
The XDa-TA System for Automated Grading of
SQL Query Assignments

Amol Bhangdiya #, Bikash Chandra, Biplab Kar §, Bharath Radhakrishnan,
K. V. Maheshwara Reddy #, Shetal Shah, S. Sudarshan

IIT Bombay
{amolb12, bikash, biplabkar11, bharathrk, kvmahesh12, shetals, sudarsha}@cse.iitb.ac.in

Abstract—Grading of student SQL queries is usually done by
executing the query on sample datasets (which may be unable
to catch many errors) and/or by manually comparing/checking
a student query with the correct query (which can be tedious
and error prone). In this demonstration we present the XDa-
TA system which can be used by instructors and TAs for
grading SQL query assignments automatically. Given one or
more correct queries for an SQL assignment, the tool uses
the XData system to automatically generate datasets that are
designed specifically to catch common errors. The grading is then
done by comparing the results of student queries with those of the
correct queries against these generated datasets; instructors can
optionally provide additional datasets for testing. The tool can
also be used in a learning mode by students, where it can provide
immediate feedback with hints explaining possible reasons for
erroneous output. This tool could be of great value to instructors
particularly, to instructors of MOOCs.

I. INTRODUCTION

Grading SQL queries is usually done by executing the
query on sample datasets and checking the query results
and/or by reading the student query and checking it manually.
Comparing query results on manually created datasets or fixed
sets of datasets can miss many errors in queries; in particular
subtle errors can only be caught by carefully designed datasets.

Manual reading and comparing of queries is tedious since
students may write queries in a variety of different ways and
the grader has to spend a lot of time to check if a query is
correct. This grading method is prone to errors as graders are
likely to miss subtle mistakes. For example when required to
write the query Q below,

SELECT department.dept_name, I.name
FROM department LEFT OUTER JOIN (SELECT *
FROM instructor WHERE instructor.salary > 70000) I
ON (I.dept_name=department.dept_name);

a student may write the following query Qs :

SELECT department.dept_name, instructor.name FROM
department LEFT OUTER JOIN instructor
ON (instructor.dept_name=department.dept_name)
WHERE instructor.salary > 70000;

which looks sufficiently similar that the grader may miss the
difference. These queries are not equivalent, since they give

* Work partially supported by a research grant from Tata Consultancy Services,
India
Currently working at SAP Labs, India
§ Currently working at Oracle India Pvt. Ltd.

different results if there is a department where all instructors
have salary ≤ 70000.

The approach of comparing the results of queries on sample
datasets is widely used, and systems such as Gradience [1]
help in automating such testing. However unless the sample
datasets are carefully constructed there is no guarantee that
they will catch all or a good number of errors. Automated
generation of datasets designed to catch errors in specific
queries is therefore an area of importance. The XData system
[2], [3], [4] developed at IIT Bombay, generates dataset(s) that
can catch commonly occurring errors in a large class of SQL
queries using an approach based on query mutations.

Most incorrect queries are small syntactic deviations from a
correct query and can be thought of as mutants of the correct
query. Specifically, a mutation is single syntactic correct
change of the original query; and a mutant is the result of
one of more mutations on the original query. Running the
student queries against one or more datasets and checking, if
the results match with correct query works well if the datasets
are designed to catch errors/mutations. The key step in this
approach is to generate datasets that catch these errors. A
dataset kills a mutant if the original query and the mutant
give different results on the dataset. A test suite consisting of
multiple datasets kills a mutant if at least one of the datasets
kills the mutant. Section II lists the class of mutations that our
system catches.

Another approach to check queries is by checking equiv-
alence; while this approach works for simple conjunctive
queries it is not decidable in general. Sufficient conditions
for equivalence can be checked using transformation rules in
query optimization but they often fail to detect equivalence an
correct queries as shown in [4].

In this demonstration we showcase the XDa-TA system for
automated grading of SQL queries submitted by students. The
instructor provides XDa-TA with the schema and optionally
sample data to help generate realistic datasets. The instructor
then provides correct queries for the assignment questions.
One or more datasets are generated for each correct query.
Students can then submit queries to the system. Once the
submissions are made the instructor can grade the student
queries using the tool. Comparison of results of correct queries
with those of student queries is used to test if the student
query has an error. The system can be used to give immediate
feedback to students, as well as for automated grading.

