Probabilistic Databases

Amol Deshpande

University of Maryland

Goal

® Introduction to probabilistic databases
® Focus on an overview of:
e Different possible representations

® Challenges in using them

Probabilistic Data

® Traditional databases store solid “facts’ that can be considered
certain

In many cases, we don’t know things precisely

When storing beliefs etc

Answering queries with vague predicates

® institute_name like “lIITB”

If you use probabilistic models for predicting some variables
® Or classification models

Similarly, use statistical models to predict missing data

| saw a bird, but not sure if it was a dove or a sparrow

Uncertain, incomplete data is becoming more and more

common

Representing uncertainty

® A high-level classification can be made:
® Tuple-level uncertainty

® All attributes in a tuple are known precisely; existence of
the tuple is uncertain

® Vague predicates: name approx like ‘iit’

® Tuple (“lIT Bombay”, ...) will be present in the answer
with some uncertainty

® Attribute-level uncertainty

° Tulples (identified by keys) exist for certain; an attribute
alue is however uncertain

° ;Fggorrow temperature will be somewhere between 20C and

Classification

Is this classification fundamental ?
e Can proper normalization solve this problem ?

Probably yes.

Tuple-level uncertainty can be converted into attribute-level by adding
a boolean attribute

® Things will probably get messy

Other way round is harder

® Continuous distributions on attributes are common

® Gaussian on temperature for tomorrow.

Classification

® Trying to create a general model that can represent
everything is probably doomed to fail

® Ve will discuss two papers next:

® Simple tuple-level uncertainty model by Norbert Fuhr et
al

® A not-too-complex attribute-level uncertainty model that
we use in a sensor network application

® |ntractability issues are encountered very soon

Roadmap

® Tuple-level uncertainty model originally proposed by Norbert
Fuhr, and later work by Dalvi, Suciu

® Possible Worlds Semantics
® |[ntensional vs Extensional Semantics
® Query execution

® Attribute-level uncertainty model we used in a sensor
network application

® Query execution

® An attempt to put other related work in this framework

Tuple-level Uncertainty

® Proposed by Fuhr et al, more work recently by
Dalvi and Suciu

® The examples are from Dalvi, Suciu [VLDB04]

® With each tuple, a probability of existence is
associated

SP =
A | B 1" = oD
s1 | ‘'m” |1 | 0.8 s T 571 0.6
S9 ‘n’ 1 0.9 : P .

Tuple-level Uncertainty

® | ets assume that the tuple existence events
are independent of each other

® So, prob that SP= {sl,s2} is 0.5 * 0.8 = 0.4
® Similarly prob that TP = {} is empty is 0.4

® And prob that SP={sl,s2} and TP = {} is
04*04=0.16

® |n fact, we can assign a probability to each
such possibility

Possible VWorlds

pwd(DP) =

database instance | probability
D1 = {81, S92, tl} 0.24
D2 — {Sl,tl} 0.24
D3 — {Sg,tl} 0.06
Ds = {t1} 0.06
D5 — {81, 82} 0.16
D6 = {81} 0.16
D7 = {82} 0.04
Dg = ¢ 0.04

Possible Worlds
Semantics

® A probabilistic relation is simply a collection
of different possible deterministic relations
(worlds) with associated probabilities

® Probabilities add up to |

Query Evaluation

® Say you want to execute a query:
® S joinT on B =C, project on D

® Execute the query on each possible world
separately

® The final result is a probabilistic relation that
represents the end result

Aside

® Selections:

® The result contains all tuples that match a specified
predicate

® Joins:

® Given two relations, find pairs of matching tuples
and concatenate

® Projection:

® Throw away all attributes except the ones specified

Query execution

® SjoinT on B = C, project on D

SP =

D __
18] oo
S1 11 1 0.8 4 1 3 0.6
S9 ‘n’ 1 0.5 1 b '
database instance | probability Result
Dy = {s1,52,t1} | 0.24 {'P’}
Dy = {Sl,tl} 0.24 {'P}
D3 = {s2,11} 0.06 {p}
pwd(Dp) — D4 — {tl} 0.06 {}
D5 — {81, 82} 0.16 {}
Dg = {s1} 0.16 {}
D7 = {82} 0.04 {}
Dg = ¢ 0.04 0

answer | probability
{'p"} 0.54
0 0.46

Query evaluation

® This evaluation is semantically correct
® But returning this answer is not practical
® Instead try to convert it to a probabilistic relation

® For each tuple, compute the probability it is in
the answer

® By summing over all worlds which contain that
tuple

® Called ‘rank’ (given the focus of the work)

