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Abstract

Compression is typically used for databases that have grown large enough to create a
strain on system storage capacity. We argue here that database compression is attractive
from a query processing viewpoint also and should therefore be implemented even when
disk storage is plentiful. We study the compression ratio and query processing perfor-
mance of a variety of compression algorithms, for different compression granularities,
on a set of relations drawn from real world databases. Our study shows that attribute
level compression is the best from a query processing perspective but has poor compres-
sion ratio. We then present a modified attribute level compression algorithm, based
on non-adaptive arithmetic compression, called COLA , which simultaneously provides
good query processing and reasonable compression ratios. We also analyze, for a range
of relational queries, the performance benefits that COLA could be expected to provide.

1 Introduction

Many database management systems provide support, to a limited extent, for users to store
data in compressed form. The main motivation for providing compression, in both the
commercial products and in the research literature, has been the savings in disk storage.
Compression is therefore recommended to be used for databases that have grown so large
as to create a strain on system storage capacity.



In this paper, we argue that database compression is attractive not only from a storage
reduction viewpoint, but also from a performance viewpoint. In fact, we claim that database
compression should always be implemented, even when disk storage is plentiful. This
is because, as shown in this paper, a properly designed compression scheme can provide
significant improvement in query processing performance (measured in disk accesses).
Since query processing is the essential function of database systems, compression should
primarily be viewed as an effective performance enhancement tool.

To derive improved query processing performance, the database compression scheme has
to be designed carefully. To motivate this, consider a typical SQL query such as

Select * from STUDENT where Roll_Number between 5000 and 6000 and City = “Bombay”

which retrieves, from the STUDENT relation, all those students from Bombay city whose
roll number is between 5000 and 6000. Assume that the STUDENT relation is 2000 pages
long, that it is ordered and (B-tree) indexed on the roll number attribute. Also assume
that roll numbers range from 1 to 10000, which means that the tuples with roll numbers
between 5000 and 6000 are located in pages 1000 through 1200 of the relation (assuming a
packed file).

In the absence of compression, it is easy to deduce that answering the above query will
initially take h disk accesses to access the first relevant page through the index (where A is
the height of the index), and then an additional 200 disk accesses to retrieve the data pages
and perform the selection based on city. Since h is typically only 3 or 4, the query will be
answered in less than 205 disk accesses.

Now, consider the case where the file corresponding to the STUDENT relation has been
compressed, say by half, using a high-quality compression algorithm such as compress in
Unix or pkzip in DOS (compression factors of 50 percent are quite common with these
algorithms). Assuming a uniform degree of compression, we can expect that the tuples
with roll numbers between 5000 and 6000 will now be in pages 500 through 600 of the
compressed file. Again, as in the uncompressed case, the first relevant page can be accessed
through the index and then 100 disk accesses are required to retrieve the compressed data
pages. However, in order to decode these 100 pages, all the pages from the beginning
of the compressed relation until page 500 also have to be decompressed! This is because
compression techniques such as compress incrementally build decoding tables during the
decompression phase based on the data encountered so far (in the earlier pages). In other
words, their context of compression covers the entire file. So, the query processing cost in
the compressed case (equal to h 4+ 600) is almost three times the cost in the uncompressed
case! In addition, every tuple in the (100) relevant data pages has to be decompressed to
check whether the student is from Bombay city. This will involve significant decompression
overhead at the CPU.

Examples of the above type have led database users to employ compression only as a
last resort when storage is scarce. However, the problem lies more in the implementation of
compression rather than in compression itself. To understand this, consider an alternative
scheme where compression is done at the attribute level, that is, where each attribute of
each record is compressed separately, resulting in the compression context being localized
to the attribute. In this case, the above query may be answered quite efficiently: Just



as in the file compression case, the 100 relevant pages are accessed through the index.
In contrast, however, the initial 500 pages do not have to be decompressed because of
the localized context. The selection predicate is then implemented as follows: Compute
the compressed equivalent of the attribute value “Bombay”, and for each student tuple,
compare its compressed city attribute value with this value. Whenever a match is found,
the corresponding tuple is decompressed and returned to the user.

In the above attribute compression scheme, query processing requires only about half
the number of disk accesses (h + 100) as compared to the uncompressed case (and 1/6 as
compared to the file compression case). Another important feature of the scheme is that
the significant decompression overhead that was incurred in the file compression case is
kept to the minimum possible here since only the result tuples, that is tuples useful to
the user, are decompressed. Viewed differently, the query has been executed completely
in the compressed domain itself. We will use the term “precise decompression” to refer to
processing strategies where decompression is limited to only the result tuples.

A word of caution, however, with regard to the above numbers: Our claim that at-
tribute compression requires only 1/6 the number of disk accesses as compared to the file
compression case implicitly assumes that the compression ratios for both file compression
and attribute compression are comparable. However, as later, this may typically not be
the case since the reduced context creates lesser compression opportunity, resulting in lower
compression ratios for attribute level compression.

