
1

Test Data Generation for Database Applications
Pooja Agrawal, Bikash Chandra, K. Venkatesh Emani, Neha Garg, S. Sudarshan

IIT Bombay
{poojaagrwl15, bikash, venkateshek, nehagarg15, sudarsha}@cse.iitb.ac.in

Abstract—Unit test cases have become an essential tool to test
application code. Several applications make use of SQL queries
in order to retrieve or update information from a database.
Database queries for these applications are written natively in
SQL using JDBC or using ORM frameworks like Hibernate. Unit
testing these applications is typically done by loading a fixed
dataset and running unit tests. However with fixed datasets, er-
rors in queries may be missed. In this demonstration, we present
a system that takes as input a database application program,
and generates datasets and unit tests using the datasets to test
the correctness of function with queries in the application. Our
techniques are based on static program analysis and mutation
testing. We consider database applications written in Java using
JDBC or Hibernate APIs. The front-end of our system is a plugin
to the IntelliJ IDEA IDE. We believe that such a system would
be of great value to application developers and testers.

I. INTRODUCTION

Application testing is usually done by running multiple
unit test cases, each with a different set of inputs, and then
checking if the results match the expected results or not. Several
applications use databases to query and update stored data.
Database calls from an application are typically made using
either native SQL queries using frameworks like JDBC, or using
ORM (Object-Relational Mapping) frameworks like Hibernate.

Unit testing of applications that make calls to the database
is usually done by loading a fixed dataset into the database and
then running unit test cases. However, this approach of testing
using fixed datasets does not guarantee application correctness
in all cases. Subtle errors in queries may be missed if the
dataset does not contain data to test these errors. We will
illustrate this using an example.

Consider the function in Figure 11 derived from a real world
application. The function returns the list of builidings along
with the number of venues that are free on a particular date.
The function takes as input user id and date and fetches the
corresponding group id. Users can access the information on
buildings corresponding to their group. However, an admin user
(group id=0) can access information for all buildings. Both
SQL queries on lines 6 and 11 are incorrect since they will
not return buildings when there are no venues in the building
that are free. For example, with the database instance shown
in Figure 2 and with an input date as ‘2017-12-10’ and a
user corresponding to group id= 3 or 0, the query will not
list the Nilgiri building which has no remaining venues with
booking status as false, when it should with count 0. On other
datasets the query may return correct results.

1We use a pseudo function executeQuery that takes a query, executes it and
returns the result as a scalar/collection.

1 getFreeVenues(user id, date) {
2 q1 = “select group id from users where user id=?”;
3 q1.setParam(1, user id);
4 group id = executeQuery(q1);
5 if(group id==0) { //admin user
6 q2 = “select b.b name,count(*) from
7 building b join venue booking v on (b.b name=v.b name)
8 where date=? and v.status=false
9 group by b name”;
10 q2.setParam(1, date);
11 } else {
12 q2 = “select b.b name,count(*) from
13 building b join venue booking v on (b.b name=v.b name)
14 where date=? and g.group id=? and v.status=false
15 group by b name”;
16 q2.setParam(1, date);
17 q2.setParam(2, group id);
18 }
19 return(executeQuery(q2));
20 }

Basic block Conditional Sequential
region region region

Fig. 1: Booking status program

b name group id
Himalaya 3

Nilgiri 3

(a) builing instance

venue id b name date status
21 Himalaya 2017-12-10 false
11 Nilgiri 2017-12-10 true

(b) venue booking instance

building name count
Himalaya 1

(c) Figure 1 result

building name count
Himalaya 1

Nilgiri 0

(d) Expected result

Fig. 2: Database instances (only relevant columns are shown)
and results for date ‘2017-12-10’ and user with group id=3

In this demonstration, we present the XDataPro system
that solves the problem of test data generation for queries in
database applications. Given an input program with embedded
SQL queries, XDataPro generates test datasets, program input
values, and unit tests that use these datasets and values. The
unit tests are aimed at checking the correctness of functions
with queries in the program.

XDataPro leverages the DBridge [1] system for static
program analysis to identify queries and relevant constraints
for all execution paths of the program (details in Section II).
These are then passed on to XData [2], [3] for data generation.
Given an input query, XData generates multiple datasets each



2

Fig. 3: XDataPro architecture

targeted at catching one or more common errors in the query.
XDataPro extends XData to generate test data for queries
as well as program input parameters by taking into account
program constraints (details in Section III).