In addition to walking through the demonstration of the
system this paper describes user interaction by students and
instructors, practical issues in grading student SQL query as-
signments such as security, concurrent access, and integration
with course management systems.

II. TEST DATA GENERATION

A key component of our grading tool is automated genera-
tion of test cases specific to each query. Our system handles
a wide variety of SQL features including selections, joins,
aggregates, subqueries and set operators. The test cases are de-
signed to catch common errors made in writing SQL queries,
which are modeled as query mutations. The type of mutations
considered includes join type mutations (inner/outer), join
condition mutations, selection condition mutations, aggregate
operator mutations, group by attribute mutations, mutations in
string patterns, like clause mutations, distinct clause mutations,
subquery connective mutations and set operator mutations,
amongst others. The data generation technique to kill each
mutation is specific to the mutation type considered.

Details of data generation techniques in the initial version
of the XData system can be found in [2]. Some extensions and
experimental results on student queries are described in [3].
Further details of test data generation in the XData system
including details of handling string predicates, constrained
aggregation, subqueries, NULLs, disjunctions, set predicates,
group by attribute mutation, join condition mutation and dis-
tinct mutation are described in [4]. Results of grading student
assignments in an actual database course using XDa-TA versus
TAs or fixed datasets are given in [3], [4] which show that
XDa-TA significantly outperforms fixed datasets, as well as
manual grading by TAs in terms of catching errors in student
queries.

For every correct query Q, XData generates multiple
datasets. The first dataset ensures a non-empty result for Q
(which itself kills several mutations that would generate an
empty result on that dataset). Each of the remaining datasets
is targeted to kill one or more mutations of the query; i.e. on
each dataset the given query returns a result that is different
from those returned by each of the mutations targeted by that
dataset. The number of possible mutations is very large, but
the number of datasets generated to kill these mutations is
relatively small.

To generate a particular dataset, XData generates a set of
constraints, where each tuple in the target dataset is repre-
sented by a tuple of constraint variables. XData then invokes
a constraint (SMT) solver, CVC3 [5], to solve the constraints;
the solution defines a dataset on which the query is to be
tested.

As an example, consider data generation for the query Qs

in Section I. To generate the first dataset XData adds CVC
constraints to specify that both the instructor and department
relation contain 1 tuple each and that the dept name for both
the tuples are the same. Constraints in CVC are also added
to ensure that the tuple in the instructor table has salary >

70000. These constraints ensure that the dataset generated will
produce non-empty result on the query.

In order to kill the mutation of INNER JOIN to LEFT
OUTER JOIN XData creates a dataset with constraints to
ensure that department.dept name does not match any value
in instructor.dept name along with the constraint that salary
> 70000. For the dataset generated using these constraints the
INNER JOIN query produces an empty result while the LEFT
OUTER JOIN query produces non empty results.

III. GRADING TOOL

The XDa-TA grading tool supports the Learning Tools
Interoperability (LTI) standard, allowing it to interface with
course management systems such as Moodle or Blackboard.
Users can login on the course management system and follow
a link to XDa-TA. LTI integration allows user authentication
and course information to be transmitted securely to XDa-TA.
LTI also allows marks generated by XDa-TA to be uploaded
to the course management system.

The initial setup of the XDa-TA tool involves linking of the
tool with a course management system and creation of site
authentication information required for LTI.

A. Instructor Mode

The instructor mode provides several features for creating,
updating and grading assignments. The instructor can add
database connection information to the tool by providing
JDBC URLs along with database usernames and passwords.
For every assignment the instructor can then choose which
database instance to use for evaluating student SQL queries.
Our system currently supports PostgreSQL but we are working
on supporting Oracle and MySQL also.

The instructor first uploads the schema and optionally small
sample tables, by providing SQL script files. The schema
provides information about the tables - name and datatype
of columns, columns that are nullable and those that are not,
primary key constraints and foreign key constraints - that are
required for dataset generation. The sample tables help in
generating realistic values for the database. Without the sample
tables the value of credits for a course may be 1000, when it
should have been less than 8, or the course id of a course in the
Biology department can be ‘abc’, when it should have been
something like ‘BIO-301’. All CREATE TABLE statements
in the SQL script file are modified to CREATE TEMPORARY
TABLE so that the table remains live only in the session. More
importantly, if multiple queries are executed from different
database connections using the same database user id they
will not conflict with each other.