D | Rank
P’ | 0.54

SP = TP _
= |E CTD

S1 m 1 0.8 4 1 g 0.6

so | ‘n” |1 | 0.5 1 D '
database instance | probability
Dy = {81, S92, Ifl} 0.24 {'m’,n’}
Dy = {Sl,tl} 0.24 {'m’}
D3 = {82, tl} 0.06 {‘n’}

pwd(Dp) — D4 — {tl} 0.06 {}

D5 — {81, 82} 0.16 {}
D¢ = {s1} 0.16 {}
D+ = {82} 0.04 {}
Dg = ¢ 0.04 0

Another example

® SjoinT on B =C, project on A

Result

answer probability
{'m’/n’'} | 0.24
{'m'} 0.24
{'n"} 0.06
0 0.46

Returned Answer

® SjoinT on B =C, project on A

SP =
A B I =
S1 ‘m’ 1 0.8 4 f P, 0.6
S9 ‘n’ 1 0.5 1 D :
answer 7 probability
{/m/7/ n/} 0.24 D Rank
» {/m/} 0.24 | 'm’ 0.48
(«%’n’} 0.06 n’ 0.30
0.46

Note that this final relation does not satisfy independence;
The tuples after a query evaluation may become dependent

Query Evaluation

® Evaluating a general query:

® Converting to possible worlds, executing
the query separately for each one, and
then combining them is not feasible

® [wo alternative solutions that work
directly on the associated tuple-level
probabilities

® Extensional and Intensional Semantics

Extensional Semantics

® Ve will operate directly on the probabilities

® Take a normal query plan for the query, and
execute the query normally

® When a new tuple is created, compute a
probability for it

® Assuming independence (for now)

® In the end, the result tuples will have probabilities
associated

Extensional: Example

Joins: assume independence

A [B L
— C| D
m | 1 | 0.8 / T T
m’ | 1 | 0.5 - P
A B|C|D prob
‘m’” |1 [1 |’p | 0.8%0.6 = 0.48
‘m (1 |1 |’p | 0.5%0.6 = 0.30

0.6

Projection: union probability; assume independence

D

(S

P

prob

(1-(1-0.48)(1 - 0.3)) = 0.636

Umm.. This is wrong !!
Why ? The two tuples above are not independent.

Alternate Query Plan

SP =

A | B i =
S1 ‘m’ 1 0.8
so | ‘n’ |1 | 0.5

C|D
tl 1 ‘p

"1 0.6

Projection: union probability; assume independence

B prob
I | (1-(1-0.8)(1-0.5))=0.9

Join: assume independence

B|C|D prob
1 |1 |‘p |0.9%*0.6=0.54

This is correct.

The correctness unfortunately depends on the plan used.
Called “safe plans™ [Dalvi, Suciu 2004]

Safe plans

® [Dalvi, Suciu 2004] give an algorithm to find
a safe plan if one exists for a given query

® |f no safe plan, the complexity of query
evaluation is in #P-Complete

® Use intensional semantics for them (next)

Intensional Semantics

Associate a separate event with each base
tuple

For each intermediate tuple, associated an
explicit event expression

Compute the actual probabilities only when
required at the end

Intensional Semantics

SPp

S1
S92

Join (intersection):

Projection (union):

This would result in the correct probability.
Can also see correlations.

C

< | O

A | B =
‘m’ | 1 0.8

‘n’ 1 0.5 CE
A B C| D |E

‘m’ | 1 1 P | s1 Aty
mn’ |1 |1 |'p | saAty
D E

‘p’ (Sl VAN tl) \V; (82 A\ tl)

0.6

Intensional Semantics

® Does not depend on the query plan used
e Unfortunately...
® This is computationally too expensive

® Creating and carrying around the event
expressions is itself quite painful

® Evaluating a complex event expression is
#P-complete

Recap

® Tuple-level probabilities
® Extensional semantics: Limited use
e Safe plans [Dalvi, Suciu 04]
® |ntensional semantics: Intractable

® This model has extended to include some
kinds of tuple correlations [Fuhr, Roelleke]

® e.g. tuple disjointness

Roadmap

® Attribute-level uncertainty model we used in a sensor
network application

® Query execution

® An attempt to put other related work in this framework

Attribute-level
Uncertainties

® Sensor network application

® Consider two temperature sensors monitoring
temperatures at two locations

® |ocation | : templ
® [ocation 2: temp2

® We propose using a probabilistic model of the evolution
of these two variables over time [DGMHH’ VLDB 04]

® Goal was to use the attribute correlations to avoid
sensing temperature as much as possible

® The correlations tend to be very strong

Attribute-level

® Tuples exist with certainty
® temperature at time tl at location | etc.
e But the attribute values (temperatures) are uncertain

® In particular, each temperature value is a Gaussian

® p(templ at time |) is a Gaussian distribution

fa}

;
o
3
o
3
N

© I
I
[l
n=19 ‘ |
0

Attribute-level

® Moreover

® Temperatures at different locations are spatially
correlated

e temp ! and tempy*=' are correlated
® Temperatures across time are temporally correlated
® temp,*=' and temp =2 are correlated