A key difference between XData and XDataPro is that the
input to the latter is a database application program, in which
SQL queries are intertwined with imperative code. Thus the
queries are not readily available and must be identified from
the given program. However, this is not trivial since queries
in programs are often constructed dynamically and the query
may be different in different execution paths of the program.
Moreover, there may be constraints on query parameters and
results imposed by the program, and results of one query may
be used in another query. For example, the program in Figure 1
may execute one of two queries corresponding to lines 5 or
11 based on whether user id=0 or not. The user id itself is
determined by the result of the query q1. Hence when extracting
the query from program, we also need to take into account the
context of the program under which the query runs.

Once the datasets for queries have been generated, XDataPro
generates unit tests that can load the datasets one by one, and
check the correctness of result of functions containing these
queries. Our generation of unit tests is template-based. A unit
test for testing a function containing queries consists of the
inputs to the function, the dataset on which queries are run,
and the output of the function. The developer or tester may
check if the output matches the expected output or not, and
then the test cases are added for regression testing in future.
The user may add outputs that dont match the desired output
as negative regression unit tests, if they desire.

Figure 3 summarizes the architecture of the XDataPro system.
Our implementation focuses on Java programs using JDBC or
Hibernate for database access, but the techniques themselves are
not tied to any programming language or data access framework.
The front-end to our test generation tool is a plugin for the
IntelliJ IDEA IDE. The plugin enables users to interact with
our system through a simple graphical user interface. Details
are described in Section IV.

II. PROGRAM ANALYSIS

In this section, we discuss our techniques that use static
program analysis to identify the queries, and the constraints
on query inputs/outputs from a database application program.
We first discuss our intermediate representation (IR) before
outlining our approach and its capabilities.

A. Intermediate Representation
Our IR is based on the DAG based representation for

database applications proposed by Emani et al. [1] for translat-

Fig. 4: Walk-through of IR construction

ing imperative code to SQL. The IR from [1] is essentially a
variable to expression map. The expression represents the value
of the variable at any point in the program in terms of the
program inputs (intermediate assignments are bypassed). In this
paper, we use an array of such variable-expression maps, one
map for each alternative execution path in the program. Each
map is also annotated with a condition. The map is valid for
the program execution path in which the annotated condition
evaluates to true.

For example, consider our IR in Figure 4 after Step 4
(labeled S1). It consists of two maps corresponding to whether
the group id corresponding to the user is ‘0’ or not. These
correspond to the two execution paths generated by the if-else
construct from line 5 of Figure 1.

B. IR Construction using Regions

Real world programs can contain complex control flow
including branching and loops. In our approach, we use the
concept of program regions to systematically construct our IR
for such complex programs.

Regions [4] are structured fragments in a program, such as
straight line code, if-else blocks, loops, etc. A basic block region
represents straight line code, a conditional region represents an
if-else block, a loop region represents a loop, and a sequential
region represents a sequence of two (or more) regions one after
another. Program regions for Figure 1 are shown alongside the
code.

A walk-through of our IR construction for Figure 1 is shown
in Figure 4. Each IR is annotated with its corresponding region,
as marked in the program. The first step is to construct IR for
basic blocks. This is shown alongside Step 1 in Figure 4. Note
that the IR for each basic block consists of a single map, and
there are no conditions associated with the map. Merging the
blocks B2 and B3 info conditional region C1 in step 2 gives
us two maps, one corresponding to group id=0 and the other
corresponding to group id!=0. Merging the blocks B1, C1 and
B4 in step 3 gives us the final IR with maps and relevant
conditions for each program execution path. Once we have
the final IR, in step 4, we consider each path separately and



3

generate unit tests for paths after extracting the queries and the
conditions for the path. The extracted SQL queries are then
passed to XData for generating test data for each execution
path. Note that for path 2 the group id input of q2 depends on
the result of query q1. We take this into account by expressing
the group id parameter in q2 in terms of the query q1.

Our analysis is flow-sensitive (takes into account the order
of the program) and path-sensitive (takes into account different
paths in a program). Our approach for IR construction also
performs constant folding for dynamically constructed queries.

C. Supported Program Constructs

Our system is able to extract queries and constraints from
real world programs with complex control flow. The program
constructs handled by our system includes
• Arbitrary levels of if-else branching, interspersed with

straight line code. Figure 5a in Section IV is one such
example.

