/Query (secg) 0.16| 1.01| 1.18| 1.22| 1.05
Avg. Estimated Cost/Query (secs)|| 16.95| 10.92| 8.26| 7.00| 6.45

94 CHAPTER 4. QUERY RESULT CACHING

As we can see, the cost of optimization and cache managersiagt Exchequer/FullCache
is an order of magnitudéess than the execution cost of the workload (the ratio caexpected
to be even less on datasets larger than TPC-0.1), thus sholanthe optimization of queries

and cache management in Exchequer has negligible overhead.

4.6 Extensions

We have developed several extensions of our techniqueshwi@ outline below.

We implemented a version of the Exchequer algorithm withogkes reorganization, which
is similar to revolution [31]. This involved invoking Gregavith the candidate set containing all
results in the best plan of each query in the Representagivét®wever, for reasonably complex
gueries involving joins this leads to a large candidateased,thus the reorganization step is very
expensive. In many cases, this led to poor gains at a high dosrefore, we abandoned this

strategy.

The Exhequer system described in this chapter supportsdiskycaching. However, the
techniques described can be extendednfain-memorycaching anchybrid (disk cum main-
memory) caching. A main-memory caching system containseal fsize area in memory allo-
cated as the cache. The modification is restricted to thernosel — there is no 1/0 overhead for
caching results or for using them; the techniques as pred@mthis chapter remain unchanged.
A hybrid caching system contains (a) a fixed size area in mgtocated as the main-memory
cache, as well as (b) a fixed size area on disk allocated asskeathe. We modify the Greedy
algorithm to work in two phases: the first phase fills up themmaemory cache, while the sec-
ond phase fills up the disk cache, choosing results from ttiegeremain in the candidate set
after the first phase is over. The two phases are identicdil iespects, except that results in the
first phase are chosen using the main-memory based cost tnodéD overhead for caching or
use of cached results), while the results in the second @rasghosen using the disk based cost

model (same as considered in this chapter).

4.7. SUMMARY 95

4.7 Summary

In this chapter we have presented new techniques for quemit aching, which can help speed
up query processing in data warehouses. The novel feancesorated in our Exchequer sys-
tem include optimization aware cache maintenance and thefus cache aware optimizer. In
contrast, in existing work, the module that makes cost-fiedecisions is part of the cache
manager and works independent of the optimizer which eisdfignteconsiders these decisions
while finding the best plan for a query. Whereas existing apgines are either restricted to
cube (slice/point) queries, or cache just the query resoliswork presents a data-model inde-
pendent framework and algorithm. Our experimental restesst to the efficacy of our cache

management techniques.

Chapter 5

Materialized View Maintenance and

Selection

Materialized views have been found to be very effective mesiing up query, as well as update
processing, and are increasingly being supported by comaheiatabase systems. Materialized
views are especially attractive in data warehousing enwients because of the query intensive
nature of data warehouses. However, when a warehouse itedptize materialized views must
also be updated. Typically, updates are accumulated andfi@ied to a data warehouse. While
the need to provide up-to-date responses to an increasery thad is growing and the amount
of data that gets added to data warehouses has been ingreghsirtime window available for
making the warehouse up-to-date has been shrinking. Thesdstcall for efficient techniques

for maintaining the materialized views as and when the wausé is updated.

The view maintenance problem can be seen as computing tihesskms corresponding to
the “delta” of the views, given the “delta”s of the base nelias that are used to define the views.
It is not difficult to motivate that query optimization tedhoes are important for choosing an
efficient plan for maintaining a view, as shown in [61]. Foas¥le, consider the materialized
viewV = (A X B X (). We assume, as in SQL, that relatiohisB andC' are multisets (i.e.,
relations with duplicates). Given that the multiset of egal/; is inserted inta”, the change to

the materialized view consists of a set of tuplgst X B) X 4§} to be inserted intd’. This

97

expression can equivalently be computed dsX §/) X B and by(B X §/) X A, one of
which may be substantially cheaper to compute. Furtherpimescases the view may be best
maintained by recomputing it, rather than by finding theailéhtials as above.

Our work addresses the problem of optimizing the maintemahasetof materialized views.

If there are multiple materialized views, as is common, icgnt opportunities exist for sharing
computation between the maintenance of different viewgcHipally, common subexpressions
between the view maintenance expressions can reduce mentes costs greatly.

Whether or not there are multiple materialized views, sigant benefits can be had in many
cases by materializing extra views or indices, whose pEsean decrease maintenance costs
significantly. The choice of what to materialize permangexiigpends on the choice of view
maintenance plans, and vice versa. The choices of the twothrerefore be closely coupled to

get the best overall maintenance plans.

Contributions. The contributions of this work lie in optimization of the wemaintenance

plans. Specifically, the contributions are as follows.

1. We show how to exploit transient materialization of commdregpressions to reduce the

cost of view maintenance plans.

Sharing of subexpressions occurs when multiple views drgleaintained, since related
views may share subexpressions, and as a result the maingeegpressions may also be
shared. Furthermore, sharing can occur even within thefpfamaintaining a single view

if the view has common subexpressions within itself.

The shared expressions could include differential exprassas well as full expressions

which are being recomputed.
Here,transient materializatiomeans that these results are materialized during the evalu-

ation of the maintenance plan and disposed on its completion

2. We show how to efficiently choose additional expressionsdonanent materialization to

speed up maintenance of the given views.

98

CHAPTER 5. MATERIALIZED VIEW MAINTENANCE AND SELECTION

Just as the presence of views allows queries to be evaluatesl efficiently, the main-
tenance of the given permanently materialized views can dgenmore efficient by the
presence of additional permanently materialized views f#8. That is, given a set of
materialized views to be maintained, we choose additiolealsto materialize in order to

minimize the overall view maintenance costs.

The expressions chosen for permanent materialization magéd in only one view main-
tenance plan, or may be shared between different views ama@nte plans. We outline

differences between our work and prior work in this area,ant®n 5.1.

. We show how to determine the optimal maintenance plan fdr gatividual view, given

the choice of results for transient/permanent materidica

Maintenance of a materialized view can either be daoeementallyor by recomputation
Incremental view maintenance involves computing the cfiéial (“delta’s) of a materi-
alized view, given the “delta’s of the base relations thatwsed to define the views, and
merging it with the old value of the view. However, increm@ntiew maintenance may
not always be the best way to maintain a materialized vienernwthe deltas are large the

view may be best maintained by recomputing it from the updtibese relations.

Our technigues determine the maintenance policy, incréahenrecomputation, for each

view in the given set such that the overall combination hastimimum cost.

. We show how to make the above three choices in an integrataden#o minimize the

overall cost.

Itis important to point out that the above three choices ajklyinterdependent, and must
be taken in such a way that the overall costs of maintainingt @fsviews is minimized.

Specifically:

e Given a subexpression useful during materialization oftiphel views, choosing
whether it should be transiently or permanently matermaliis an optimization prob-

lem, since each alternative has its cost and benefit. Tratng®vs are materialized

99

during the evaluation of the maintenance plan and discaaftedmaintenance of the
given views; such transient views themselves need not betamaed. On the other
hand, the permanent views are materialized a priori, setiseno (re)computation
cost; however, there is a maintenance cost, and a storagéwosh is long term in

that it persists beyond the view maintenance period) dukeag@érmanently materi-

alized views.

e The choice of additional views must be done in conjunctiothselecting the plans
for maintaining the views, as discussed above. For instanpan that seems quite
inefficient could become the best plan if some intermedegalt of the plan is chosen

to be materialized and maintained.

We propose a framework that cleanly integrates the choieelditional views to be tran-
siently or permanently materialized, the choice of whetaah of the given set of (user-
specified) views must be maintained incrementally or by mgmatation, and the choice of

view maintenance plans.

5. We have implemented all our algorithms, and present apaénce study, using queries

from the TPC-D benchmark, showing the practical benefitauotechniques.
Our contributions go beyond the existing state of the areiresal ways:

1. Earlier work on selecting views for materialization askfies either transient view selec-
tion (for multi-query optimization, but not for view maimtance) without considering per-
manent view selection, or permanent view selection, witlbmmsidering transient view
selection. Neither approach is integrated with the chofcdew maintenance plans. To
the best of our knowledge, ours is the first work that addsetise above aspecssmul-
taneouslytaking into account the intricate interdependence of #@sions. Making the
decisions separately may lead to a non-optimal choice. 8ei#o8 5.1 for more details of

related work.

Moreover, as far as we know, the problem of automaticallg&elg the optimum main-

tenance policy for a materialized view in the presence oéiothaterialized views has not

100 CHAPTER 5. MATERIALIZED VIEW MAINTENANCE AND SELECTION

been addressed earlier. This is a major step beyond thentstede-of-the-art in research
or practice. For example, in Oracle 8i [5], a user has to $pecimaterialized view’'s

maintenance policy during its definition in an ad-hoc manner

2. Earlier work on transient materialization (done in thateat of multiquery optimization)
is not coupled with view maintenance. While those algorgiuan be used directly on view
maintenance expressions to decide on transient view rakration, using them naively
would lead to very poor performance. We show how to integries®@ maintenance choices

into an optimizer in a way that leads to very good performance

3. We have shown the practicality of our work by implementatigour algorithms and pre-
senting a performance study illustrating the benefits to dm by using our techniques.
Earlier work does not cover efficient techniques for the enpéntation of materialized
view selection algorithms. Moreover, our implementatisrbuilt on top of an existing
state-of-the-art query optimizer, showing the practtgadf using our techniques on exist-

ing database systems.

Our performance study, detailed in Section 5.6 shows tgatfgtant benefits, often by factors
of 2 or more, can be obtained using our techniques.

Although the focus of our work is to speed up view maintenaaoel we assume an initial
set of views have been chosen to be materialized, our dhgasitan also be used to choose extra

materialized views to speed up a workload containing qeems updates.

Paper Organization. Related work is outlined in Section 5.1. Section 5.2 giveswaarview

of the techniques presented in this chapter. Section 5@itles our system model, and how the
search space of the maintenance plans is set up. Sectiond4 siow to compute the optimal
maintenance cost for a given set of permanently materchieaws, and a given set of views to
be transiently materialized during the maintenance. 8ed@i5 describes a heuristic that uses
this cost calculation to determine the set of views to besigantly or permanently materialized
so as to minimize the overall maintenance cost. Section Gtlihes results of a performance

study, and Section 5.7 presents a summary of the chapter.

5.1. RELATED WORK 101

5.1 Related Work

In the past decade, there has been a large volume of resgakitbvo maintenance, transiently
materialized view selection (also known as multi-queryiaptation) and also on permanently
materialized view selection. This work is summarized belbwever, each of these problems
have been addressed independently since the concerngltavgaral; no prior work, to the best

of our knowledge, has looked at addressing all of these pnablin an integrated manner.