Goals

From the above discussion, we see that our goal is to develop a database compression
scheme that simultaneously provides efficient query processing, precise decompression and
good compression ratio. In designing such a scheme, there are three main questions that
need to be answered:

e What compression algorithm should be used? There are several well-known com-
pression algorithms such as Huffman coding, Arithmetic coding, LZW algorithm, etc.
Further, as explained later, there are both adaptive and non-adaptive flavors of some
of these algorithms.

e What compression granularity should be used? As discussed above, file level com-
pression is clearly untenable for query processing. The other possible compression
granularities are page, record, and attribute. However, in going from file compression
to other levels of compression, there may be a fall in compression ratio.

e Should meta-data also be compressed? Since meta-data in the form of catalogs or
indexes are small in comparison to data files, it appears that the small storage savings
that are realized by compression are more than offset by the increased processing
complexity. A related question is whether the indexes should be built using the
original keys or their compressed equivalents. Here again, it appears that retaining
the original keys is far more attractive since the lexical ordering provided by the index
leaf level is retained.



In this paper, we study the compression ratio performance of a variety of compression
algorithms for different compression granularities. The experiments were conducted on a
set of relations drawn from real-world databases including a bibliographic database and a
bank database. Our experiments show that non-adaptive algorithms perform better than
their adaptive counterparts and that Arithmetic coding has the best overall performance.
We also argue that attribute level compression is the best from a query processing perspec-
tive. However, our experiments show that its compression ratio can be considerably worse
than that of the other compression granularities. To address this issue, we present a modi-
fied attribute level compression algorithm based on non-adaptive Arithmetic coding called
COLA, which simultaneously provides good query processing and reasonable compression
ratios. Finally, we analyze, for a range of relational queries, the performance benefits that
COLA could be expected to provide.

Related Work

The general ideas of database compression have been discussed in [RH93, Sev83, Cor85,
Bas85, Reg81]. These studies evaluate the various types of compression techniques from
a storage perspective but do not consider their suitability for database query processing.
Considerable work has been done in the field of compression of scientific and statistical
databases (e.g. [Bat83, EOS81, McC82, BH83, LST83]). However, the nature of data and
the types of operations in these databases differ significantly from those in commercial
databases, which is our target domain. In the last few years, a couple of studies [Gra93,
BW94] have considered issues similar to those considered in this paper. While [Gra93]
brings out the potential of compression with respect to query processing, [BW94] is an
excellent investigation of the implementation practicality of these ideas. Our work builds
on their efforts and attempts to analyze these issues in more detail, especially from the
query processing perspective.

2 Compression: Pros and Cons

In this section, we describe the benefits and drawbacks typically associated with compres-
sion. For the drawbacks, we discuss how these may be addressed in modern database
systems.

Apart from the query processing improvement mentioned in the Introduction, compres-
sion results in several other benefits also [GS91, Bas85, BW94, Gra93] by virtue of storing
data in a reduced space: Firstly, disk seek times are reduced since the compressed data fits
into a smaller physical disk area. Secondly, related objects can be clustered closer together.
Thirdly, data compression increases disk bandwidth by increasing the information density
of the transferred data. Finally, network communication costs are reduced in distributed
databases and client-server applications due to reduced data transfer.

From a transaction processing perspective, there are two further benefits [Gra93]: First,
the buffer hit rate increases since a larger fraction of the database now fits into the buffer
pool. Second, the disk I/O to log devices is decreased since the log records are shorter.

The drawbacks typically associated with compression [Bas85, Gra93, BW94]| are: Firstly,



data compression and decompression may result in considerable overhead at the CPU. This
overhead can be minimized if the compression scheme ensures precise decompression, as
explained in the Introduction. Secondly, compression results in data records becoming
variable-sized. However, many modern database systems are already equipped to han-
dle variable-sized records in order to efficiently support schema transformation [BW94] or
variable length attributes (as required in SQL92), so this is not a real problem. Thirdly,
compression schemes pose a problem with regard to precisely (in the decompression sense)
processing comparative predicates such as “less than” or “greater than” since the lexical
relationships between data values may not be retained by their compressed equivalents. It
may be possible to address this issue by using recently proposed order preserving compres-
sion algorithms [ZIL93], if they turn out to be efficient. Finally, compression, by virtue of
reducing redundancy in data, reduces the ability to recover from errors. For example, a
single bit error in the output may result in the decoder misinterpreting all subsequent bits.
Problems of this nature, however, are taken care of by current communication protocols
and disk controllers.

3 Compression Techniques

Most data compression techniques are based on one of two models: statistical or dictio-
nary. In statistical modeling, each distinct character of the input data is encoded, with the
code assignment being based on the probability of the character’s appearance in the data.
In contrast, dictionary-based compression schemes maintain a dictionary which contains
a list of commonly occurring character strings in the data and their corresponding codes.
While encoding, these schemes search for the longest string of input characters that also
appear in their dictionary. Once this string match is identified, the code of the matched
string is used in place of the entire character string.

Yet another dimension of lossless compression algorithms is that they may be adaptive
or non-adaptive. In adaptive schemes no prior knowledge about the input data is assumed
and statistics are dynamically gathered and updated during the encoding phase itself. On
the other hand, non-adaptive schemes are essentially “two-pass” over the input data: during
the first pass, statistics are gathered, and in the second pass, these values are used for
encoding.