The instructor can then upload the assignment questions
along with the correct SQL queries for the questions. For
each correct query the tool generates datasets, as discussed
in Section II. Each dataset is tagged with a label indicating
what kind of mutation the dataset was designed to kill.

For some assignments it may be possible to write correct
queries using several very different approaches. Datasets gen-
erated for a correct query are designed to kill mutations of

that query, but may or may not succeed in killing mutations
of a different formulation of the query. It could also happen
that a question set by the instructor is ambiguous and there are
multiple ways of interpreting it. For these cases the instructor
mode allows multiple correct queries to be uploaded. Datasets
generated from all the correct queries are used while evaluating
student queries. The instructor may choose whether datasets
of all the queries need to be passed, or datasets generated
for any query needs to be passed depending on the need. The
instructor can optionally provide additional datasets for testing
student queries.

A start time and end time can be set for an assignment. The
instructor can set each SQL assignment as a graded assignment
or a learning assignment. The instructor may also choose
to ignore the presence of duplicate tuples in the result of a
question. Student queries can be bulk-loaded from a file by
the instructor if desired.

B. Student Mode

Students can login and attempt the assignments within the
deadline set by the instructor. Queries written by students
sometimes include a schema name (e.g. schema1.table1)
which will not execute correctly on the test database. To catch
this and other minor errors such as output columns in the
wrong order, we provide a dataset that produces non empty
results for the student query. When the student submits a SQL
query, this dataset could be used to alert the student that the
query submitted is incorrect and give a chance to correct it
without any penalty.

The instructor may have marked some assignments as
learning assignments. For these assignments once the student
submits a query, the tool checks its correctness as shown
in Section IV-A. Instead of assigning marks to students the
interface displays the tag of the dataset for which the query
fails (this can be done incrementally, one failed dataset at
a time). It would make sense to order the datasets starting
from the most common errors, for example start with selection
conditions, followed by join conditions and join type errors
etc. The student can use this feedback and correct the mistakes.

IV. EVALUATING QUERIES

Once the students have submitted the assignments the
instructor can grade the student queries when desired.

A. Checking for correctness

Let Qi,j denote the jth student’s query submission for
question i. As discussed in Section III-A for every question
the instructor may provide multiple correct queries. Let CQi,m

denote the mth correct query for question i and Di,m,k be the
kth dataset for the correct query CQi,m

To evaluate student queries for a given correct query CQi,m,
for each corresponding dataset Di,m,k, the tool first uploads
the dataset to the database, creating appropriate tables. The
tables created for this purpose are temporary tables whose
visibility is limited for only a session, to ensure that there

are no conflicts in case multiple student queries are being
evaluated simultaneously.

Next to compare the result of each student query Qi,j with
that obtained by the correct query, CQi,m, the tool executes
an SQL query of the form

(Qi,j EXCEPT ALL CQi,m) UNION (CQi,m EXCEPT ALL Qi,j)

on the temporary tables.
If the result of the above query is non-empty for any dataset

Di,m,k, the student query Qi,j is marked as incorrect. The
datasets along with the tags indicating which errors they were
designed to catch along with the expected result and actual
results are made available to the students as shown in Figure 2.

If the results of the above query are empty for all datasets,
query Qi,j is deemed correct for the purpose of grading; our
system cannot in general guarantee its correctness, unless we
are able to establish query equivalence. (As described in [4] we
tried a sufficient condition for query equivalence, namely that
both CQi,m and Qi,j generate the same optimal query plan,
but the results of experiments in [4] show that this approach
is often unable to establish equivalence of correct queries.)

If the student query is able to pass all desired datasets full
marks are awarded. However if for one or more datasets the
student query fails, the query is incorrect and no marks are
awarded. Once the assignments are evaluated the students can
see the result of evaluation as shown in Figure 1.

Our approach for checking correctness of query relies on
killing mutations of the correct query and not of the student
query. As a result we may not catch erroneous student queries
that have extra conditions, since these conditions were not
taken into account for data generation. One way to deal with
this is to generate datasets based on mutations of the student
query as well and use these also in grading. Since this requires
a lot of overhead including constraint generation, constraint
solving etc. for all the student queries, we do not implement
this currently.