View Maintenance Amongst the early work on computing the differential resoltoperations
and expressions was Blakeley et al. [3]. More recent workimarea includes [24, 12, 37, 36]
and [48]. Gupta and Mumick [25] provide a survey of view mairdnce techniques.

Vista [61] describes how to extend the Volcano query optamia compute the best mainte-
nance plan, but does not consider the materialization alesgmons, whether transient or perma-
nent. [42] and [61] propose optimizations that exploit kifexlge of foreign key dependencies
to detect that certain join results involving differensialill be empty. Such optimizations are

orthogonal and complementary to our work.

Transiently Materialized View Selection (Multi-Query Optimization) Blakeley et al. [3]
and Ross et al. [44] noted that the computation of the exjeskfferentials has the potential
for benefiting from multi-query optimization. In the pastulti-query optimization was viewed
as too expensive for practical use. As a result they did ndteymnd stating that multi-query
optimization could be useful for view maintenance.

Early work on multi-query optimization includes [54, 56,]581ore recently [59] and [47]
(Chapter 3 of this thesis) considered how to perform mule+y optimization by selecting subex-
pressions for transient materialization, and showed thatigquery optimization is practical and
can give significant performance benefits at acceptable cost

However, none of the work on multi-query optimization caless updates or view mainte-
nance, which is the focus of this chapter. Using these tecimsi naively on differential main-

tenance expressions would be very expensive, since inataimaaintenance expressions can

102 CHAPTER 5. MATERIALIZED VIEW MAINTENANCE AND SELECTION

be very large. We utilize the optimizations proposed in Ghaf but significant extensions
are required to to take update costs into account, and toeeftig optimize view maintenance

expressions.

Permanently Materialized View Selection There has been much work on selection of views
to be materialized. One notable early work in this area wa&kbyssopolous [45]. Ross et
al. [44] considered the selection of extra materializedvgi¢o optimize maintenance of other
materialized views/assertions, and mention some hezgistiabio et al. [34] provide further
heuristics. The problem of materialized view selectiondata cubes has seen much work, such
as [29], who propose a greedy heuristic for the problem. &[#8] and Gupta and Mumick [28]
extend some of these ideas to a wider class of queries.

The major differences between our work and the above work atemalized view selection

can be summarized as follows:

1. Earlier work in this area has not addressed optimizatfaesv maintenance plans in the
presence of other materialized views. Earlier work sim@suemes that the cost of view
maintenance for a given set of materialized views can be ctedpwithout providing any

details.

2. Earlier work does not consider how to exploit common spbessions by temporarily ma-
terializing them because of their focus on permanent naization. In particular, com-

mon subexpressions involving differential relations aatrive permanently materialized.

3. Earlier work does not cover efficient techniques for thelementation of materialized
view selection algorithms, and their integration intostaf-the-art query optimizers. Show-

ing how to do the above is amongst our important contribigtion

5.2 Overview of Our Approach

We extend the Volcano query optimization framework [23] engrate optimal maintenance

plans. This involves the following subproblems:

5.2. OVERVIEW OF OUR APPROACH 103

1. Setting up the Search Space of Maintenance Plans

We extend the Query DAG representation (ref. Chapter 2)clvigpresents just the space
of recomputation plans, to include the space of incremepigads as well. This new ex-
tension usepropagation-based differential generatiomhich propagates the effect of one
delta relation at a time in a predefined order. Our approastatiewer space cost of opti-
mization as compared to using incremental view maintenarpeessions, and is easier to

implement.

Propagation-based differential generation is explaime8action 5.3.2, and the extended

Query DAG generation is explained in Section 5.3.3.

2. Choosing the Policy for Maintenance and Computing the Cbstaintenance

We show how to compute the minimum overall maintenance doteogiven set of per-
manently materialized views, given a fixed set of additionaWs to be transiently ma-
terialized. In addition to computing the cost, the propossahnique generates the best
consolidated maintenance plan for the given set of pernigneraterialized views. The
maintenance plan chosen for each materialized view cancobenmental or recomputation,

based on costs.

Maintenance cost computation is explained in Section 5.4.

3. Transient/Permanent Materialized View Selection

Finally, we address the problem of determining the respestts of transient and perma-
nently materialized views that minimize the overall costir @chnique uses, as a subrou-
tine, the previously mentioned technique for computingltést maintenance policy given
fixed sets of permanently and temporarily materialized sielihe costs of materialization
of transiently materialized views and maintenance of paendy materialized views are

taken into account by this step.

We propose a greedy heuristic that iteratively picks up si@worder of benefit — where

benefit is defined as the decrease in the overall materializaost if this view is tran-

104 CHAPTER 5. MATERIALIZED VIEW MAINTENANCE AND SELECTION

siently or permanently materialized in addition to the \gemiready chosen. Then, de-
pending upon whether transient or permanent materiadizaif the view produces the

greater benefit, the view is categorized as such.

The greedy heuristic is presented in Section 5.5.1, anda&avatimizations of this heuris-

tic that result in an efficient implementation are descrilveSection 5.5.2.

5.3 Setting up the Maintenance Plan Space

In this section, we describe how the search space of mamtenalans is set up. We start by
describing our system model. As mentioned earlier, our@gr to incremental maintenance
is based on the compact propagation-based differentiargtéan technique; this is described
in Section 5.3.2. The extensions to the Query DAG repretientantroduced in Section 2.2.2,
to compactly represent the search space of view maintenalaos as well, are described in

Section 5.3.3.

5.3.1 System Model

We assume that we are given an initial set of permanentlymabred views. We may add more
views to this set. We do not consider space limitations orirgjonaterialized views in the main
part of the chapter, but address this issue in Section 5.5.3.

We assume that the updates (inserts/deletes) to relatiensgged in correspondingelta
relations, which are made available to the view refresh raeisim; for each relatior, there are
two relationss;; andd denoting, respectively, the (multiset of) tuples inseited and deleted
from the relationRk. The maintenance expressions in our examples assume ¢haltithalue of
the relation is available, but we can use maintenance esipresbased on the new values of the
relations in case the updates have already been performibe dase relations.

We assume that the given set of materialized views is redcsit times chosen by users,
which are typically regular intervals. For optimizationrpases, we need estimates of the sizes

of these delta relations. In production environments, ditesrof changes are usually stable across

5.3. SETTING UP THE MAINTENANCE PLAN SPACE 105

refresh periods, and these rates can be used to make deasiomhat relations to materialize
permanently. We will assume that the average insert andedgiees for each relation are pro-
vided as percentages of the full relation size. The insattdmliete percentages can be different
for different relations. Other statistics, such as numberew distinct values for attributes (in

each refresh interval), if available, can also be used toongthe cost estimates of the optimizer.

5.3.2 Propagation-Based Differential Generation for Incemental View Main-

tenance

We generate the differential of an expression by propagadtiffierentials of the base relations up
theexpression treeone relation at a time, and only one update type (inserboletions) at a
time. The differential propagation technique we use is d@sethe techniques used in [45] and
[44].

The differential of a node in the tree is computed using thifemintial (and if necessary,
the old value) of its inputs. We start at the leaves of the (tlee base relations), and proceed
upwards, computing the differential expressions corradpw to each node.

For instance, the differential of a joi{F; X Es), given inserts or? is computed using the
differentials of £; and E; and the old full results oF; and E,. The differential result is empty
if Risused in neitheF; nor E,. If Ris used only inF, the differential is given bydx, X E»);
symmetrically if R is used only inE,, the differential is given by E; X o6g,). If R is used in
both, the differential consists ¢fz, X Fy) U (E; X 6g,) U (0, X dg,).

The process of computing differentials starts at the bottmd proceeds upwards, so when
we compute the differential to; X E), the differentials of the inputs have been computed al-
ready. The full results are computed when required, if theyhat available already (materialized
views and base relations are available already).

Extending the above technique to operations other thangaimaightforward, using standard
techniques for computing the differentials of operatiaugh as those in [3]; see [25] for a survey
of view maintenance techniques.

It may appear that computing the changé ¥y X F.), given a change t&, requires com-

106 CHAPTER 5. MATERIALIZED VIEW MAINTENANCE AND SELECTION

putation of the entire result of;, if R is used inF;. However, our search space will include
differentials of all plans equivalent tg®; X Es). In the case of joins, in particular, the search
space will include plans where every intermediate resgluhes the differential oR. To illus-
trate this point, consider the viep X B X C'). If we wish to compute the differential of the
view when tuples are inserted inth then the plangB X (57 X C)) and (5} X (B X ()
would both be among the plans considered, and the cheapesisptelected. Similarly, if we
wish to compute the differential of the view when tuples argerted intoB, then the plans
(A M (64 X C))and(é4 X (A X C)) would be amongst the alternatives. Using the differen-
tials of a single expression, such@s X (B X C)) or (B X (A X C)), is not preferable for
propagating all the base relation differentials.

Our optimizer’s search space includes all of the altereatior computing the differentials
to (A X B X (), including the above two, and the cheapest one is choserrdpagating the
differential of each base relation.

Propagating differentials of only one type (inserts or tedeto one relation at a time, simpli-
fies choosing of a separate plan for each differential prapawg. It is straightforward to extend
the techniques to permit propagation of inserts and deletesingle relation together, to reduce
the number of different expressions computed.

We assume that the updates to the base relations are pregaye relation at a time. After
each one is propagated, the base relation is itself updatetithe computed differentials are
applied to all incrementally maintained materialized \séwwe leave unspecified the order in
which the base relations are considered. The order is n@&ctg to have a significant effect
when the deltas of all the relations are small percentagtseatlation sizes: the relation statis-
tics then do not change greatly due to the updates, and thu#ts of the plans should not be
affected greatly by the order. For large deltas, our expemial results show that recomputa-
tion of the view is generally preferable to incremental neance, so the order of incremental

propagation is not relevant.

1The differentials must beogically applied. The database system can give such a logical vidvpogtpone
physically applying the updates. By postponing physicaliaption, multiple updates can be gathered and executed

at once, reducing disk access costs.

5.3. SETTING UP THE MAINTENANCE PLAN SPACE 107

An alternative approach for computing differentials is engrate the entire differential ex-
pression, and optimize it (see, e.g. [24]). However, thaltast expression can be very large —
exponential in the size of the view expression. For instaneesider the viewA X B X (),

with inserts on all three relations. The differential in tlesult of the view can be computed as:

(EXBXC) U (AXSEXC) U (AXBMXIH) U (AXGENXSL) U
(X BXGSE) U (05 XoEXC) U (65 X5 XL

There are many common subexpressions in the above expreasobthe above expression could

be simplified by factoring, to get:
(T XBXC) U ((AUSHXIEXC) U ((AUd)) X (BUGE) ML)

This simplified expression is equivalent in effect to outht@que for propagating differentials.