In this study, we have considered three popular compression techniques: Huffman,
Arithmetic and LZW. The Huffman coding and Arithmetic coding techniques implement
the statistical model, while the LZW scheme is dictionary-based. For Huffman and Arith-
metic, we have experimented with both adaptive and non-adaptive flavors, but for LZW, we
have used only its adaptive version since the non-adaptive version is comparatively complex
to implement. In addition to these techniques, we have also evaluated the simple Run-
length encoding (RLE) scheme which is supported in many current database systems (e.g.
IMS [BW94]). The RLE scheme does not use either the statistical or the dictionary model
— it simply recognizes successive repetitions of characters.

In the remainder of this section, we describe the salient features of the above-mentioned
compression algorithims.



3.1 Huffman Coding

In Huffman coding [Huf52], a tree is constructed with the characters of the input alphabet
forming the leaves of the tree. The links in the tree are labeled with either 0 or 1 and the
code for a character is the label sequence that is obtained by traversing the path from the
root to the leaf node corresponding to that character in the Huffman tree. The tree is built
such that the most frequent characters in the input data are assigned shorter codes and the
less frequent characters are assigned longer codes.

As mentioned earlier, both adaptive and non-adaptive versions of Huffman coding ex-
ist. In non-adaptive Huffman coding, the Huffman tree is completely built before encoding
starts, using the known frequency distribution of the characters in the data to be com-
pressed. The tree remains unchanged for the entire duration of the encoding process. The
decoder builds the same tree using the same frequency distribution before decoding the
compressed data. On the other hand, adaptive Huffman coding starts off with a Huffman
tree that is built using an assumed frequency distribution of the characters in the input
data. A common practice is to assume that all characters are equally likely to occur. As the
encoding process proceeds and more data is scanned, the Huffman tree is modified based on
the data seen up to that point. Therefore, the Huffman tree changes dynamically during the
encoding phase and the same character can have different codes depending on its position
in the data being compressed (unlike non-adaptive Huffman).

3.2 Arithmetic Coding

In Huffman coding, each character is encoded into an integral number of bits. This means
that the codes may often be longer than that strictly required for the character. For example,
a character with probability of occurrence 0.9 can be coded minimally in 0.135 bits (from
information-theoretic considerations), but requires 1 full bit in this scheme.

Arithmetic coding attempts to address the above shortcoming of Huffman coding. Here,
the compressed version of the input data is represented by the interval between two real
numbers of arbitrary precision, (z,y), where 0 < z < y < 1. At the start, the range
is initialized to the entire interval [0,1), and this range is progressively refined. During
the encoding process, each character is assigned an interval within the current range, the
width of the interval being proportional to the probability of occurrence of that character.
The range is then narrowed to that portion of the current range which is allocated to
this character. So, as encoding proceeds and more data is scanned, the interval needed to
represent the data becomes smaller and smaller, and the number of bits needed to specify
the interval grows. The more likely characters reduce the range less than the unlikely
characters and hence add fewer bits to the compressed data. The implementation details
of this scheme are given in [Wit87, Jon88].

Arithmetic coding also has adaptive and non-adaptive versions, in exactly the same
manner as that described previously for Huffman coding.



3.3 LZW Coding

The LZW (Lempel-Ziv-Welch) algorithm [Wel84] is a popular compression technique, used
in both Unix compress and DOS pkzip. The scheme is organized around a string translation
table. This table contains a set of character strings and their corresponding code values.
The string table has a prefix property that for every string in the table its prefix is also in
the table. That is, if string wK, composed of some string w and some single character K, is
in the table, then w is also in the table.

In LZW, the input data is scanned sequentially and the longest recognized input string
(that is, a string which already exists in the string table) is parsed off each time. The
recognized string is then replaced by its associated code. Each parsed input string, when
extended by its next input character, gives a string that is not yet present in the string
table. This new string is added to the string table and is assigned a unique code value. In
this manner, the string table is built incrementally during the compression process.

3.4 Runlength Coding

Runlength coding (RLE) is an extremely simple and old compression technique. It takes
advantage of consecutive repetitions (or runs) of the same character. For example, consider
the string “cccccaabbbb”. In normal 8-bit ASCII representation, the string would require 11
bytes (since the string has 11 characters). RLE, however, can encode the string in 8 bytes,
as “¢pchaagbd”. In this coding scheme, ¢ is a special character (usually a non-printable
character such as ASCII 255), which denotes the beginning of a run. It is followed by the
repeated character and the length of its run.

4 Compression Granularity

In a typical relational database system, compression can be conceptually applied at four
different levels, namely the file level, the page level, the record level and the attribute level.
At the file level, each relation in the database is compressed as a whole. Since compression
techniques generally work better with larger data sets, we may expect that the best com-
pression ratios would be realized at this level. In particular, adaptive models may find the
large size favorable (since they have to dynamically gather statistics). With respect to query
processing, however, file level compression requires the entire relation to be decompressed
each time data in the relation is accessed (as illustrated in the example in the Introduc-
tion). Further, if the relation is modified (insert, delete or update), the whole relation has
to be recompressed. This compression/decompression overhead may result in extremely
slow query processing times.

