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Section 1 - Introduction to Column Stores

Section content references: [2, 6, 5, 3]
Image references inline
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Motivation

Consider a table t which has 10 columns a,b, . . . , j

Query on t: SELECT a FROM t WHERE b = X AND c = Y

Traditional database systems

store records contiguously with all fields from same record occurring
together (N-ary storage model)
extract all tuples satisfying the predicates
return the column a from those tuples

Since we need only the column a - reading/operating on other
columns is unnecessary

Can we improve on this?
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PAX - Partition Attributes Across

Addresses a similar problem - poor cache performance due to
irrelevant surrounding fields

Cache utilization and performance very important
In-page data placement key to high cache performance
N-ary storage model performs poorly

Example below: assume cache block size is smaller than record size -
leads to lot of cache misses

0
Image reference: [6]
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PAX - Partition Attributes Across

PAX solution - group together all values of a particular attribute
within each page into a mini-page

To reconstruct a record, perform a mini-join among the mini-pages
within each page

Exhibits superior cache performance

However, does not reduce IO

Takeaway: Organizing data by columns rather than by rows
improves locality which is good for read intensive scenarios

0
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What is a Column Store?

Row store Column Store

0
Image references: [3, 5]
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Column Store vs Row Store - Example

EmpID LastName FirstName Salary
1 Smith Joe 40000
2 Jones Mary 50000
3 Johnson Cathy 44000

Row Store Column Store
1,Smith,Joe,40000; 1,2,3;
2,Jones,Mary,50000; Smith,Jones,Johnson;
3,Johnson,Cathy,44000; Joe,Mary,Cathy;

40000,50000,44000;
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Why Column Stores?

Row oriented databases are optimized for writes

Single disk write suffices to push all fields of a record onto disk

Systems for ad-hoc querying should be read optimized

Common example from data warehousing

Load new data in bulk periodically
Long period of ad-hoc querying

For such read intensive workloads, column store architecture is more
suitable

Fetch only required columns for query
Better cache effects
Better compression due to similar attributes within a column
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Column Stores - Data Model

We present the C-Store data model as a representative data model for
column stores.

Standard relational logical data model

EMP(name, salary, age, dept)
DEPT(dname, floor)

Table - collection of projections

Projection - set of columns, sorted

Horizontally partitioned into segments with segment identifier (sId)

Column-to-row correspondence identified by position in the segment
(storage key or sKey)

0
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Column Stores - Data Model

How to put together various columns into a tuple?

Can use storage keys
What if data sorted on a different attribute?
Sorting again and merging is inefficient

Solution : Use Join indexes

Let T1 and T2 be two projections on table T

M segments in T1, N segments in T2

Join index from T1 to T2 contains M tables

Each row is of the form
(s: SID in T2, k: Storage Key in Segment s)
In other words, for each sKey in a particular partition of T1, it
specifies where (which partition, which sKey) the corresponding row
is located in T2

E. K. Venkatesh, IITB Column Store vs Row Store 11/53



Column Stores - Data Model

Join Indexes Example - Join Index from EMP3 to EMP1

0
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Compression

Column-organized data can be compressed well due to good locality

Trades IO for CPU

Compression Schemes:

Run Length encoding
Dictionary encoding
Bit-vector encoding
Null suppression
Heavy-weight schemes

Choice of compression depends on

Characteristics of data
Decompression trade-off (more compressed necessarily not the
better)
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Compression Examples

Run Length encoding
Bit-vector encoding

0
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Query Execution Operators

Decompress: Converts compressed columns into uncompressed
representation

Select : Same as relational select σ but produces bit-string

Mask : Takes a bit-string B and a projection Cs, emits only those
values from Cs whose corresponding bit in B is 1

Project : Equivalent to relational project π

Sort : Sort a projection on some columns

Aggregation Operators : SQL-like aggregates

Concat : Combines two projections which are sorted in same order

Permute : Re-order the projection according to a join index

Join : Join two projections on a predicate

Bit-string operators : BAnd (bitwise-AND), BOr (bitwise-OR),
BNot (bitwise-NOT)
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Row vs Column - Summary of Differences

Row Store Column Store
All fields in a record are stored con-
tiguously

Each field is stored separately

Byte/word alignment of records Dense packing
Compression/encoding discour-
aged

Make good use of compression

Needs to read all attributes to pro-
cess any query

Only the necessary attributes can
be read

Very good for OLTP queries Not good for OLTP but performs
much better for analytics work-
loads

And more . . .
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The Questions

Are row stores and column stores really different?

We would like to answer the following questions

Is there a fundamental difference in architecture of column oriented
databases?
Or can we use a more “column oriented” design in a traditional row
store and achieve the same benefits?
What specific optimizations set column stores apart (on warehouse
workloads)?

E. K. Venkatesh, IITB Column Store vs Row Store 17/53



Section 2 - Emulating a column store using a row store

Section content references: [1]
Image references inline
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Vertical Partitioning

Partition each relation on all its columns

How to match columns corresponding to the same row?