Creating differential expressions (whether in the unsifigal or in the simplified form) is
difficult with more complex expressions containing openasi other than join (see, e.g. [24]).
Moreover, the size of the unsimplified expression is exptakin the number of relations. Op-
timizing such large expressions can be quite expensivee janery optimization is exponential
in the size of the expression.

In contrast, the process of propagating differentials @aexpressed purely in terms of how
to compute the differentials for individual operations/egi the differential of their inputs. As a

result it is also easy to extend the technique to new opéerstio

5.3.3 Incorporating Incremental Plans in the Query DAG Representation

Consider a database consistingrofelations: Ry, ..., R,. Then, for each equivalence node
e in the Query DAG described in Section 2.2.2, we introducadditional equivalence nodes
8, ...,62", whered?~! andé? (for i = 1,...,n) correspond to the differentials ef with
respect tOSEi anddy. respectively. For example, the equivalence nedé¢R;, X R,) is refined
into four additional equivalence nodés: (67, X R,), 62 : (67, X R), 62 : (R1 X 64,) and

(5;1 : (Rl X (5;22)

108 CHAPTER 5. MATERIALIZED VIEW MAINTENANCE AND SELECTION

We now describe the structure 6f, & = 1..2n. For each child operation nodeof e,
there exists a child operation nod€ of §*, representing the differential ef with respect to
the corresponding base relation update. In the examplesalbonsider equivalence noddas
a child operation node which is a join operation; the children ofare the equivalents nodes
representing?; and R,. The nodes! has as its child an operation node which is a join
operation, and the children of are the equivalence nodes fijf andR,. The other nodes!
are similar in structuré.As can be seen from the above example, the childreri atin be full
results as well as differentials. The rationale of this ¢taution was given in Section 5.3.2. As
also mentioned in that section, the approach is easily drtéto other operations.

The equivalence noderepresents the full result; but this result varies as ssioesliffer-
entialsd!, ..., 52" are merged with it. For cost computation purposes, the sykéeps an array
L[0..2n] with e, whereL|0] is the list of logical properties (such as schema and estidstatis-
tics) of the old result and/[i], fori = 1..2n, is the list of logical properties of the result after the

result has been merged with the differentials givedy. ., §¢.

Space-Efficient Implementation. It might seem that by including all the differential expres-
sions for each equivalence node, we have increased thefsire Query DAG by a factor of
2n. However, our implementation reduces the cost by piggyibgdke differential equivalence
and operation nodes on the equivalence and operation nodes original Query DAG. These
implementation details are explained next; however, feeesf explanation, in the rest of the
chapter, we stick to the above logical description.

For space efficiency, the equivalence nodes for each diffiateare not created separately
in our implementation. Instead, each equivalence nosi®res an array|[1..2n], whereDI[k]
logically represents the differential equivalence néfleand contains: (a) logical properties of
the differential result®, and (b) the best plan for computiag.

If e does not depend on a relatidi, or if there is no corresponding update, then the logical

properties and best plan ((a) and (b) above)#2: — 1] and D[2i] are set as null. In addition,

2The structure is a little more complicated when a relafibis used in both children of a join node, requiring a

union of several join operations. The details are stragyithrd and we omit them for simplicity.

5.4. MAINTENANCE COST COMPUTATION 109

as in the original representation, the equivalence nosdtres the best plan for (and cost of)

recomputing the entire result of the node after all update® lheen made on the base relations.

5.4 Maintenance Cost Computation

In this section, we derive formulae for the total maintereanest for a seiM,, of views mate-
rialized permanently and a satf, of views materialized temporarily. The optimizer basigall
traverses the Query DAG structure, applying these formideind the overall cost.

The setM; can have views corresponding to entire results (d.¢¢ B), as well as views
corresponding to differentials (e.§f; X B). In contrast, the se#1, can only have views corre-
sponding to entire results; this is because the differkdig only used during view maintenance.

The computation cost of the equivalence neddenoted-ost(e|M,, M;), is computed as
follows, whereC(e) is the set of children operation nodescof
min,ce(ey cost(o|Mp, My) if C(e) # ¢

cost(e|Mp, M) =
re { 0 if C(e) = ¢ (i.e. e is arelation)

In terms of forming the execution plan, the above equatipnegents the choice of the operation
node with the minimum cost in order to compute the expressioresponding to the equivalence
nodee.
The computation cost of an operation nedelenotedost(o| M, M,), is:
cost(o|M,, M,) = localcost(o) + > childcost(e|M,, M,)
e€C(o0)

wherelocalcost (o) is the “local” cost of the operation, C(o) is the set of children equivalence

nodes ofpo, and

reusecost(e) if e e M, UM,

childcost(e|M,, M;) =
cost(e|lM,, M) if e g M, UM,

During transient materialization, the view is computed araterialized on the disk for the

duration of the maintenance processing. Thus, the cosap$igntly materializing a view €

110 CHAPTER 5. MATERIALIZED VIEW MAINTENANCE AND SELECTION

M,, denoted byransmatcost(e|M,, M), is:
transmatcost(e|M,, M;) = cost(e|M,, M;) + matcost(e)

wherematcost(e), is the cost of materializing the view (on disk, assumingeriatized views
do not fit in memory).

Further, for a givere € M,, the cost of recomputing the result from the base relatiens i
cost(e]M,, M,;); and the cost of computing the differentigl, k = 1..2n is cost(6%|M,,, M,).
Let mergecost(6¥) denote the cost of merging the differential corresponding with the view
after the differentials correspondingdh . .., ¥~ have already been merged. Then, the cost of

incrementally maintaining, denotedmaintcost(e|M,, M), is:

2n
imaintcost(e|M,, M) =Y (cost(6¥|M,, M,) + mergecost(5F))

k=1
On the other hand, maintenance by recomputation involvegpating the view and materializing

it, replacing the old value. The recomputation mainten@osg, denoted bymaintcost(e|M,, M,),
is:

rmaintcost(e|M,,, M;) = cost(e|M,, M;) + matcost(e)
wherematcost(e), as before, is the cost of materializing the view.

Notice thatrmaintcost(e|M,, M;) is the same agransmatcost(e|M,, M), the cost of
transiently materializing derived above. As such, we do not consider materializinga yier-
manently and maintaining using recomputation, unless & aleeady specified as permanently
materialized. For, if recomputation is the cheapest way aiitaining a view, we may as well
materialize it transiently: keeping it permanently woulat help the next round of view main-
tenance. Thus, the cost of maintaining the permanentlymaared viewe € M,, denoted by
maintcost(e|M,, M,), is as follows, where\ is the set of views given as already materialized

in the system.

;

min(imaintcost(e|M,, M;), rmaintcost(e|M,, M;))
ifee M

imaintcost(e|M,, M)
ifee M, - M

maintcost(e|M,, M;) =

5.5. TRANSIENT/PERMANENT MATERIALIZED VIEW SELECTION 111

Fore € M, the choice corresponds to selecting the refresh mode enramtal refresh or re-
computation — depending on whichever is cheaper.
Thus, the total cost incurred in maintaining the materaiziews inM,, given that the views

in M, are transiently materialized, denotedalcost(M,, M,), is:

totalcost(M,, M) = Y maintcost(e|M,, M) + Y transmatcost(e|M,, M,;) (5.1)
eEM, eEMq

Given the seiM of views given as already materialized in the system, we teedétermine
the setM,(2 M) of views to be permanently materialized, as well as the setevis M, to
be transiently materialized, such thatalcost(M,, M;) is minimized. In the next section, we
propose a heuristic greedy algorithm to determiig and.M,.

As mentioned eatrlier, the optimizer performs a depth-fiestarsal of the Query DAG struc-

ture, applying these formulae at each node, to find the dveosl.

5.5 Transient/Permanent Materialized View Selection

We now describe how to integrate the choice of extra mateeilviews with the choice of best
plans for view maintenance. In Section 5.5.1, we presenb@s& algorithm for selecting the
two sets of views for transient and permanent materiabpatespectivel, followed by a discus-

sion of some optimizations and extensions in Section 5.5.2.

5.5.1 The Basic Greedy Algorithm

Given a set of resultd1,, and M, already chosen to be respectively permanently and trahsien
materialized, and a equivalence nadéhe benefit of additionally materializing bene f it (x| M,,, M),
is defined as:

(totalcost(M,,, M;)—

min(totalcost(M, U {z}, M,), totalcost(M,, M, U {z}))

bene fit(x|M,, M) = if 2 is a full result

totalcost(M,, M) — totalcost(M,, My U {z})

if z is a differential

112 CHAPTER 5. MATERIALIZED VIEW MAINTENANCE AND SELECTION

Procedure GREEDY
Input: M, the set of equivalence nodes for the initial materialized views
C, the set of candidate equivalence nodes for materialization
Output: M,,, set of equivalence nodes to be materialized permanently
M;, set of equivalence nodes to be materialized transiently
Begin
My =M, My =¢
while (C # ¢)
L1: Pick the node z € C with the highest benefit(z|M,, M;)
if (benefit(z| My, M;) < 0)
break; /* No further benefits to be had, stop */
if (z is a full result and maintcost(x|M,, M;) < transcost(xz|M,, My))
My, =M, U{z}
else M; = M; U {z}
C=C—{z}
return (M,, M;)
End

Figure 5.1: The Greedy Algorithm for Selecting Views for fiseent/Permanent Materialization

Using Equation (5.1), and since (a)ifs a full result, then for ak € M,,, maintcost(e|M,,, MU
{z}) = maintcost(e|M, U {z}, M;), and (b) for alle € M,, transmatcost(e|M,, M; U
{z}) = transmatcost(e|M, U {z}, M,), the above can be simplified to:

bene fit(x|M,, M) = gain(z|M,, M,) — investment(x|M,, M;)

where

gain(z|Mp, My) = Y.em, (maintcost(e|M,, M;) — maintcost(e| M, M; U {z}))
+ Y eenm, (transcost(e| My, M) — transcost(e|M,, M, U {z}))

and

(

min(maintcost(x|M,, M,), transcost(x|M,, M;))
if 2 is a full result

investment(z|M,, M;) =
transcost(x|M,, M)

if = is a differential

Figure 5.1 outlines a greedy algorithm that iterativelykgioodes to be materialized. The

procedure takes as input the gebdf candidates (equivalence nodes, and their differentiafs

5.5. TRANSIENT/PERMANENT MATERIALIZED VIEW SELECTION 113

materialization, and returns the sgt$, and M, of equivalence nodes to be materialized perma-
nently and transiently, respectivelyt,, is initialized toM, the set of equivalence nodes for the
initial materialized views, whileM, is initialized as empty. At each iteration, the equivalence
nodex € C with the maximum benefit is selected for materializationz I a full result, then
it is added to eitheM,, or M, based on whether maintaining it or transiently materiagzit
would be cheaper; if is a differential, then it is added td1; since it cannot be permanently
materialized.