An alternative scheme is for relations to be compressed at the page level. Since the page
size in most commercial databases is around 4K, this gives scope for deriving good com-
pression ratios. However, page compression has a problem similar to that described above
for file compression: The whole page has to be decompressed and possibly re-compressed
when data within the page is referenced or modified. This may again result in poor query
processing times. Moreover, since the compressed pages are of variable size, additional
complications arise: Firstly, a compressed page will occupy only a fraction of a disk block



(assuming that the uncompressed pages are of disk block size, as is usually the case). Since
disk transfer is usually in units of a disk block, fetching the compressed page will also bring
in unnecessary data corresponding to other pages. Secondly, compressed pages may cross
disk block boundaries. So, two disk block accesses have to be made to fetch the single
compressed page to memory. Thirdly, when data in a page is updated, the size of the com-
pressed page may change. In that case, the page has to be relocated to some other block,
creating a hole in its previous position.

The next level of compression is the record level. Since, on average, record sizes vary
between 40 to 120 bytes [BW94], the limited data size may cause a significant fall in the
compression ratio, especially for adaptive algorithms. However, from the query processing
viewpoint, this option is more attractive since only the records that potentially contribute
to the result need to be decompressed and compressed. The decompression overhead is also
limited due to the small size of a record. Since record level compression deals with fixed
size pages, we can use disk-block sized pages to facilitate efficient disk I/O. Moreover, with
fixed sized pages, the buffer manager of the DBMS does not have to be modified to account
for compression. The only additional memory requirement is a record sized buffer which is
used to hold uncompressed records when needed.

The lowest possible level at which compression can be done is at the attribute level. The
common data types of attributes are integers, floating point numbers and character strings.
Generally, the size of integers varies from 1 to 4 bytes, that of floating point numbers from
4 to 8 bytes and that of characters strings from 10 to 32 bytes [BW94]. This means that the
data size is really limited and may result in poor compression ratios, especially for adaptive
techniques. From the query processing viewpoint, however, the attribute level appears to
be the most attractive because it permits precise queries, that is, where decompression is
necessary only for the result tuples, as illustrated in the example in the Introduction. This
ability to execute a query entirely in the compressed domain appears extremely desirable
from a performance viewpoint. Further, even if the need arises to decompress/compress an
attribute, only that attribute and not the entire tuple needs to be decompressed /compressed.
This is a distinct advantage over record level compression where entire tuples need to be
decompressed /compressed. In addition, attribute level compression can be implemented
with fixed sized pages, as in the case of record level compression.

Apart from having different compression ratios on the input data, each of the above
granularities has different amounts of space overhead involved in their implementations.
These overheads reduce the effective compression ratio. In certain situations, as explained
in Section 6, the overheads may even exceed the compression ratio, leading to an expansion
of the input file! Therefore, it is critical to include overhead effects in evaluating compression
schemes, and this aspect is analyzed below.

4.1 Owverheads

In file level compression, the file is compressed as a whole and no overhead is involved. In
page level compression, pointers are stored for random access to the variable sized pages.
The number of such pointers is equal to the number of pages in the relation, and therefore
the space overhead as a fraction of relation size is insignificant. In record level compression,



due to the variable-sized records, a pointer to the beginning of each record has to be
maintained. So the percentage overhead is directly proportional to the compression ratio.
At the attribute level, a pointer is stored for each attribute of each record. This overhead
can, therefore, be significant, especially if the number of attributes in the relation is large.
We will hereafter use the term pointer overhead to refer to the storage overhead arising
out of pointers. An important point to note here is that the problem of tracking variable
sized attributes is inherent to databases that support variable sized attributes (which many
modern databases do). So, the pointer overhead that arises out of compression cannot
really be considered as an additional overhead in these systems since the same overheads
will also be present in the uncompressed case. However, in order to be conservative in
our estimates of performance improvement due to compression, we assume that pointer
overhead is present only for the compressed files.

Apart from pointer overhead, there is another type of overhead which may become
significant only in the case of attribute level compression: Each attribute when compressed
may not occupy an integral number of bytes in general. But the compressed attributes are
stored in an integral number of bytes so that tracking and accessing the attributes does
not become cumbersome. So in general the last few bits in the last byte of a compressed
attribute is wasted as no useful information is stored in them. On average, a half-byte
may be wasted for each attribute, and this may become significant if the relation has many
small-sized attributes. We will hereafter use the term padding overhead to refer to this
overhead.

4.2 Summary

From the above discussions, we observe that there are inherent difficulties in simultaneously
achieving the desired goals of efficient query processing, precise queries, and good compres-
sion ratio. To quantitatively evaluate the performance effects and the various tradeoffs
involved, we conducted a set of experiments which are discussed in the following sections.

5 Experiments

The goal of our experiments was to evaluate the compression ratio performance as a function
of compression algorithm and compression granularity. Three relations drawn from real
world databases were used as inputs to the experiments: a relation from a bibliography
database, a relation from a bank database, and a synthetically generated relation that was
constructed based on value distributions observed in real data. In this section, we describe
the compression granularities, the compression schemes and the input relations that were
considered in our experiments.

5.1 Compression Granularities

Compression performance was evaluated at all four granularities, namely, file, page, record
and attribute levels. In file level compression, the entire source relation was compressed
as a whole. In page level compression, each individual page of the source relation was



compressed separately. On compression, therefore, each page became variable sized. The
individual pages were tracked to provide for random access. In record level compression,
the compressed file consists of fixed size pages. Each record after compression was placed
contiguously in a page until the page became full. Then the next page was filled, and so on.
In attribute level compression too, the compressed relation consists of a number of fixed
sized pages. The individual attributes of a record were compressed, concatenated to form
a record, and stored contiguously in a page until the page became full. Then the next page
was filled, and so on.