Correctness of a query with respect to result ordering cannot
be checked by comparing results since the sort order may
be a result of a chosen plan rather than due to an ORDER
BY clause. Comparing the list of ORDER BY columns in
the student query and the correct query is not sufficient in
general since ORDER BY clauses may be equivalent even if
they differ in the list of attributes, due to functional dependen-
cies, selections conditions that force an attribute to be single
valued and join conditions that equate attributes. Checking for
equivalence of ORDER BY clauses is an area of future work.

B. Security

We need to safeguard against student queries altering other
tables or running DDL queries that may delete or create tables.
Datasets used for evaluating student queries are populated in
a schema called Grading using a database user grader. The
query for evaluating correctness in the Grading schema is then
run under a different database user context, tester. The tables
created in the Grading schema are temporary tables that are
visible only in a session. The user tester has permission only
to read the tables in the Grading schema, ensuring student

Fig. 1. Assignment evaluation

Fig. 2. Student feedback

queries do not modify the schema or data. Queries which
involve UPDATE are transformed to select queries for testing
as mentioned in [3]. Hence tester does not need any right to
alter or create tables.

V. DEMONSTRATION

We will demonstrate the system in various scenarios using
the University schema from [6] on the PostgreSQL database.
First we will present the basic principles of our XData system
including mutation testing, SQL mutants, mutation killing and
test data generation. This will be followed by a description
of how XDa-TA uses the generated test data for automated
grading. The tables of the University database along with some
sample values for the tables will be preloaded and users would
be able to interact with the XDa-TA grading tool on a first-
hand basis in the following manners

• Instructor mode : This part of the demo is aimed to
provide the instructor experience to the users. Users can
create their own questions and provide one or more
correct SQL queries. The users will be able to generate
datasets based on the queries they have provided and be
able to see the datasets generated along with the targeted

mutants for each dataset. Once we get a few submissions
for those questions the submissions will be evaluated, and
correct and incorrect submissions can be seen along with
the failed datasets.

• Student submission mode : This part of the demo
illustrates the student mode when submitting assignments.
For this purpose a predefined set of assignment questions
along with questions submitted in the first scenario can
be used. Users will be provided feedback based on their
SQL query passing the datasets provided.

• Student interactive mode : This part of the demo will
enable the users to try the interactive student mode. A
set of questions will be prepared for this and users would
be able to submit their queries. The users would then get
immediate feedback about the correctness of their queries
and the failed cases.

An online demonstrataion of the XDa-TA system has been
setup at http://www.cse.iitb.ac.in/infolab/xdata/demo.

VI. CONCLUSIONS

The XDa-TA tool has great potential for easing the life of
database course instructors and teaching assistants. In case of
a database course run as a MOOC, manual grading of SQL
queries is not an option and a tool such as XDa-TA is of
great importance. We have successfully used the grading tool
in a UG database course at IIT Bombay to correct student
queries. We plan to release XDa-TA in open source for use
by course instructors. As with most automated grading, our
tool currently provides full or no marks. How to do partial
marking in a way that reflects how close the student query is
to some correct query is an area of future work.

REFERENCES

[1] “Gradience: The gradiance service for database systems,”
http://www.gradiance.com/db.html.

[2] S. Shah, S. Sudarshan, S. Kajbaje, S. Patidar, B. P. Gupta, and D. Vira,
“Generating test data for killing SQL mutants: A constraint-based ap-
proach,” in ICDE, 2011.

[3] B. Chandra, B. Chawda, S. Shah, S. Sudarshan, and A. Shah, “Extending
XData to Kill SQL Query Mutants in the Wild,” in Proc. of the 6th
Int’l Workshop on Testing Database Systems, ser. DBTest ’13, held in
conjunction with ACM SIGMOD, 2013.

[4] B. Chandra, A. Bhangdiya, B. Chawda, B. Kar, K. V. M. Reddy, S. Shah,
and S. Sudarshan”, “Data Generation for Testing and Grading SQL
Queries.” CoRR, vol. abs/1411.6704, 2014.

[5] C. Barrett and C. Tinelli, “CVC3,” in Computer Aided Verification (CAV),
2007, pp. 298–302.

[6] A. Silberschatz, H. F. Korth, and S. Sudarshan, Database System Con-
cepts, 6th ed. McGraw Hill, 2010.