Naively, the candidate sé€tcan be the set of all equivalence nodes in the Query DAG (full
results as well as differentials). In Section 5.5.2, we @@rsapproaches to reduce the candidate

set.

5.5.2 Optimizations

Three important optimizations to the greedy algorithm farltirquery optimization were pre-
sented in Chapter 3. While monotonicity optimization applunchanges, the incremental cost

update and sharability computation need to be extendedididdifferentials, as follows.

1. The incremental cost update algorithm presented in @h&pimaintains the state of the
Query DAG (which includes previously computed best planglie equivalence nodes)
across calls, and may even avoid visiting many of the ancesfa node whose cost has

been modified due to materialization or unmaterialization.

We modify the incremental cost update algorithm to handfemintials as follows.

(a) If the full result of a node is materialized, we update ol the cost of computing
the full result of each ancestor node, but also the costshi®pt differentials of
each ancestor node since the full result may be used in arhye@hit differentials.
Propagation up from an ancestor node can be stopped if thamedhange in cost to

computing the full result or any of the differentials.

(b) If the differential of a node with respect to a given ugdistmaterialized, we update

only the differentials of its ancestors with respect to i@e update. Propagation can

114 CHAPTER 5. MATERIALIZED VIEW MAINTENANCE AND SELECTION

stop on ancestors whose differentials with respect to tengipdate do not change

in cost.

2. Itis wasteful to transiently materialize nodes unlegy tire used multiple times during the
refresh. An algorithm for computing sharability of nodegasposed in Chapter 3, which
detects equivalence nodes that can potentially be usedpfeultmes in a single plan.
We consider differential results for transient matergtii@n only if the corresponding full

result is detected to be sharable.

The sharability optimization cannot be applied to full iésun our context, since a full
result may be worth materializing permanently even if it$ed in only one query. Thus

all full results are candidates for optimization.

We also observed that when it is worth transiently mateniradj the differential of an ex-
pression with respect to the update of a particular baséaelat is often worth transiently
materializing the differentials with respect to updateshef other base relations as well. To re-
duce the cost of the greedy algorithm, we consider all diffgals of an expression (with respect
to different base relation updates) as a single unit of naiegition. The number of candidates
considered by the greedy algorithm reduces greatly as &,restucing its execution time sig-

nificantly.

5.5.3 Extensions

The algorithms we have outlined can be extended in severgs.w®ne direction is to deal
with limited space for storing materialized results. Toldeigh this problem, we can modify the
greedy algorithm to prioritize results in order of benefit peit space (got by dividing the benefit
by the size of the result). If the space available for permaaad transient materialized results
are separate, we can modify the algorithm to continue cenisigl results for permanent (resp.
transient) materialization even after the space of tramgresp. permanent) materialization is
exhausted.

Another direction of extension would be to select matez@liviews in order to speed up a

5.6. PERFORMANCE STUDY 115

workload of queries. The greedy algorithm can be modifiedt task as follows: candidates
would be final/intermediate results of queries, and bentfitpueries would be included when
computing benefits. In fact, many of the approaches propea#dukr for selecting materialized
views use such a greedy approach, and our implementatibnitees provide an efficient way
to implement these algorithms. Longer term future work widnklude dealing with large sets

of queries efficiently.

5.6 Performance Study

We implemented the algorithms described earlier for findipgmal plans for view maintenance.
As mentioned earlier, the implementation performs indéxcdmn along with selection of results

to materialize. The implementation was performed on topnafxdsting query optimizer.

5.6.1 Performance Model

We used a benchmark consisting of views representing théses queries based on the TPC-D

schema. In particular, we separately considered the follpiwo workloads:

e Set of Views WorkloadA set of 10 views, 5 with aggregates and 5 without, on a total of
8 distinct relations. There is some amount of overlap adtosse views, but most of the

views have selections that are not present in other viemdjiig the amount of overlap.

¢ Single Views Workloadl'he same views as above, but each optimized and executed sepa
rately, and we show the sum of the view maintenance timeseShe views are optimized
separately, as if they were on separate copies of the datadieming between views cannot

be exploited.

The materialized views are shown in Appendix A.2. The puegafhoosing a simple workload
in addition to the complex workload is to show that our methartk very effective not only for
big sets of overlapping complex views, where one might athaesimple multi-query optimiza-

tion may be as effective, but also for singleton views withcammon subexpressions, where a

116 CHAPTER 5. MATERIALIZED VIEW MAINTENANCE AND SELECTION

technique based exclusively on multi-query optimizatiauid be useless.

The performance measureastimated maintenance costhe cost model used takes into
account number of seeks, amount of data read, amount of déatanyand CPU time for in-
memory processing. While we would have liked to give actualtrmes on a real database, we
do not currently have a query execution engine which we ctaneito perform differential view
maintenance. We are working on translation of the plans 3@ queries that can be run on
any SQL database. However, the results would not be as goibavashad fine grain control,
since the translation will split queries into small piecdsse results are stored in disk and then
used, resulting in decreased pipelining benefits. Our caosteins fairly sophisticated, and we
have verified its accuracy by comparing its estimates withiners obtained by running queries
on commercial database systems. We found close agreeménin(@&round 10 percent) on most
gueries, which indicates that the numbers obtained in odiopeance study are fairly accurate.

We provide performance numbers for different percentagepdates to the database rela-
tions; we assume that all relations are updated by the samertage. In our notation, a 10%
update to a relation consists of inserting 10% as many tgkesurrently in the relation.

We assume a TPC-D database at scale factor of 0.1, that igldteons occupy a total of
100 MB. The buffer size is set at 8000 blocks, each of size 4KBa total of 32 MB, although
we also ran some tests at a much smaller buffer size of 10@B$ldiowever, the numbers are
not greatly affected by the buffer size, and in fact smalldfdy sizes can be expected to benefit
more from sharing of common subexpressions. The tests were@ran Ultrasparc 10, with 256

MB of memory.

5.6.2 Performance Results

The purpose of the experiments reported in this section is to

1. Verify the efficacy of transient and permanent matergion of additional views (Sec-

tion 5.6.2),

2. Verify the efficacy of adaptive determination of maintec& policy for each permanently

materialized view (Section 5.6.2), and

5.6. PERFORMANCE STUDY 117

5000 5000

4000 < 4000

3000 3000
—e— no materialization
—a— only transient

—e— transient and permanen

2000

n
o
=}
o

1000 1000

Estimated Maintenance Cost (seconds), Single Views
Estimated Maintenance Cost (seconds), Set of Views

0 0

I T T T T 1 I T T T T 1
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Update Percentage Update Percentage

Single Views Set of Views

Figure 5.2: Effect of Transient and Permanent Materialrat

3. Establish that our methods are indeed practical by shgpwhat the overheads of our
optimization-based techniques are reasonable, and tmanethods scale with respect

to increasing number of views (Section 5.6.2).

Effect of Transient and Permanent Materialization

We executed the following variations of our algorithm:

e No Materialization. Neither transient nor permanent materialization of addal views
is allowed. That is, only the given set of initial views is pamently materialized and

maintained without any sharing. This corresponds to theeatistate of the art.

e Only Transient. Transient materialization is allowed, but permanent niaieation of
additional views is disallowed. This corresponds to usingtrguery optimization in

view maintenance.

e Transient and PermanenBoth transient and permanent materialization of additioga

sults is allowed. This corresponds to the techniques pexpwsthis chapter.

118 CHAPTER 5. MATERIALIZED VIEW MAINTENANCE AND SELECTION

In all the cases, the maintenance policy of each of the viewlsc¢ided based on whether recom-

putation and incremental computation is cheaper, giverahstraints in each case as above.

The results for the single view workload and the set of viewskioad are reported in Fig-

ure 5.2.

For the single-view workload, transient materializatismot useful if the view maintenance
plan used is recomputation, but when incremental compurtasi used, full results can poten-
tially be shared between differentials for updates to diifé base relations. Indeed, we found
several such instances at low update percentages. At higldate percentages we found fewer
such occurrences, and using only transient materializalio not offer much benefit. However,
permanent materialization of intermediate results resltice overall materialization cost by up
to 50% for smaller update percentages (the smallest upeatemtage we considered was 1%).
These results clearly illustrate the efficacy of the methpydposed in this chapter over and above

multi-query optimization (Chapter 3).

The set of views workload has a significant amount of overlaprag the constituent views.
Thus, the substantial reduction, as high as 48%, in the bvemntenance cost due to only
transient materialization is as expected. Permanent rabzation has a significant impact in
this case also, and further reduces the maintenance cogttoyamother 17%, resulting in a total

reduction of up to 65%.

Recall from our discussion in Section 5.4 that all additigeamanently materialized nodes
are always maintained incrementally, since if recompatabased maintenance of these views
is cheaper than incremental maintenance, then they woudbddmen for transient materialization
instead of permanent materialization. Now, the cost ofanantal maintenance increases with
the size of the updates; for larger updates, recomputafienpermanently materialized view
is a better alternative than incremental maintenance, soadlex fraction of views are perma-
nently materialized. These two facts together accountHerslightly decreasing advantage of
transient cum permanent materialization over only trarisieaterialization as update percent-
ages increase, as is clear from the convergence of the tegpplots in Figure 5.2 for either

workload.

5.6. PERFORMANCE STUDY 119

Comparing across the two workloads reveals an intereséisgltt the cost of maintenance
without selecting additional materialized view is lesstftg set of views than for the single view
workload, even though they have the same set of queries. €édsen is that in the case of set
of views, the maintenance of a view can exploit the preserfaexistingmaterialized views,
even without selecting additional materialized views. OGptimizer indeed takes such plans into

consideration even when it does not select additional riaditezd views.

We also executed tests on @mly Permanenvariant of our algorithms, where permanent
materialization is allowed, but transient materializataf additional views is disallowed. This
corresponds to using only permanent materialized viewcgelefor optimization of view main-
tenance. However, since views for which the recomputagarheaper than incremental main-
tenance can still be permanently materialized, the onfgidihce from the case of transient and

permanent is that differential results cannot be shared.

For the single view benchmark there is no possibility of stgadifferential results, since
each query can have only one occurrence of any expressiolvimg a particular differential.
For the set of views benchmark, we found that the benefits démadizing differentials was
relatively low. Full results are more expensive to compatg] since they can be used with
differentials for all relations not used in their definitidhey are also shared to a greater degree.
As a result full results are preferentially chosen for matesation, and differential results were
rarely chosen, and even when chosen gave only small beféfits, in this case too the plots for
only permanent were almost identical to the plots for tramsand permanent. To avoid clutter,

we omitted the plots for only permanent from our graphs.