In all the above cases, the additional pointers required to locate data (as discussed in
Section 4) were stored. For record and attribute level compression, the compressed records
were filled into pages such that they did not cross page boundaries.

5.2 Compression Schemes

The following lossless compression algorithms were implemented: Run-length coding, LZW
coding, adaptive and non-adaptive Huffman coding, adaptive and non-adaptive Arithmetic
coding. Each of the algorithms was implemented at all four compression granularities (file,
page, record and attribute). To verify that the encoding algorithms worked correctly, the
corresponding decoding algorithms were also implemented at all the four levels.

For the non-adaptive schemes, the entire relation was scanned once to gather relevant
statistics. Based on these statistics, the relations were compressed. In the adaptive schemes,
the algorithms gathered statistics and simultaneously compressed the data based on the
statistics gathered up to that point. An important point to note here is the scope of the
statistics used to compress data at any point of time. In non-adaptive case, the entire
relation is scanned first. So, the scope of the statistics, used to compress data at any point
in time, for any of the four levels of compression, is the entire relation. This is not the
case with adaptive schemes where the statistics used to compress data at any point in time
depends on the level at which compression is being done. For file level compression, the
scope of the statistics used refers to the entire file scanned up to the point. On the other
hand, for page level compression, the scope of the statistics used refers to the portion of the
page scanned up to that point. Similarly, the scope of the statistics gathered is limited to
individual records and attributes in the case of record level and attribute level compression,
respectively.

5.3 Relations

Having described the compression schemes, we now move on to discussing the relations on
which these compression schemes were operated. As mentioned earlier, the relation suite
includes a bibliographic relation, a bank relation and a synthetic relation. The bibliographic
relation and the bank relation were obtained from a public archive and from a major bank,
respectively.

The bibliographic relation contains names of authors, titles, publishers, etc. of various
scientific publications. Each tuple in the relation has 11 attributes which are all character
strings and the size of each tuple is 1828 bytes. The number of records is 80690.



Table 1 : Statistics of Relations
Relation | Number of | Character | Numeric | Record | Number | Records | Unused
Name | Attributes Strings Size of per Space
Records Page per Page
PUB 11 11 0 1828 80690 2 428
BANK 24 19 5 236 55862 17 72
NUM 12 1 11 76 9964 53 56

The bank relation contains information about customer accounts. Each tuple consists
of 24 attributes, of which 19 are character strings and 5 are numeric. The size of each tuple
is 236 bytes and the relation has 55862 records.

The attributes of the above two relations are predominantly character strings. In order
to also include numeric data, a third file was constructed synthetically consisting of records
having mostly numeric attributes (the attribute values were derived from distributions that
were fitted to real data). Each tuple of this relation has 12 attributes, and of these only
one is a character string with the remaining 11 being numeric attributes. The size of each
tuple is 76 bytes and the relation has 9964 records.

In the remainder of this paper we will refer to the bibliographic relation, the bank
relation and the synthetic numeric relation as PUB, BANK, and NUM respectively. The
above relation statistics are summarized in Table 1. The table also describes the number
of records per page, the unusable space at the end of each page (since records do not cross
page boundaries) and the total number of pages. These statistics are computed assuming
the following physical implementation of relations: Each relation is a file consisting of 4K
pages and each page has a 12 byte header information. The rest of the page (4084 bytes)
is used to store the data records.

6 Results

Having described the experimental framework, we move on to presenting and analyzing the
results of our experiments in this section. The performance measure in these experiments
is the percentage compression, PC, which is defined as

size of compressed data

PC=(1- ) % 100

size of uncompressed data

that is, it is the percentage equivalent of the compression ratio. In general, PC is a number
that ranges between 0 and 100 (higher values correspond to greater degrees of compression).
In some of our experiments, however, there was an ezpansion in the data instead of the
intended compression — in such cases, PC has a negative value.

To help explain the observed PC results, our programs kept track of the average, mazi-
mum and minimum sizes of the compressed records, as well as the variance in the size of the
compressed records. We also monitored the average overhead, which is the average number



of bytes wasted per page to store pointers for tracking variable sized records/attributes!,
and the average fragmentation, which is the average amount of unused space left per page
on average due to not allowing records to cross page boundaries. (Note that these statistics
are relevant only for record and attribute level compression).

Table 2: Percentage Compression For PUB

Method | File | Page | Record | Attribute
RLE 80.35 | 80.00 79.1 77.50
LZW 91.57 | 82.90 | 79.18 70.23
AA 79.45 | 76.10 | 72.40 60.00
AH 75.58 | 73.95 | 71.80 66.50
NAA 78.82 | 78.70 | 78.01 76.57
NAH 74.91 | 74.86 | 74.40 72.20

Table 3: Percentage Compression For BANK
Method | File | Page | Record Attribute
RLE 24.40 | 24.20 | 22.00 11.00
LZW 81.00 | 65.00 | 36.78 -19.56
AA 51.36 | 48.43 29.45 -6.27
AH 49.79 | 47.50 | 35.44 -3.13
NAA 46.41 | 46.35 | 44.87 26.50
NAH 43.45 | 43.40 | 41.20 28.47