Store primary key - can be expensive
Use a ’position’ attribute
Rewrite queries to join on position attribute to get multiple columns
from same table

0
Image from [5]

E. K. Venkatesh, IITB Column Store vs Row Store 19/53



Index-only Plans

Disadvantages of Vertical Partitioning

Need to store position with every column
Large header for each tuple
Leads to space wastage

Alternative- Use indexes

0
Image from [5]
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Index-only Plans

Base relation stores using standard relational design

B+ tree index on every column of table

Tuple header not stored - so overhead is less

No need to access actual tuples on disk

Based on the query predicate, index is consulted and
(record id , column value) pairs are returned
These are then merged in memory

Disadvantages

If there is no predicate on the column, requires full scan of the index
to read all tuples
Example: SELECT AVG(salary) FROM EMP WHERE age > 40
With separate indexes, first find record id’s satisfying predicate on
age
Then join this with full column set for salary
Can answer directly if there is an index on (age, salary)
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Materialized Views

Idea: Access only the required data
from disk

Create views with only those columns
that are necessary

No pre-joins done

Workload needs to be known in
advance - limited applicability

SELECT F.custId FROM fact AS F
WHERE F.price > 20

0
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Section 3 - Optimizations for Column Stores

Section content references: [1]
Image references inline
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Compression

Recap

Run Length encoding

Dictionary encoding

Bit-vector encoding

Null suppression

Heavy-weight schemes
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Late Materialization

Realization: We may use column store, but ultimately, we need to
construct tuples while returning results

Standard API’s - JDBC, ODBC - rely on this model

Naive column store implementation

Store data as columns on disk
Retrieve columns, stitch them into rows
Operate using row-oriented operators
’Early Materialization’ - does not make full use of column oriented
design
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Late Materialization

Use ’late materialization’ instead
Construct tuples as late as possible

Example: Remember our first query?
SELECT a FROM t WHERE b = X AND c = Y

Early materialization would operate on many columns - unnecessary
Late materialization

Get record id’s (as bit string) which pass the predicate b = X
Get record id’s (as bit string) which pass the predicate c = Y
Perform bit-wise AND to get result bit-string
Get corresponding values (1’s in the result) from column a

Advantages
Constructs only those tuples that are necessary since many tuples
filtered by each predicate. Also, only the required columns used
Can use operators to operate on compressed data for longer duration
- hence better performance
Cache performance better with column oriented data - not polluted
with surrounding irrelevant attributes (PAX)
Block iteration performs better for fixed length attributes
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Block Iteration

Traditional row oriented systems incur per-tuple processing overhead

1-2 function calls for each tuple to get needed data

Overhead lesser when dealing with blocks of tuples at once

Applies naturally to column oriented databases

Most column stores send blocks of values in single function call
Columns tend to be fixed-width — can exploit array referencing and
parallelism
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Star Schema

Fact table - many columns; typically some data values and many
foreign keys to dimension tables
Dimension tables - small tables, a few columns

0
Image reference: [1]

E. K. Venkatesh, IITB Column Store vs Row Store 28/53



Invisible Join

Motivation

Commonly encountered query pattern in star schema

Restrict tuples from fact table using predicate on dimension table
Aggregate on fact table, grouping by columns in dimension table

0
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Traditional Approach

Pipelining based on selectivity

Join lineorder and customer and filter lineorder tuples using c .region

Append c .nation to lineorder during the join

Pipeline to join on supplier and filter using predicate, add required
fields

Pipeline to join on dwdate and filter using predicate, add required
fields

Perform aggregation
0
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Late Materialization Approach

Apply predicate on customer table and obtain matching customer
keys

Join with customer key from lineorder

Results in two sets of positions indicating the tuples matched for join
Only one set of positions (typically those of fact table) sorted
Customer key positions out of order

Extract required fields from customer table based on key

Similar join with other tables

Out of order retrieval can have significant cost

Minimize out of order extractions using Invisible Join
0
Image reference: [4]
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Invisible Join

Phase 1

Rewrite joins as selection predicates on fact table columns

Apply predicate to dimension tables to obtain list of satisfying keys

Hash the (potentially small) dimension table

Phase 2

Check fact table foreign key against this hash and construct
satisfying bitmap for fact table

After doing this for each such dimension table, take AND of bitmaps
to extract final list of satisfying fact table keys

Phase 3

Now, use the foreign keys and hashed dimension tables to extract
the required column values

Number of values to be extracted is minimized because selectivity
for entire query has been used

If the dimension table keys are sorted and contiguous starting from
1, foreign key is just an array index. So lookup in the hashed table is
extremely fast.
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Invisible Join

Phase 1

0
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Invisible Join

Phase 2

0
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Invisible Join

Phase 3

0
Image reference: [1]
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Between predicate rewriting

Remember we expressed join as a selection predicate on fact table?