To summarize this section, to the best of our knowledge autisa first study that demon-
strates quantitatively the benefits of materializing extiews (transiently or permanently) to
speed up view maintenance in a general setting. Earlier aodelection of materialized views,
as far as we are aware, has not presented any performantts ee@ept in the limited context

of data cubes or star schemas [11].

120 CHAPTER 5. MATERIALIZED VIEW MAINTENANCE AND SELECTION

10000+ 10000+

8000 8000

6000 6000+
—e— forced incremental
—a— forced recomputation
—e— adaptive

4000+ 4000+

2000 20004

Estimated Maintenance Cost (seconds), Single Views
Estimated Maintenance Cost (seconds), Set of Views

0

0

T T T T 1 | T T T 1
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Update Percentage Update Percentage

Single Views Set of Views

Figure 5.3: Effect of Adaptive Maintenance Policy Seleatio

Effect of Adaptive Maintenance Policy Selection

In the current database systems, the user needs to spezifyaimtenance policy (incremental
or recomputation) for a materialized view during its defomt In this section, we show that an
apriori fixed specification as above may not be the a good alemake a case for adaptively
choosing the maintenance policy for a view in an adaptivermaan

We explored the following variants of our algorithm:

¢ Forced IncrementalAll the permanent materialized views, including the viewseg ini-
tially as well as the views picked additionally by greedy &rced to be maintained in-

crementally.

e Forced Recomputatioincremental maintenance is disallowed and all the perntanan

terialized views are forced to be recomputed.

e Adaptive. The maintenance policy, incremental or recomputationgedirh permanently
materialized view is chosen based on the goal of minimiziegaverall maintenance cost;
one or the other may be chosen for a given view at differenatepgdercentages. This

corresponds to the techniques proposed in the chapter.

5.6. PERFORMANCE STUDY 121

In all the cases, additional transient and materializesiwere chosen by executing greedy
as described earlier in the chapter. The results of exagtit@ above variants on each of our
workloads are plotted in Figure 5.3.

The graphs show that incremental maintenance may be muoh expensive than recom-
putation; the incremental maintenance cost increasegplghfar medium to large update per-
centages — in our case, beyond 30% for the single view wadklaad beyond 20% for the
multi-view workload. In both the workloads, the adaptiveheique performs better than both
forced incremental and forced recomputation; this extgaravement, up to 34% for the single-
view workload, is due to its ability to adaptively choosergmmental maintenance for some of
the initial as well as additionally materialized views, aedomputation for the others and al-
ways maintain a mix that leads to the lowest overall maimeaaost. However, the difference
between adaptive and forced recomputation for either waikidecreases slightly with increas-
ing update percentage. This is because for large updatergages, incremental maintenance is
expensive, and hence every view is recomputed.

These observations clearly show that blindly favoring émeental maintenance over recom-
putation may not be a good idea (this conclusion is similahtofindings of Vista [61]); and
make a case for adaptively choosing the maintenance palicgdch view, as done by our al-
gorithms. It is also important to note that the ability to ndikferent maintenance policies for
different subparts of the maintenance plan, even for asiiglv, is novel to our techniques, and

not supported by [61].

Overheads and Scalability Analysis

To see how well our algorithms scale up with increasing nushioé views, we used the fol-
lowing benchmark. The benchmark uses 22 relatiB8$>; to P.S P,, with an identical schema
(P, SP, NUM) denoting part id, subpart id and number. Over these relgtiwe defined a se-
guence of 10 viewd/ to Vj,: the viewV; was a star query on four relatioddS P, PSP,;,
PSP, .1 andPSPy; 5, with PSP;.SP joined with PS Py;.P, PSPy;1.P,andPS Py; ,».P. We

then grouped these views into 10 sets, wheréthsetSV, consisted of thé viewsV;, ..., V;.

122 CHAPTER 5. MATERIALIZED VIEW MAINTENANCE AND SELECTION

& 100
S 37
|5 o)
c 80
5 8
S @
3 2 e
o £ 60
a —e— 4 relation star [
Q c
£ S
= g 40
c
S 14 %
5 IS
£ 20
)3
(e}
0 T T T T 1 0 T T T T 1
0 2 4 6 8 10 0 2 4 6 8 10
Number of Views Number of Views

Figure 5.4: Scalability analysis on increasing number eiwa

For eachSV;, we measured (a) the memory requirements of our algorithn{l@rttie time taken

by our algorithm, and report the same in Figure 5.4.

The figure shows that the memory consumption of our algorittameases practically linearly
with the number of views in the set. The reason for this is thatmemory usage is basically
in maintaining the Query DAG, and for our view set, the inseea the size of the Query DAG
is constant per additional view added to the DAG (with a fixedhber of base relations). The
memory requirement for the view sgt;,, containing 10 views on a total of 22 relations, is only
about 3.2 MB.

Further, addition of a new view from our view set to the QueA@increases the breadth of
the DAG, not its height (we think this is the expected casesality — most views are expected
to be of similar size and with only partial mutual overlapjnc& the height remains constant,
the time taken per incremental cost update (ref. Sectior2brbmains constant. However, the
number of these incremental cost updates increases quatlyatvith the size of the Query
DAG, as observed by in Chapter 3. This accounts for the gtiadnarease in the time spent by
our algorithm with increasing number of views, as shown iguFé 5.4. However, despite the
guadratic growth, the time spent on the 22-relation 10-\8et5'V;, was less than a couple of
minutes. This is very reasonable for an algorithm that néede executed only occasionally,

and which provides savings of the order of 1000’s of secomdsazh view refresh.

5.7. SUMMARY 123

Thus, we conclude that the memory requirements of our dlguorare reasonable and scale
well with increasing number of views. The time taken showadyatic growth, but this growth
is slow enough to make the algorithm practical for large gmouiew sets; especially since the
tremendous cumulative reduction in the maintenance cosssanultiple maintenance passes far
outweighs the time spent only once while executing the @lgorto make the reduction possible.

Finally, we tested the effect of our optimization of tregtaill the deltas of an expression as a
single unit of materialization instead of considering thegparately. We found that this reduced
the time taken for greedy optimization by about 30 percesitnyade no difference to the plans
generated. However, neither alternative found any sigmfibenefits for materializing delta
results, whether as a single unit or separately, for reabans/e outlined earlier when discussing
the effect of “only permanent”. Optimization time can there be saved by not considering any
deltas as candidates for materialization; we found thisiced optimization times by a further

factor of 2 from those reported in our experiments.

5.7 Summary

The problem of finding the best way to maintain a given set dennalized views is an important
practical problem, especially in data warehouses/datésmanere the maintenance windows are
shrinking. We have presented solutions that exploit comahiyrbetween different tasks in view
maintenance, to minimize the cost of maintenance. Our tqaks have been implemented on an
existing optimizer, and we have conducted a performanacy stitheir benefits. As shown by the
results in section 5.6, our techniques can generate signifspeedup in view maintenance cost,
and the increase in cost of optimization is acceptaldfe.therefore believe that our techniques

provide a timely and effective solution to a very importagalproblem.

Chapter 6

Conclusions and Future Work

In this thesis, we looked at ways to exploit shared companati order to speed up query pro-
cessing. Review of transformational cost-based queryropdition in terms of our version of the
Volcano algorithm [23] was provided in Chapter 2. The fraragexplained in that chapter is
extended in the later chapters to incorporate multi-quetingzation, query result caching and

materialized view selection and maintenence.

In Chapter 3, we looked at multi-query optimization andodirced three novel heuristic
search algorithms, Volcano-SH, Volcano-RU and Greedyhfesame. Among these, the Greedy
algorithm proved to be the most promising, and flexible emotagbe applied to the problems
of query result caching and materialized view selection araintenance. One of the major
contributions of this work are a number of techniques to tlyesoeed up the greedy algorithm,

making use of the structure of the Query DAG on which our imp@atation is based.

In Chapter 4, we presented new techniques for query restlifrog, based on the core frame-
work developed in Chapter 3, which can help speed up quepepsing in data warehouses. The
novel features incorporated in our system, Exchequemdebptimization aware cache main-
tenance and the use of a cache aware optimizer. In contnastjsting work, the module that
makes cost-benefit decisions is part of the cache managerakd independent of the optimizer

which essentially reconsiders these decisions while fonthe best plan for a query.

In Chapter 5, we presented techniques that exploit comntgrmtween different tasks to

125

speed up view maintenance, and also select additional viemsaterialization to minimize
the overall cost of maintenance. These techniques, whelexdensions of the core techniques
developed in context of multi-query optimization in Cha@ecan generate significant speedup

in view maintenance cost, and the increase in cost of opditioiz is acceptable.

Our algorithms are based on the AND/OR Query DAG representatf queries, making
them easily extensible to handle new transformations,aipes and implementations. Our algo-
rithms also handle index selection and nested queries, @manatural manner. We also devel-
oped extensions to the Query DAG generation algorithm asqgsed for Volcano [23] to detect
all common sub expressions and include subsumption demgat Further, our algorithms are
easy to implement on a Volcano-type query optimizer (e @ Ghscades optimizer of Microsoft
SQL-Server [22] and the optimizer of the Tandem ServerW&e Broduct [6]), requiring ad-

dition of only a few thousand lines of code.

Future Work

Our current work on multi-query optimization (Chapter 3edmot take space constraints into
account. While changing our techniques given a constrairihe total size of all materialized
results is straightforward (use benefit-per-unit sizegadtof benefit in the Greedy algorithm, as
in the case of Query Result Caching), it would be too pessimighis is because it is seldom
the case that the materialized results are to be used ak aatime time. As such, it should be
possible to schedule the execution such that first use of arialited resule, the point when
e gets materialized, follows the last use of another resuthe point where’ can be disposed;
thus, the same disk space can be used for bahde’. Determining such plans requires an
interleaving of query optimization and scheduling, andhpises to be an interesting problem to
explore.

Moreover, during query execution, pipelining can be gelimzd to incorporate multiple con-
sumers (multiple parts of the query that share an internbedesult) without materialization e.qg.,
the Redbrick data warehouse product allows a scan of a bigmmneto be shared by multiple

consumers. In this thesis, we have assumed that sharingsatesults in materialization; Dalvi

126 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

et al. [14] have extended this work to incorporate sharedlpips. Another followup work by
Hulgeri et al. [30] incorporates into our work the issues lidcation of memory to individual
operators executing in a pipeline. Furthermore, the nalieation cost can be eliminated or
reduced in some cases by piggybacking the materializatitintive actions of an operator that
uses the expression. For instance, if an expression isplg o a sort, it can be materialized by
simply saving runs generated during sorting, at no extra cos

In query result caching, we can compactly represent larg&laads by making use of the
fact that many queries (or parts of queries) in a large wadkiare likely to be the same except for
values of selection constants. We can unify such seleciindseplace them by a parameterized
selection, thereby collapsing many selections into a sipglameterized selection that is invoked
as many times as the number of selections we replaced.