Table 4: Percentage Compression For NUM

Method | File | Page | Record Attribute
RLE 21.54 | 21.0 18.60 4.25
LZW 46.20 | 40.59 20.63 -33.33
AA 44.19 | 42.48 20.74 -21.20
AH 44.02 | 38.67 13.83 -2.66
NAA 44.38 | 44.33 | 40.21 19.57
NAH 43.85 | 43.80 | 39.89 20.74

The percentage compression achieved for the relations PUB, BANK and NUM are
shown in Tables 2, 3 and 4, respectively. In these tables, the percentage compression is
listed for each compression algorithm and for each compression granularity. The following
acronyms have been used to identify the compression algorithms: RLE for Run-length

!The padding overhead was also measured and found to be insignificant compared to the pointer overhead.



coding, LZW for Lempel-Ziv coding, A A for adaptive Arithmetic coding, NA A for non-
adaptive Arithmetic coding, AH for adaptive Huffman coding and NAH for non-adaptive
Huffman coding.

In Tables 2, 3 and 4, we first note that the general compression levels are highest for PUB
(around 75 percent) and comparatively smaller for BANK and NUM (less than 50 percent).
This can be attributed to the fact that PUB is purely a textual database while BANK and
NUM have significant numeric attributes which are less amenable to compression. Observe
that even in NUM, which is almost exclusively numeric, compression levels of upto 40
percent are achievable for certain algorithm-granularity combinations (NAA or NAH with
Record level).

Another point to note is that the non-adaptive algorithms almost always outperform
their adaptive counterparts. This is especially so with regard to attribute level compression,
where the adaptive algorithms result in expansion, instead of compression (for NUM, LZW
has an expansion of 33 percent!).

Finally, we observe that the compression levels generally decrease from file level com-
pression to attribute level compression for all of the considered algorithms.

We now discuss the performance of each compression algorithm in detail. The analysis
concentrates on record and attribute levels because, as we have already observed, file or
page levels are unsuitable for efficient query processing.

RLE : The percentage compression for RLE is unexpectedly good for PUB, whereas for
BANK and NUM, it is significantly worse than some of the more sophisticated tech-
niques. The good compression ratio for PUB is due to the fact that in PUB, the
average sizes of most of the attributes is much smaller than their maximum allocated
size (this fact was experimentally confirmed). As a result, long runs of blanks are
there in most fields — a perfect opportunity for RLE. In fact, this type of skewed data
brings out the inadequacy of using fixed length records in databases and highlights
the need for supporting variable sized records.

The deficiencies of RLE become apparent when the percentage compressions for
BANK and NUM are studied. It is also observed that the compression ratio declines
from file level to attribute level. This is because of the increasing pointer overhead
with finer granularity. (In RLE, there is no padding overhead because records or
attributes are always encoded in integral number of bytes.) In summary, it appears
that although RLE is simple to implement and fast to execute, its effectiveness and
use appears limited to primarily those databases that are almost entirely comprised
of textual data.

Adaptive Schemes : It is seen that for adaptive schemes the compression ratio falls
significantly as the unit of compression changes decreases. The reduction as we move
from the page level to the record level is due to two reasons. Firstly, the scope to
adapt is further reduced in this case and is confined to one record length. Secondly,
the pointer overhead comes into play. Finally, as we move to the attribute level, we
find that the relations are expanded, rather than compressed. This is because, when
the scope to adapt is confined to the length of a single attribute, the compression
levels are rather low, and the effect of the pointer overhead predominates with the net



Table 5 : Percentage Compression
Relation COLA Coding

PUB 79.54

BANK 44.21

NUM 21.27

result that the compression achieved is offset and the relations expand. The LZW is
the worst affected in this respect, followed by adaptive Arithmetic and then adaptive
Huffman. In summary, it appears that although adaptive techniques may be suitable
for file or page level compression, they are not suitable for record level compression
and infeasible for attribute level.

Non-adaptive Schemes : The non-adaptive Arithmetic and Huffman schemes produce
comparable results in all cases at all levels. It is observed that the compression
achieved at the record is slightly less than that at the page level due to pointer
overhead. However, the reduction in compression from the record to attribute level
is more significant. This is mainly because of the increased pointer overhead and to
some extent due to the padding overhead.

6.1 Column-Based Attribute Compression

From the above analysis, it appears that attribute level compression results in comparatively
poor compression ratios. However, from the query processing perspective, the ideal com-
pression level is attribute, as discussed earlier. To address this dilemma, we investigated
the possibility of devising alternative attribute compression schemes that would provide
reasonably good compression ratio. In particular, we tried the following scheme: Instead
of having a single frequency distribution for the entire relation, use a separate frequency
distribution table for each attribute in a relation. The motivation for this approach is that
data belonging to the same attribute is usually semantically related and is expected to
have similar distribution. Therefore, the characteristics of each attribute are reflected more
accurately and the smoothing out of the peculiarities of a particular attribute (which may
happen in the case of a single relation-wide frequency distribution) is prevented.

The above column-based approach was used in combination with non-adaptive Arith-
metic coding to design an attribute level compression scheme, which we call COLA
(Column-Based Attribute Level Non-Adaptive Arithmetic Coding). The COLA algorithm
was tested on the three relations used in the earlier set of experiments. The results obtained
from this experiment are listed in Table 5.