• Arbitrary levels of nested function calls without recursion.
• Reuse and reassignment of variables. The same variable

may be used to construct and execute multiple queries, at
different program points. Our system is able to extract all
such queries.

• Multiple queries in the same program execution path.
• Chained queries where the results of one query are used

(directly or indirectly) to construct another query.
• Constraints on query parameters and constraints on result

set attributes.
• Loops: We only consider cursor loops with some restrictions,

detailed below.
Restrictions on Loops: In general, the number of iterations in
a loop is unknown at compile time. A special case of loops
that iterate over a query result set/collection, which are called
cursor loops, are widely used in database applications for
iteratively processing query results. Our system supports test
data generation for programs containing cursor loops.

When the loop body does not contain any branching, all the
paths in the loop are covered by generating datasets for the
following paths: (i) empty dataset to cover the case with no
iterations of the loop, and (ii) other datasets to cover the loop
body.

If the loop body has branching and if the branch conditions
are all predicates of the current tuple or loop invariant variables
only, we generate SQL queries such that generated datasets
would be sufficient to cover every path present inside the loop
at least once. In general, if the loop body has branching the
number of possible paths is not bounded by the program size,
and it may not be possible to determine the sequence of paths
using static program analysis techniques.

An example of cursor loops using the Hiberanate ORM
framework is shown below, which is extracted from Wilos, an
open source orchestration software.

for(Project p: getAllProjects())
if(!(p.isFinished()))

unfinP.add(p.getId());
The above function computes the set of projects whose status

is marked as unfinished. getAllProjects() (line 3) internally uses

Hibernate API calls to fetch the list of all projects. This list
is then filtered inside the application and a set of project id’s
satisfying the condition are returned.

Given such a program, our system first translates this
program into an equivalent program that uses SQL queries,
using DBridge. DBridge contains techniques to translate
relational operations such as projections, selections, joins and
aggregations performed using loops in imperative code into a
query. For instance, the above program is translated as follows:

Query query = Utils.getSession().createSQLQuery
(“select id from Project where isFinished <> 1”);

After rewriting the program as above, the approach discussed
in Section II-B can be used to extract queries and relevant
constraints.
Applications Using ORM: SQL queries are explicit in JDBC
programs. However, in programs using Hibernate, joins may
also be implicitly realized by specifying associations between
attributes of mapped classes. DBridge is able to obtain explicit
SQL queries in such cases [1], from which XData can generate
datasets. We omit details for lack of space.

III. TEST DATA GENERATION

Once the SQL query and relevant constraints from the
program are obtained, we use the XData [2], [3] system for
generating the test datasets. The datasets are designed to catch
common errors in SQL queries. The errors in queries are
modeled as query mutations. A dataset that is able to produce
different results on the correct query and its mutant (thereby
showing that the mutant is not equivalent to the correct query)
is said to kill the mutations.

The type of mutations considered include join type mutations
(inner/outer), join condition mutations, selection condition
mutations, aggregate operator mutations, group by attribute
mutations, mutations in string patterns, like clause mutations,
distinct clause mutations, subquery connective mutations and
set operator mutations, amongst others. XData generates several
datasets for each query. Each dataset is targeted to kill one or
more mutations. In order to kill a mutation we need to ensure
that the dataset satisfies some constraints. XData encodes these
constraints along with database constraints in the CVC3 [5]
solver. XData then uses the solver to generate a dataset that
satisfies the constraints.

In the case of testing applications with embedded queries,
which is the focus of this paper, there may be additional
constraints due to the program in addition to the constraints
imposed by the query. We appropriately encode any such
arithmetic/string constraints imposed by the program into
constraints that we pass to the solver. We also pass the program
input parameters to the solver to get back values that may be
used when invoking the program/interface for unit testing.

Related Work: Although mutation testing is a well know
technique for testing applications in general, these techniques
do not consider queries embedded in the application. [6], [7]
focus on test data generation to ensure path coverage for
database applications but do not take into account testing of
SQL queries. Qex [8] generates a test database for a database
application along with query parameters such that certain



4

(a) Function for test data generation
(b) User interaction on test results

(c) Unit test case

Fig. 5: Unit test generation for a sample application

properties in the query results are satisfied (e.g. the query
result is non-empty) but does not consider mutation testing of
queries. [9] considers mutation testing of queries in database
applications but only handles mutations involving WHERE and
HAVING clause, unlike our system.