Also, when we run short of cache space, instead of discamastgred result in its entirety,
it should be possible to (a) replace it by a summarizatiortbpdiscard only parts of the result.
We can implement the latter by partitioning selection nodés smaller selects and replacing
the original select by a union of the other selects. Two issnentroducing these partitioned
nodes are: (a) What partition should we choose? and (b) ifagjhdevel is not a select, we can
still choose an attribute to partition on, but which sholild be?

An important direction of future work is to take updates iatzount in Query Result Caching,
thus integrating the techniques developed in Chapter 4 tiagt€r 5. We need to develop tech-
niques for: (a) taking update frequencies into account wdesding whether to cache a par-
ticular result, and (b) decide when and whether to discanegfoesh cached results. We could
refresh cached results eagerly as updates happen, or tpdatéazily, when they are accessed.
Another aspect of the integration could be to take into astthe query workloads apart from
the materialized views in order to determine what additiereas to materialize.

Finally, Query DAG generation can be extended to inclgdery splitting[15] as well. For
example, giverel: o4.5(F) ande2: o4.19(F), an alternative plan fo#2 can be obtained by
introducing theremainderexpressiore3:os<a<19(£) in the Query DAG, and taking its union
with el, i.e., 04<10(E) = 0a<5(F) U 05<a<10(F). However, this plan, along with the plan

0a<s(F) = 0a<s5(04<10(F)) introduced by the subsumption derivations, leads to a égetsv-

127

ing el ande2, countering our assumptions about the Query DAG. We are@gtiyrworking on

approaches to address the above problem.

Appendix A

TPCD-Based Benchmark Queries

A.1 List of Queries Used in Section 3.6
Q2

SELECT P_PARTKEY
FROM PART, PARTSUPP, SUPPLIER, NATION, REG ON
VWHERE P_PARTKEY = PS_PARTKEY
AND S_SUPPKEY = PS_SUPPKEY
AND P_SI ZE = 10
AND S_NATI ONKEY = N_NATI ONKEY
AND N_REG ONKEY = R_REG ONKEY
AND R_NAME = 1
AND PS_SUPPLYCOST I N (
SELECT M N(PS_SUPPLYCOST)
FROM PARTSUPP, SUPPLIER, NATION, REG ON
VWHERE P_PARTKEY = PS_PARTKEY
AND S_SUPPKEY = PS_SUPPKEY
AND S_NATI ONKEY = N_NATI ONKEY
AND N_REG ONKEY = R_REG ONKEY
AND R_NAME = 1
GROUP BY PS_CONST
)

Q3

SELECT O _SELKEY
FROM CUSTOMER, ORDERS, LI NEI TEM
WHERE C_SELKEY = 1

A.1. LIST OF QUERIES USED IN SECTION 3.6

AND C CUSTKEY = O CUSTKEY
AND L_ORDERKEY = O ORDERKEY
AND O SELKEY < 13

AND L_SELKEY > 12;

Q5

SELECT MAX(O_SELKEY)

FROM CUSTOVER, ORDERS, LINEITEM SUPPLIER NATION, REG ON
WHERE C_CUSTKEY = O CUSTKEY
AND O ORDERKEY = L_ORDERKEY
AND L_SUPPKEY = S_SUPPKEY
AND C_NATI ONKEY = S_NATI ONKEY
AND S _NATI ONKEY = N_NATI ONKEY
AND N_REG ONKEY = R_REG ONKEY
AND R _REG ONKEY = 1

AND O SELKEY < 5

GROUP BY N_NATI ONKEY;

Q7

SELECT S_SUPPKEY

FROM SUPPLI ER, LINEI TEM ORDERS, CUSTOVER, NATI ON, NATI ON1

WHERE S_SUPPKEY = L_SUPPKEY

AND O ORDERKEY = L_ORDERKEY

AND C CUSTKEY = O CUSTKEY

AND S_NATI ONKEY = NATI ON. N_NATI ONKEY

AND C_NATI ONKEY = NATI ONL. NI_NATI ONKEY

AND ((NATI ON. N_NATI ONKEY = 1 AND NATI ON1. NI_NATI ONKEY = 2)
OR (NATI ON. N_NATI ONKEY = 2 AND NATI ON1. N1_NATI ONKEY = 1))

AND L_SELKEY > 16;

Q8

SELECT P_PARTKEY

FROM PART, SUPPLIER, LINEI TEM ORDERS, CUSTOMER, NATIQON, NATI ONI,
WHERE P_PARTKEY = L_PARTKEY

AND S_SUPPKEY = L_SUPPKEY

AND L_ORDERKEY = O ORDERKEY

AND O CUSTKEY = C_CUSTKEY

AND C_NATI ONKEY = NATI ON. N_NATI ONKEY
AND NATI ON. N_NATI ONKEY = R_REG ONKEY
AND R_REG ONKEY = 2

AND S_NATI ONKEY = NATI ONL. N1_NATI ONKEY
AND O SELKEY > 16

AND P_SELKEY < 3;

REG ON

129

130 APPENDIX A. TPCD-BASED BENCHMARK QUERIES

Q9

SELECT P_SELKEY

FROM PART, SUPPLIER, LINEITEM PARTSUPP, ORDERS, NATI ON
WHERE S_SUPPKEY = L_SUPPKEY

AND PS_SUPPKEY = L_SUPPKEY

AND PS_PARTKEY = L_PARTKEY

AND P_PARTKEY = L_PARTKEY

AND O ORDERKEY = L_ORDERKEY

AND S _NATI ONKEY = N_NATI ONKEY

AND P_SELKEY > 251,

Q10

SELECT M N(CUSTOMER. C_CUSTKEY)

FROM CUSTOVER, ORDERS, LI NEI TEM NATI ON

WHERE CUSTOMER. C_CUSTKEY = ORDERS. O CUSTKEY

AND LI NEI TEM L_ORDERKEY = ORDERS. O ORDERKEY

AND ORDERS. O SELKEY = 1

AND LI NEI TEM L_SELKEY < 7

AND CUSTOVER. C_NATI ONKEY = NATI ON. N_NATI ONKEY
GROUP BY CUSTOMER C_CUSTKEY, NATI ON. N_NATI ONKEY;

Q11

SELECT M N(PARTSUPP. PS_SUPPKEY)

FROM PARTSUPP, SUPPLI ER, NATI ON

WHERE PARTSUPP. PS_SUPPKEY = SUPPLI ER S_SUPPKEY
AND SUPPLI ER. S_NATI ONKEY = NATI ON. N_NATI ONKEY
AND NATI ON. N_NATI ONKEY = 7

GROUP BY PARTSUPP. PS_PARTKEY;

SELECT PARTSUPP. PS_SUPPKEY

FROM PARTSUPP, SUPPLI ER, NATI ON

WHERE PARTSUPP. PS_SUPPKEY = SUPPLI ER S_SUPPKEY
AND SUPPLI ER. S_NATI ONKEY = NATI ON. N_NATI ONKEY
AND NATI ON. N_NATI ONKEY = 7,

Q14

SELECT LI NEI TEM L_PARTKEY

FROM LI NEI TEM PART

WHERE LI NEI TEM L_PARTKEY = PART. P_PARTKEY
AND LI NEI TEM L_SELKEY = 20;

A.2. LIST OF VIEW DEFINITIONS USED IN SECTION 5.6 131

A.2 List of View Definitions Used in Section 5.6

SELECT M N(CUSTOVER. C_SELKEY)

FROM CUSTOVER, ORDERS, LINEI TEM NATI ON

WHERE CUSTOMER. C_CUSTKEY = ORDERS. O_CUSTKEY

AND LI NEI TEM L_ORDERKEY = ORDERS. O ORDERKEY

AND CUSTOVER. C_NATI ONKEY = NATI ON. N_NATI ONKEY
GROUP BY CUSTOMER. C_CUSTKEY, NATI ON. N_NATI ONKEY:

SELECT M N(CUSTOVER. C_SELKEY)

FROM CUSTOVER, ORDERS, LI NEI TEM

WHERE CUSTOMER. C_CUSTKEY = ORDERS. O CUSTKEY
AND LI NEI TEM L_ORDERKEY = ORDERS. O ORDERKEY
GROUP BY CUSTOMER. C_CUSTKEY

HAVI NG CUSTOMER. C_CUSTKEY > 2;

SELECT M N(PARTSUPP. PS_SUPPKEY)

FROM PARTSUPP, SUPPLI ER, NATI ON

WHERE PARTSUPP. PS_SUPPKEY = SUPPLI ER S_SUPPKEY
AND SUPPLI ER. S_NATI ONKEY = NATI ON. N_NATI ONKEY
AND NATI ON. N_NATI ONKEY = 7;

SELECT COUNT(SUPPLI ER. S_SUPPKEY)

FROM SUPPLI ER, LI NEI TEM ORDERS

WHERE SUPPLI ER. S_SUPPKEY = LI NEI TEM L_SUPPKEY

AND ORDERS. O ORDERKEY = LI NEI TEM L_ORDERKEY

AND LI NEI TEM L_SELKEY > 16

GROUP BY SUPPLI ER. S_NATI ONKEY, LI NEI TEM L_ORDERKEY;

SELECT M N(PARTSUPP. PS_SUPPL YCOST)

FROM PARTSUPP , PART , LINEITEM, ORDERS
WHERE PARTSUPP. PS_PARTKEY > 10

AND PART. P_PARTKEY = PARTSUPP. PS_PARTKEY
AND LI NEI TEM L_PARTKEY = PARTSUPP. PS_PARTKEY
AND ORDERS. O ORDERKEY = LI NEI TEM L_ORDERKEY
GROUP BY PART. P_PARTKEY;

SELECT PARTSUPP. PS_SUPPLYCOST

FROM PARTSUPP , LI NEI TEM, ORDERS

WHERE PARTSUPP. PS_PARTKEY > 10

AND LI NEI TEM L_PARTKEY = PARTSUPP. PS_PARTKEY
AND ORDERS. O ORDERKEY = LI NEI TEM L_CORDERKEY;