In this table, we see that the compression percentages show a significant improvement
over the attribute level compression with a single frequency table, except in the case of NUM
where the improvement is only marginal. For PUB, the compression achieved now is better
than even the corresponding file level compression (Table 2)! For BANK it is virtually the
same as that achieved at the record level. In NUM, however, this scheme fails to match



the record level compression. This is because almost all the attributes are numbers which
are similarly distributed and no additional semantics is captured by maintaining frequency
tables for each column. However, in general, different columns in a relation may be expected
to have unique characteristics of their own — in such cases, maintaining multiple frequency
tables may be of significant benefit as observed for PUB and BANK.

Since attribute level encoding is best suited for query processing and since COLA is
expected to give results that are, on an average, comparable with record level compression,
we can conclude that COLA ? appears to be a viable approach to database compression.
In the next section, we study the effectiveness of COLA with respect to query processing
for a variety of relational queries.

7 Query Processing

In this section, we analyze the query processing performance that the COLA database
compression scheme (Section 6) could be expected to provide for relational operators such
as select, project, join and updates. Since join is the most complex relational operator, we
use two examples of equijoin to highlight the performance effects. The first is a nested-loop
block join, and the second is a join with a clustering index on the join attribute of one of
the join relations. Apart from join, we have also analyzed the performance improvement
for a number of other queries — these results are available in [Ray95].

In the analysis, we use the following notation: Tg denotes the number of tuples in
relation R, Bgr denotes the number of blocks in which these tuples fit when stored packed
(contiguously), and Ig 4 is the expected number of different values of attribute A that are
found in relation R. Further, the compressed version of relation R is denoted by R., and
the number of blocks required to store this compressed relation is denoted by Bpg,.

The following assumptions are made to facilitate our analysis: (1) We assume that the
join attributes are compression dependent. Two attributes are said to be compression
dependent if they are compressed using the same statistics. Since it is usually meaningful to
perform a join only on those attributes that have the same data type and are semantically
related, using the same statistics to compress them is not expected to result in degraded
compression ratios. The important point to note here is that an equi-join on compression
dependent attributes can be precisely decompressed. (2) A uniform distribution of values
is assumed for all attributes. Therefore, the expected number of tuples having a particu-
lar value of attribute A in relation R is given by Tr/Ir 4. (3) The cost of accessing the
index is ignored. This is because the cost of index access is the same for both the uncom-
pressed and the compressed cases since the indices are kept uncompressed (as mentioned
in Section 1). In addition, the contribution of indexing to the total cost in terms of disk
accesses is marginal. (4) The page size is equal to the size of a disk block. This implies
that fetching a page from disk involves one disk access. (5) The total cost of a relational
operation is expressed in terms of the number of disk block accesses required for that op-
eration. Although, compression/decompression overhead is a CPU cost, we normalize it to

It may appear feasible to have a COLA algorithm wherein the column statistics are obtained adaptively.
‘We have not considered this variant since query processing would then require, for the decompression of an
attribute, decompression of all the preceding values in the column.



an equivalent number of disk accesses to facilitate comparison. For normalizing, the time
required for decompression of relevant data is divided by the time to access one disk block,
denoted by t4,. (6) The cost of decompressing a byte of compressed data is given by g
This cost, expressed in terms of number of disk accesses, becomes (tgp/tdq)-

The following parameter values are assumed: (1) The time required for a disk access,
tda, 18 10ms [CL88]. (2) The time required to decompress a byte, ta, is 1 psec. This is
deliberately chosen to be on the higher side (decompressing a byte typically takes 15 machine
instructions [BW94], and most current processors, including PCs, have more than 15MIPS
rating) in order to ensure that the claimed performance improvements due to compression
are conservative. (3) The compression factor (PC) is 50 percent (this figure is based on the
experimental evidence presented in Section 6).

With the above assumptions, we now move on to computing the cost of joining two
representative relations R(A, B) and S(B, C) on attribute B. The statistics of relations R
and S are assumed to be as follows:

e For relation R, Tr = 100000, Br = 10000, Bg, = 5000, Ir g = 10000.
e For relation S, Ts = 100000, Bs = 5000, Bs, = 2500, Is g = 10000.

7.1 Nested-loop Block Join

We first compute the cost of joining R and S using a nested-loop block join algorithm [KS91].
Assuming that M memory buffers are available, the join procedure is as follows:

1. Divide S into segments of M — 1 blocks each.

2. Read the first segment of S and in the remaining buffer cycle through all the blocks of
R. Produce the join of each tuple in the segment with each tuple in the block that match
on the join attribute.

3. Repeat Step 2 for each segment of S.

During each invocation of Step 3 in the above algorithm, each block of S is read once,
and each block of R is read once for each segment in S. As the number of segments in S
is approximately [Bg, /(M — 1)], the input cost of the compressed join (measured in disk
accesses) is

Br.[Bs./(M —1)] + Bs,

Including the output cost of the equijoin, the total cost is
By, [Bs./(M —1)] + Bs, + (Br.Ts + Bs,Tp)/mas(In.s, Is) + DCost (1)

where DClost is the decompression cost of the result tuples that are presented to the user.