Very useful if resultant dimension table after applying predicate
consists of contiguous keys (in other words, it represents a range of
keys)

Data often sorted by increasingly finer granularity - continent then
country then city, year then month then date etc.
Equality on any of the sorted columns results in a range

If so, rewrite fact table predicate as a “between” predicate instead of
“equal” predicate

Much simpler to check — no lookup, significant improvement

0
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Section 4 - Experiments

Section content references: [1]
Image references inline
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Experimental Setup

System X : a traditional row store
C-Store : a column store

Goals

Compare performance of C-Store vs column store emulation on
System X

Identify which optimizations in C-store are most significant

Infer from results if it is possible to successfully emulate a column
store using a row store

What guidelines should one follow?
Which performance optimizations will be most fruitful?
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Experimental Setup

Machine

2.8 GHz single processor, dual core Pentium(R) D workstation

3 GB RAM

Red Hat Enterprise Linux 5

4-disk array, managed as a single logical volume

Reported numbers are average of several runs

Also, a “warm” buffer pool - 30% improvement for both systems

Data

Star Schema Benchmark (SSBM) - derived from TPCH

Fact table: 17 columns, 60,000,000 rows

Table : LineOrder

4 dimension tables: largest - 80,000 rows

Tables: Customer, Supplier, Part, Date
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Experimental Setup

Workload

13 queries divided into four categories or “flights”

Data warehousing queries

Flight 1: Restriction on 1 dimension attribute + columns on the fact
table

Flight 2: Restriction on 2 dimension attributes

Flight 3, 4: Restriction on 3 dimensions
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Baseline and Materialized View

RS: Row store, RS(MV): Row Store with optimal set of materialized views, CS: column store, CS(Row-MV):Column store constructed
from RS(MV)

C-Store outperforms System X

Factor of 6 in base case (CS vs RS)

Factor of 3 with MV on System X (CS vs RS(MV))

Expected on warehouse workloads

0
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Baseline and Materialized View

RS: Row store, RS(MV): Row Store with optimal set of materialized views, CS: column store, CS(Row-MV):Column store constructed
from RS(MV)

CS(Row-MV) vs RS(MV)

Expected to be comparable

System X outperforms by a factor of 2

System X more fine tuned with advanced performance features

Not a level ground for comparison

0
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Need for a fair comparison

RS: Row store, RS(MV): Row Store with optimal set of materialized views, CS: column store, CS(Row-MV):Column store constructed
from RS(MV)

Hidden factors might affect results when comparing two different
systems

Solution: Take one system at a time, and modify it
Simulate column store inside System X
Remove performance optimizations from C-Store until row store
performance is achieved

Inferences will be more reliable

Example
CS vs CS(Row-MV) - factor of 6 difference
Although both read minimal set of columns
Thus, less IO not the only factor

0
Image reference: [1]

E. K. Venkatesh, IITB Column Store vs Row Store 43/53



Column Store simulation in System X

Configurations of System X used

Traditional (T)

Traditional (bitmap): biased to use
bitmaps; might be inferior sometimes
(T(B))

Vertical Partitioning: Each column is
a relation (VP)

Index-Only: B+Tree on each column
(AI)

Materialized Views: Optimal set of
views for every query (MV)

0
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Column store simulation in System X - Analysis

Materialized views performed the best

Index-only plans the worst

Expensive hash joins on fact table before it is filtered (to join
columns)
System X cannot retain fact table record id’s after joining with
another table

Vertical Partitioning

Comparable to MV when only a few columns were used
Tuple overheads affected performance significantly when more than
1/4th of the columns used
Scanning four columns in vertical partitioning approach took as long
as scanning the entire table in traditional approach
960 MB per column (vertical partitioning) vs 240 MB per column
(C-store)
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Column Store Performance

Approach

Start with column store

Remove each optimization

Configuration

T=tuple-at-a-time processing,
t=block processing;

I=invisible join enabled, i=disabled;

C=compression enabled, c=disabled;

L=late materialization enabled,
l=disabled

0
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Column Store Performance - By Flight

T=tuple-at-a-time processing, t=block processing; I=invisible join enabled, i=disabled; C=compression enabled, c=disabled; L=late

materialization enabled, l=disabled

0
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Column Store Performance - Analysis

T=tuple-at-a-time processing, t=block processing; I=invisible join enabled, i=disabled; C=compression enabled, c=disabled; L=late

materialization enabled, l=disabled

Analysis

Late materialization - factor of 3 (most important)

Block processing - 5% to 50% depending on whether compression
has been removed

Invisible joins - 50% to 75% (largely due to between-predicate
rewriting)

Compression - factor of 2

Tuple construction is costly - adds a factor of almost 2

0
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Section 5 - Conclusions

Section content references: [1]
Image references inline
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Conclusions

Column stores perform better than row stores for warehouse
workloads

Various optimizations in column stores contribute to improved
performance

Columns stores and row stores employ different design decisions

No fundamental hindrances for row stores to adopt some of the
techniques from column stores
Example: Store tuple headers separately, use virtual record id’s to
join data etc.

Contd . . .

E. K. Venkatesh, IITB Column Store vs Row Store 50/53



Conclusions

Emulating a column store inside row stores performs poorly

Tuple reconstruction costs
Per tuple overheads

Some important system improvements necessary for row stores to
successfully emulate column stores

Can we build a complete row store that can transform into column
store for warehouse workloads?

SAP HANA has a solution for this 1

1
Interested readers refer: http://dl.acm.org/citation.cfm?doid=2213836.2213946 (also on course website)
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Thank You!

Questions?
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