132 APPENDIX A.
SELECT PARTSUPP. PS_SUPPLYCOST
FROM PART , SUPPLIER , PARTSUPP , NATION , REG ON

WHERE PART. P_PARTKEY = PARTSUPP. PS_PARTKEY
AND SUPPLI ER. S_SUPPKEY = PARTSUPP. PS_SUPPKEY
AND SUPPLI ER. S_NATI ONKEY = NATI ON. N_NATI ONKEY
AND NATI ON. N_REG ONKEY = REG ON. R_REG ONKEY;

SELECT PARTSUPP. PS_SUPPLYCOST

FROM PART , PARTSUPP , LINEITEM, SUPPLIER
WHERE PART. P_PARTKEY = PARTSUPP. PS_PARTKEY
AND SUPPLI ER. S_SUPPKEY = PARTSUPP. PS_SUPPKEY
AND LI NEI TEM L_PARTKEY = PARTSUPP. PS_PARTKEY;

SELECT PARTSUPP. PS_SUPPLYCOST

FROM PARTSUPP , PART , LINEITEM, ORDERS
WHERE PARTSUPP. PS_PARTKEY > 10

AND PART. P_PARTKEY = PARTSUPP. PS_PARTKEY
AND LI NEI TEM L_PARTKEY = PARTSUPP. PS_PARTKEY
AND ORDERS. O _ORDERKEY = LI NEI TEM L_ORDERKEY;

SELECT PARTSUPP. PS_SUPPLYCOST

FROM PART , SUPPLI ER , PARTSUPP

WHERE PART. P_PARTKEY = PARTSUPP. PS_PARTKEY
AND SUPPLI ER. S_SUPPKEY = PARTSUPP. PS_SUPPKEY;

TPCD-BASED BENCHMARK QUERIES

Appendix B

List of Logical Transformations

In this section, we list the main logical transformationsdito generate the logical plan space.
These transformations are augmented by the subsumptimsfdranations mentioned in Chap-
ter 3. Note that, for space efficiency, we do not represett B and B X A separately; the

transformations stated below take care of this fact.

Select Predicate Pushdown

O'Q(A Mtheta’ B) — A Ng/\gl B
o9(A x B) ~ ANMy B

Join Predicate Pushdown

A Xog B — O'QA(A) Ny Ogg (B)

wheré 04 A 0" A Op = 0, attr(04) C attr(A), attr(0g) C attr(B), attr(0') € attr(A), and
attr(0") Z attr(B).

Further, A is used instead af,, is 04 = true. Similarly for oy, andoy,.. Also, if 8’ = true

thenx is used instead ofl, .

Lattr(X) is the set of attributes of relatioli; attr(6) is the set of attributes referenced in predicate

134 APPENDIX B. LIST OF LOGICAL TRANSFORMATIONS

Join Left Associativity
AX(BX(C) — (AXB)XC
— (AXC)XB
Join Right Associativity
(AXB)XC — AX(BXO)

— BNX(AXCQ)

Join Exchange

(AXB)X (CX D) — (AXC)X(BXD)
— (BXC) X (AX D)
— (AX D)X (BNXC)
— (BX D)X (ANXC)

Appendix C

Operator Cost Estimates

In this appendix, we present formulae giving the cost essor the various physical operators
considered by our optimizer. Our performance studies ifiegachapters (ref. Section 3.6.1
and Section 4.5.4) attest to the accuracy of these costassmFigure C.1 gives the values of
the constants involved in the formulae along with their ealuand Figure C.2 summarizes the
parameters used in the cost formulae.

In the discussion below, the inputs are assumed to be alailah stream; the operator does
not pay any cost for reading in the inputs. Similarly, thepaiis streamed out and the operator
does not pay any cost for writing the output. The cost is imteof the response time measured
in milliseconds.

Assuming that, on the average, the operators exddatructions per byte of data processed,
then with a block size o3 KB/block and CPU speed a? MIPS, we get the computation cost

asl x B/P ms/block. Thus, in terms d@f;, and N, the total cost” (in ms) is computed as:
C:C[O+I*B*N/P

The sections below give, for each operator, the formula€feyr, the I/O cost (in milliseconds)

andN, the blocks of memory processed by the CPU.

Relation Scan. Each block of the relation read and processed once.

C[O:R*So

136 APPENDIX C. OPERATOR COST ESTIMATES

R | readtime (ms) 2ms

W | writetime (ms) 4 ms

K | seektime (ms) 8 ms

F | index fanout 20

B | size of a block in kilobytes 4 KB

P | CPU speed in MIPS 100 MIPS
M | available main memory (number of blocks) 8000 blocks
I | average number of instructions executed per byte of data

Figure C.1: Constants

Sir | size of thek' input (number of blocks)
Ty | size of thek! input (number of tuples)
S, | size of the output (number of blocks)
T, | size of the output (number of tuples)

D;; | number of distinct values in thg” input

Figure C.2: Cost Formulae Parameters

137

N =35,

Result Materialization. Each block of the relation processed and written once.
C1IO =W % So
N =5,

Sort. In memory sort if the relation fits in the main memory. Othesgyimerge sort with fanin

M —1.
if S, <M

CIO =
{ (R+W) %S, [logy,_,(S,/M)]| otherwise
N =log,(T,) * So+ 1

Clustered Index Creation on Sorted Relation. The input is already sorted on the relevant
attribute. The index B-Tree is created bottom-up.
Size of clustered index (in number of blocks)S,* (1+1/F+1/F?*+...) = Syx F/(F—1).

Cro=W xS, F/(F—1)
N=0
Clustered Index Creation on Unsorted Relation. The input is first sorted. Then the index is
created bottom-up. The overall cost is the total of the sgrtiost and the index creation cost.
Cro=(R+W) xS, * [logy_1(Se/M)] + W xS, « F/(F — 1)

N =logo(T,) x S, + 1

Selection. The input streaming in is filtered using the predicate andebalt streamed out. No
I/O occurs.
Cio=0

N = Sig+ 5,

138 APPENDIX C. OPERATOR COST ESTIMATES

Index based Select. We assume at least first level of the clustered is in memorys, Ik
0.25 x M, assume lower levels are also partially cached.
0 if Sip <0.25% M
Cr =19 max(0, [logr(Si)]) if 0.25 M < Sy < 0.75 % M
[logr(Sio)] otherwise
Cro=S,(K+R)*Cr+RxS,

N =35,

Merge Join. Both the inputs are streaming in already sorted. We intrecurcarbitrary factor

of 2 to account for merge processing costs per block of output
C[O — 0

N=2x%S5,

Nested Loops Join. Since the inputs are streaming in, we do not pay the read @otttd outer
relation. If both inputs are smaller th@t5 « M, the join occurs in-memory without any need of

I/0O.
0 if S;jp <0.5«xMorS;; <05%«M
Cro =

R % (Sip* Si1)/(M — 1) otherwise

SiO*TIil"i_So if Slo<05*M
N = T’iO * Sﬂ + So if Sio > 0.5 % M andSﬂ <0.5x M
Tio Ty + S, otherwise

Indexed Nested Loops Join. Input O is the probe and input 1 is indexed on the join attebut

The total number of block accessBg, assuming nothing is available in the cache is given by:
B[= T’iO * max(O, |—l0gp_1(si1)—|) + Sil/Dil

Bj is the effective number block accesses taking into accaenbuffering.

I:

B { SZ/M if S < 0.5 M andB; > S% /M

B; otherwise

139
Crio = (K—FR)*B}(

N =T;%0.05+ S,

Hashing based Aggregation. We assume hybrid hashing, with half of the availablebuffers

are used in the hybrid portion.

o (R+W)*(Sip—0.5%xM) ifS,>05xM
10 —
0 otherwise

N = S;px0.01 4+ S,
Sort based Aggregation. The input is streaming in sorted, so no I/O is involved.
Cro=0

N = Sig+ 5,

References

[1] AGRAWAL, S., HAUDHURI, S.,AND NARASAYYA, V. Automated Selection of Materi-

alized Views and Indexes in Microsoft SQL Server. Ittl. Conf. Very Large Databases
(2000).

[2] ASHWIN, S., Roy, P., SESHADRI, S.,AND SUDARSHAN, S. Garbage collection in object

[3]

[4]

[5]

[6]

[7]

oriented databases using transactional cyclic referemgeting. Inintl. Conf. Very Large
Databaseg1997).

BLAKELEY, J., G@BURN, N., AND LARSON, P. A. Updating derived relations: Detecting
irrelevant and autonomously computable updates.Inth Conf. Very Large Databases
(1986).

BLAKELEY, J. A., MCKENNA, W. J.,AND GRAEFE, G. Experiences Building the Open
OODB Query Optimizer. IIACM SIGMOD Intl. Conf. on Management of Dg&ashing-
ton, DC., 1993), pp. 287-295.

BoBROWSKI, S. Using materialized views to speed up queri@sacle MagazingSept.

1999). http://www.oracle.com/oramag/oracle/99-Sepdithtml.

CELIS, P. The Query Optimizer in Tandem’s new ServerWare SQL Rioda Intl. Conf.
Very Large Databased.996).

CHAUDHURI, S. An overview of query optimization in relational systemén ACM

SIGACT-SIGART-SIGMOD Symposium on Priciples of Databgsee®g1998).

140

REFERENCES 141

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

CHAUDHURI, S., KRISHNAMURTHY, R., POTAMIANOS, S.,AND SHIM, K. Optimizing

gueries with materialized views. Intl. Conf. on Data Engineerin@laipei, Taiwan, 1995).

CHAUDHURI, S., AND NARASAYYA, V. An Efficient Cost-Driven Index Selection Tool

for Microsoft SQL Server. Inntl. Conf. Very Large Databas€$997).

CHEN, C. M., AND RoussoproLous N. The implementation and performance evaluation
of the ADMS query optimizer: Integrating query result cahand matching. lintl. Conf.
on Extending Database Technology (EDBI994).

CoLBy, L., CoLE, R. L., HAsLAM, E., AZAYERI, N., JOHNSON, G., MCKENNA,
W. J., SSHUMACHER, L., AND WILHITE, D. Redbrick Vista: Aggregate computation and

management. Iintl. Conf. on Data Engineerin{L998).

CoLBY, L., GRIFFIN, T., LIBKIN, L., MUMICK, I. S.,AND TRICKEY, H. Algorithms for

deferred view maintenance. ACM SIGMOD Intl. Conf. on Management of D4096).

CosAR, A., LiM, E.-P.,AND SRIVASTAVA, J. Multiple query optimization with depth-
first branch-and-bound and dynamic query ordering.Inth Conf. on Information and

Knowledge Management (CIKN)993).

DALVI, N., SANGHAI, S., ROy, P., AND SUDARSHAN, S. Pipelining in multi-query
optimization. Tech. rep., Indian Institute of Technolo®gmbay, 2000. Submitted for

publication.