The expected number of tuples in the output of the join is TrTs/max(Ir.B,Is.B)-
Further, it has been observed in [BW94] that tuples are typically 40 to 120 bytes long. This
means that, assuming 50% compression, the sizes of the compressed tuples range between 20
to 60 bytes. For this example, we make the very conservative assumption that the average
size of a compressed tuple is 100 bytes. With these assumptions, DCost evaluates to

DCost = TrTs/maz(Ig.,Is.B) * 100 * (ta/t4,) = 10000 disk accesses



for the example relations R and S. It should be noted that since the join attributes are
assumed to be compression dependent, no decompression is required for matching join
attribute values.

Using the above decompression cost and substituting the parameters of the example
relations R and S in Equation 1, we compute the overall cost of the compressed join, for a
buffer pool of size M = 101, to be 212500 disk accesses.

The corresponding cost for the uncompressed join is given by

Bgr[Bs/(M —1)] + Bs + (BrTs + BsTr)/maz(Ir.B, Is.B) (2)

and substituting the parameter values yields a cost of 655000 disk accesses, which implies
that the compressed join is almost 70 percent cheaper than the uncompressed join.

7.2 Clustered Index Join

We now compute the cost of joining R and S using a clustered index join algorithm [KS91].
Assuming that relation S has a clustering index on B, the join procedure is as follows:

1. Read the first block of R.

2. For each tuple of the block, use the index to find the matching tuples of S. Since the
index is not stored compressed, the attribute B has to be decompressed for each tuple of R
in order to retrieve the corresponding tuples of S via the index.

3. Repeat the above steps for all the blocks of R.

For each tuple in R, 1/Igp of the total tuples of S have to be fetched which im-
plies that maz(1l, Bs,/Is.p) block accesses have to be made. This results in a total of
Tr maz(l, Bs,/Is.p) block accesses. In addition, each block of R has to be read once.
Finally, we have to include the cost of writing out the result relation and the decompression
cost involved in the entire operation. Therefore, the total cost comes to

BRC +Tgr ma:E(l,BSC/Is_B) + (BRCTS + TRBSC)/mafC(IR.B, IS.B) + DCost (3)

The decompression cost, DCost, is the sum of the decompression cost of the join attribute
of R and the decompression cost of the result tuples that are presented to the user. The
decompression cost of the join attribute depends on the size of the compressed attribute.
Integer or floating point attributes are usually 4 bytes long and character strings are typically
10 to 40 bytes long in their uncompressed form [BW94]. Assuming 50% compression, the
maximum size of the compressed join attribute will therefore normally not exceed 20 bytes.
Accordingly, the maximum cost of decompressing the join attribute in all the tuples of R is

Tr * 20 * tgp/tge = 200 disk accesses

The decompression cost of the result tuples is 10000 disk accesses, as shown earlier in the
nested join example.

Using the above decompression costs and substituting the parameters of the example
relations R and S in Equation 3, the overall cost of the compressed join evaluates to 190200
disk accesses.



The corresponding cost for the uncompressed join is given by
Br + Tr maz(1, Bs/Is.g) + (BrTs + TrBs)/maz(Ig.B, Is.B) (4)

and substituting the parameter values yields a cost of 260000 disk accesses, which implies
that the compressed join is almost 30 percent cheaper than the uncompressed join.

Summary

The above examples show that significant query processing improvement can be derived
through the COLA scheme for equi-join operations. In a similar manner, the reduction in
cost for other relational operators can also be derived — a detailed discussion is available
in [Ray95].

8 Conclusions

Data compression has traditionally been used primarily for reducing disk space usage in
database management systems. In this paper, we have attempted to demonstrate that
data compression could lead to significant savings during query processing. Before incorpo-
rating compression in a database system, two fundamental choices about the compression
algorithm and the compression granularity have to be exercised. We evaluated the com-
pression ratio performance of Huffman coding, Arithmetic coding, LZW coding and RLE
coding, for file, page, record and attribute granularities, on both text-based and numeric-
based relations. Our study revealed that attribute level compression is highly desirable
from a query processing perspective but yields a poor compression ratio. We addressed
this problem by modifying attribute level compression to operate on a column basis with
regard to obtaining frequency distribution statistics. The motivation for this approach was
that values in a column are typically semantically related and therefore offer greater scope
for compression. The column-based approach was combined with non-adaptive Arithmetic
compression, which had the best overall performance in our compression ratio experiments,
to create the COLA algorithm. This algorithm simultaneously provides good query process-
ing and reasonable compression ratios. A detailed analysis of a variety of relational queries
shows that COLA could be expected to provide significant improvements in practice.

This results of this study demonstrate that data compression can be a useful perfor-
mance enhancement tool which not only reduces disk space usage but also provides sig-
nificant performance savings during query processing. We plan to further strengthen this
result by implementing COLA in a database management system and timing the perfor-
mance of various queries from a standard benchmark. Also, while COLA works well for
text-based relations, its compression ratio performance for numeric attributes is not as
good. We are currently working on modifying COLA to rectify this shortcoming. Another
direction of study is to evaluate the compression efficacy of order preserving compression
algorithms [ZIL93]. This would permit use of compressed values in an ordered index and
also allow perform operations such as sorting to be executed entirely in the compressed
domain.
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