® All these correlations are represented by using multi-

dimensional Gaussian distributions over the uncertain
attributes

Example 2-dim Gaussian

2D Gaussian PDF With High Covariance (Z)

0.14
0.12
0.1
0.08
0.06 o
0.04{

0.02

0
40

Query execution

® Range Query:Is X i within [a_i,b_i] ?
® Compute the probability:
P(X; € [a:,bi]) = / " p(a:)dzs
® Answer is YES with that probability
® This simplest integral is unfortunately non-computable
® Need to use numerical integration

® |n this particular case, tables can be used

Query Execution

® For Gaussian distributions, some queries can be
answered using closed form expressions

® But range queries can’t be

Also using a range query can result in a partial
gaussian, which would be hard to deal with further

® How do you do joins ?

® Cheng, Prabhakar address some of these issues in
their work

Query Execution

® Things get more complicated if you are using more
complex probability distributions

® |n general, exact answers are probably not achievable

® But approximations should suffice in many cases

Recap

Attribute-level uncertainty means the attribute values are
uncertain

In general, say the uncertain attributes are U_i,i = I,..,N

In the simplest case, the attributes are independent of each
other

® Even then things can get hairy

® For example, if the attributes are continuous and the
probability distributions used are Gaussians

® For continuous attributes, anything but “uniform within range
[a, b]” would probably be non-trivial to handle

® Even for discrete distributions (see later)

Recap

® |n the case we considered, the correlations were very
important, and were explicitly modeled

® A single multi-dimensional probability distribution on all
U i simultaneously

® Things get messy very soon even for the simplest
continuous distribution considered

® Query execution times can be very high

Roadmap

® An attempt to put other related work in this framework

Barbara et al [1992]

“The management of probabilistic data”, I[EEE TKDE 1992
Attribute-level Uncertainty

Discrete variables

Had a notion of “missing probability”

® Assumed to be distributed over the entire domain, but no
assumptions on exactly how

® Semantics of relational operators ended up being a bit messy

TABLE 11
EXAMPLE OF MISSING PROBABILITIES

EMPLOYEE DEPARTMENT QUALITY BONUS SALES

0.3
0.3 [Great yes] ($30-34K]

Jon Smith Toy 0.4 [GO.O(i yes] 0.5
0= [Fair 7] [535-39K]

011 7] 0.2 []

Barbara et al [1992]

® (Can model correlations between attributes

® This model has similarities to graphical models,
conditional independence etc...

® Especially when multiple relations and joins are
considered

TABLE 11
EXAMPLE OF MISSING PROBABILITIES

EMPLOYEE DEPARTMENT QUALITY BONUS SALES

0.3
0.3 [Great yes] ($30-34K]
Jon Smith Toy 8; {g;)_(:(i]yes] 0.5
. ir

0.2 [*]

Cheng, Prabhakar et al

® e.g."“Evaluating probabilistic queries over imprecise data”; SIGMOD

2003
® Attribute-level uncertainty

® The range of an uncertain attribute is assumed to be known and
hopefully not too large

® No assumptions on how the value is distributed in this range

® So temp_ | isin [18, 23] definitely; the actual distribution in this
range could be anything (e.g. a cut-off gaussian)

® Assumed independence
® Focus on answering queries such as nearest-neighbor queries

® The ranges on the attribute values are used heavily in these
algorithms

Probview

Lakshaman, Leone, Ross, Subrahmanian [TODS 97]

An attempt to generalize many of the previous models
Tuple-level uncertainties

® But for each tuple, we have a range associated

® An upper bound and a lower bound

To a large extent, succeeded in combining the different
types of probabilistic models proposed before

But the resulting model is quite complex

TRIO

Project recently started at Stanford
“Working models for uncertain data”; ICDE 06

In the models presented in this paper, they don’t really have
brobabilities

Semantics similar to possible worlds

An “uncertain” relation is defined to be a set of possible
relation instances

Example: Bird spotting relation (spotter, date, location, bird)

T1l: empty

I2: [Carol, 12/25/04, Los Altos, bluebird]

I3: [Carol, 12/25/04, Los Altos, bluebird],
[Carol, 12/26/04, Los Altos, bluebird]

TRIO

® Present one “complete” model that is closed under all
operations:

® An uncertain relation is:

® A deterministic relation with a “‘variable” associated with
each tuple

® A boolean formula f(T) over these variables
o |[f the formula is true, that particular instance exists
® This model is probably intractable computationally

® A series of less complex “incomplete” models which are probably
better suited for implementation

tl = [Carol, 12/25/04, Los Altos, bluebird]
t2 = [Carol, 12/26/04, Los Altos, bluebird]
constraint: t2 => tl

Questions !