DAR, S., FRANKLIN, M. J., DNSSON B. T., RIVASTAVA, D., AND TAN, M. Semantic

data caching and replacement.lil. Conf. Very Large Databas€4996).

DESHPANDE, P. M., RAMASAMY, K., SHUKLA, A., AND NAUGHTON, J. F. Caching
multidimensional queries using chunks. ACM SIGMOD Intl. Conf. on Management of
Data(1998).

EDMONDS, J. Optimum branchingsl. Research of the National Bureau of Standards 71B
(1967).

142 REFERENCES

[18] FINKELSTEIN, S. Common expression analysis in database applicatinpACWM SIGMOD

Intl. Conf. on Management of Da{®rlando,FL, 1982), pp. 235-245.

[19] GANGULY, S. Design and analysis of parametric query optimizatigo@thms. Inintl.

Conf. Very Large Databasdblew York City, New York, August 1998).

[20] GASSNER P., LOHMAN, G. M., SCHIEFER, K. B., AND WANG, Y. Query optimization
in the ibm db2 family.Data Engineering Bulletin 164 (1993).

[21] GRAEFE, G. Query Evaluation Techniques for Large Databas€i Computing Surveys
25, 2 (1993).

[22] GRAEFE, G. The Cascades Framework for Query Optimizatiaaita Engineering Bulletin
18, 3 (1995).

[23] GRAEFE, G., AND MCKENNA, W. J. The Volcano Optimizer Generator: Extensibility

and Efficient Search. Imtl. Conf. on Data EngineerinL993).

[24] GRIFFIN, T., AND LIBKIN, L. Incremental maintenance of views with duplicatesACM

SIGMOD Intl. Conf. on Management of DatE995).

[25] GUPTA, A., AND MUMICK, |. S. Maintenance of materialized views : Problems, tech-
niques, and applicationdEEE Data Engineering Bulletin (Special issue on Materall

Views and Data Warehousing) 18(2), 28(June 1995).

[26] GUPTA, H. Selection of views to materialize in a data warehouse.Inth Conf. on
Database Theor{1997).

[27] GUPTA, H., HARINARAYAN, V., RAJARAMAN, A., AND ULLMAN, J. Index selection for

olap. Inintl. Conf. on Data EngineerinBinghampton, UK, April 1997).

[28] GUPTA, H., AND MUMICK, I. S. Selection of views to materialize under a maintenance

cost constraint. Iintl. Conf. on Database Theo(L999), pp. 453-470.

REFERENCES 143

[29] HARINARAYAN, V., RAJARAMAN, A., AND ULLMAN, J. Implementing data cubes ef-
ficiently. In ACM SIGMOD Intl. Conf. on Management of Ddtdontreal, Canada, June
1996).

[30] HULGERI, A., SESHADRI, S.,AND SUDARSHAN, S. Memory cognizant query optimiza-

tion. InInternational Conference on Management of Data (COMAID00). (to appear).

[31] KAPITSKAIA, O., NG, R. T.,AND SRIVASTAVA, D. Evolution and Revolutions in LDAP

Directory Caches. Iintl. Conf. on Extending Database Technology (EDE00).

[32] KELLER, A. M., AND BAsu, J. A predicate-based caching scheme for client-server

database architecturéglLDB Journal 51 (1996).

[33] KoTIDIS, Y., AND RoussoprPouLO$ N. DynaMat: A dynamic view management system

for data warehouses. RCM SIGMOD Intl. Conf. on Management of Dgf999).

[34] LABIO, W., QuUASS, D., AND ADELBERG, B. Physical database design for data ware-

houses. Inntl. Conf. on Data EngineerinL997).

[35] LARSON, P. A., AND YANG, H. Z. Computing queries from derived relations. lil.

Conf. Very Large Databas€Stockholm, 1985), pp. 259-269.

[36] LEHNER, W., SDLE, R., RRAHESH, H., AND COCHRANE, R. Maintenance of Auto-
matic Summary Tables in IBM DB2/UDB. IACM SIGMOD Intl. Conf. on Management
of Data(2000).

[37] MuMmicK, I. S., QUASS, D., AND MuMICK, B. S. Maintenance of data cubes and sum-
mary tables in a warehouse. ACM SIGMOD Intl. Conf. on Management of Dg097),
pp. 100-111.

[38] PARK, J.,AND SEGEV, A. Using common sub-expressions to optimize multiple mpser
In Intl. Conf. on Data Engineering~eb. 1988).

144 REFERENCES

[39] PELLENKOFT, A., GALINDO-LEGARIA, C. A., AND KERSTEN M. The Complex-
ity of Transformation-Based Join Enumeration. Intl. Conf. Very Large Databases

(Athens,Greece, 1997), pp. 306—-315.

[40] PIRAHESH, H., HELLERSTEIN, J. M., AND HASAN, W. Extensible/Rule Based Query
Rewrite Optimization in Starburst. IACM SIGMOD Intl. Conf. on Management of Data
(San Diego, 1992), pp. 39-48.

[41] POOSALA, V., IOANNIDIS, Y., HAAS, P., AND SHEKITA, E. Improved histograms for
selectivity estimation of range predicates AGM SIGMOD Intl. Conf. on Management of
Data (1996).

[42] QUASS, D., GUPTA, A., MuUMICK, |., AND WIDOM, J. Making views self-maintainable

for data warehousing. limtl. Conf. on Parallel and Distributed Information Syste{h996).

[43] RAO, J.,AND Ross K. Reusing invariants: A new strategy for correlated geerinACM
SIGMOD Intl. Conf. on Management of DatE998).

[44] Ross K., SRIVASTAVA, D., AND SUDARSHAN, S. Materialized view maintenance and
integrity constraint checking: Trading space for time. AGM SIGMOD Intl. Conf. on
Management of DatéMay 1996).

[45] RoussopPoLous N. View indexing in relational database®A\CM Trans. on Database

Systems,72 (1982), 258-290.

[46] Rovy, P., SESHADRI, S., SUDARSHAN, S.,AND ASHWIN, S. Garbage collection in object

oriented databases using transactional cyclic referemaeting.VLDB Journal 7 3 (1998).

[47] Roy, P., SESHADRI, S., SUIDARSHAN, S., AND BHOBHE, S. Efficient and extensible
algorithms for multi-query optimization. IACM SIGMOD Intl. Conf. on Management of
Data (2000).

REFERENCES 145

[48] SALEM, K., BAYER, K., COCHRANE, R., AND LINDSAY, B. How to roll a join: Asyn-
chronous incremental view maintenance AiM SIGMOD Intl. Conf. on Management of
Data (2000).

[49] SCHEUERMANN, P., S4IM, J.,AND VINGRALEK, R. WATCHMAN: A data warehouse
intelligent cache manager. Intl. Conf. Very Large Databas€4996).

[50] SCHEUERMANN, P., $HimM, J.,AND VINGRALEK, R. Dynamic caching of query results
for decision support systems. limtl. Conf. on Scientific and Statistical Database Manage-
ment(1999).

[51] SELINGER, P., ASTRAHAN, M. M., CHAMBERLIN, D. D., LORIE, R. A., AND PRICE,
T. G. Access path selection in a relational database mareageaystem. I/ACM SIGMOD
Intl. Conf. on Management of Dafa979), pp. 23-34.

[52] SELLIS, T. Intelligent caching and indexing techniques for rela#l database systems.
Information Systemd 988), 175-185.

[53] SELLIS, T., AND GHOSH, S. On the multi query optimization problenEEE Transactions
on Knowledge and Data Engineeridune 1990), 262—-266.

[54] SELLIS, T. K. Multiple query optimization ACM Transactions on Database Systems 13
1 (Mar. 1988), 23-52.

[55] SESHADRI, P., RRAHESH, H., AND LEUNG, T. Y. C. Complex query decorrelation. In

Intl. Conf. on Data EngineerinL996).

[56] SHIM, K., SELLIS, T., AND NAU, D. Improvements on a heuristic algorithm for multiple-

query optimizationData and Knowledge Engineering {2994), 197-222.

[57] SHUKLA, A., DESHPANDE P., AND NAUGHTON, J. F. Materialized view selection for

multidimensional datasets. Intl. Conf. Very Large Databaséblew York City, NY, 1998).

[58] SoukuP, R.,AND DELANEY, K. Inside Microsoft SQL Server 7.Microsoft Press, 1999.

146 REFERENCES

[59] SUBRAMANIAN, S. N.,AND VENKATARAMAN, S. Cost based optimization of decision
support queries using transient views. AGM SIGMOD Intl. Conf. on Management of
Data(1998).

[60] TPC. TPC-D Benchmark Specification, Version 2.1, AR99.

[61] VISTA, D. Integration of incremental view maintenance into quepyimizers. Inintl.

Conf. on Extending Database Technology (EDBIB98).

[62] YANG, H. Z., AND LARSON, P. A. Query transformation for psj queries. Ihtl. Conf.
Very Large Database@righton, August 1987), pp. 245-254.

[63] YANG, J., KARLAPALEM, K., AND LI, Q. Algorithms for materialized view design in

data warehousing environment. Iltl. Conf. Very Large Databas€4997).

[64] ZHAO, Y., DESHPANDE P., NAUGHTON, J. F.,AND SHUKLA, A. Simultaneous opti-
mization and evaluation of multiple dimensional querigsACM SIGMOD Intl. Conf. on
Management of DatéSeattle, WA, 1998).

Acknowledgements

| thank S. Sudarshan and S. Seshadri for introducing me tbetieof databases, and for their
continuous enthusiasm, patience and guidance for thevagtdars. | have been very fortunate to
have Sudarshan as my thesis advisor; his appreciation atetstanding were necessary to drive
things till the finishing line. Many thanks to Krithi Ramarfvam for his interest, encouragement
and insights. It was a pleasure working with him. | thank DPEBatak for inducting me into
the fold of IIT-Bombay; but for him, | would have missed a IdWloreover, | have valued his
encouragement and support during my entire stay.

The Informatics Lab at IIT-Bombay is a fun place to work imaniks to the excellent graduate
and undergraduate students working here. | thank all my dbsn past and present, with whom
| have had the chance to work with during my stay; in particUPaP.S. Narayan — who taught
me a lot abouteal system development — and Siddhesh Bhobe, Pradeep Shendyoshd
Mistry who collaborated with me on parts of this thesis. Thsato fellow Ph.D. students Bharat
Adsul and Arvind Hulgeri for their company. | thank Arvindrtber for our several technical
discussions; they helped a lot.

| am grateful to Paul Larson for calling me all the way to Redihéor a summer internship
at Microsoft Research, and for giving me a chance to hacktiredMicrosoft SQL-Server code
and prototype my ideas; it was a very valuable experience.

This work was supported in part by an IBM Ph.D. fellowship.

Prasan Roy