IV. DEMONSTRATION

In this section, we describe the use of our plugin to
configure and use the XDataPro system. Our demonstrations
will showcase the ability of XDataPro to (a) identify queries in
database applications, (b) generate test data for these queries
and program inputs, and (c) generate unit tests that use the
generated test data.

Our demonstrations will use Java programs that access the
database using JDBC or Hibernate. Programs derived from real
world applications as well as sample programs based on the
University schema from [10] and the TPC-H schema will be
provided. These applications will contain SQL queries that have
some errors. A PostgreSQL database would also be provided
against which the programs can run.

The plugin can be installed as a third party tool on top of
an existing IntelliJ IDEA installation. Installing the plugin will
add a new main menu item titled “XData”. This is shown in
Figure 5a. Selecting the “Generate Test Data” sub-menu item
triggers XDataPro to identify all the queries in the currently
active file, and generate datasets and function parameter values
for testing the correctness of functions containing queries. The
generated datasets and parameter values are stored in a database,
and loaded as required for unit tests. Users can also direct
the plugin to consider only certain functions for testing, by
using the annotation @TestDataGen. This annotation is used
in Figure 5a for the function getFreeVenues.

For each function containing queries, the generated datasets
are loaded one at a time, the function is executed on the
generated parameter values, and the result is displayed to
the user in the form of a user interaction window, as shown
in Figure 5b. Figure 5b corresponds to a specific invocation
of our plugin on the SampleApp class from Figure 5a. The
window displays the function name (SampleApp.getFreeVenues),
dataset id (DS1), function input parameter values (user id:1234,
date:2017-12-10), and the generated dataset, along with the
output of running the function using these values.

The user is asked to mark if the function’s output matches
the expected output for the given function inputs values and
the dataset. Once all the datasets have been marked for a
function, unit tests are generated for the function from a
predefined template, using the function signature and details
of the database containing generated datasets and parameter
values. One sample unit test case generated for the function
getFreeVenues is shown in Figure 5c These unit tests are added
to the test suite for use in future regression testing.

V. CONCLUSION

Test cases for application testing usually focus on testing
imperative code in the applications. XDataPro, on the other
hand, focuses on testing correctness of SQL queries embedded
in the application. Our framework can be used to complement
the existing test cases so that both imperative code and database
queries can be tested. Areas of future work include handling
more SQL query mutations and suggesting correct queries
based on the datasets.

REFERENCES

[1] K. V. Emani, K. Ramachandra, S. Bhattacharya, and S. Sudarshan,
“Extracting equivalent SQL from imperative code in database applications,”
in SIGMOD, 2016.

[2] B. Chandra, B. Chawda, B. Kar, K. V. M. Reddy, S. Shah, and
S. Sudarshan, “Data generation for testing and grading SQL queries,”
The VLDB Journal, vol. 24, no. 6, 2015.

[3] S. Shah, S. Sudarshan, S. Kajbaje, S. Patidar, B. P. Gupta, and D. Vira,
“Generating test data for killing SQL mutants: A constraint-based
approach,” in ICDE, 2011.

[4] S. S. Muchnick, Advanced Compiler Design and Implementation.
Morgan Kaufmann, 1997.

[5] C. Barrett and C. Tinelli, “CVC3,” in Computer Aided Verification (CAV),
2007, pp. 298–302.

[6] K. Pan, X. Wu, and T. Xie, “Generating program inputs for database
application testing,” in ASE, 2011, pp. 73–82.

[7] M. Emmi, R. Majumdar, and K. Sen, “Dynamic test input generation
for database applications,” in ISSTA, 2007, pp. 151–162.

[8] M. Veanes, N. Tillmann, and J. de Halleux, “Qex: Symbolic SQL query
explorer,” in LPAR, 2010, pp. 425–446.

[9] T. Sarkar, S. Basu, and J. Wong, “iConSMutate: Concolic testing of
database applications using existing database states guided by SQL
mutants,” in ITNG, 2014, pp. 479–484.

[10] A. Silberschatz, H. F. Korth, and S. Sudarshan, Database System Concepts.
McGraw Hill, 6th ed., 2010.


	Introduction
	Program Analysis
	Intermediate Representation
	IR Construction using Regions
	Supported Program Constructs

	Test Data Generation
	Demonstration
	Conclusion
	References

