Efficient Rule Ensemble Learning using Hierarchical Kernels

Pratik Jawanpuria
J. Saketha Nath
Ganesh Ramakrishnan
Dept. of CSE, IIT-Bombay, Mumbai, INDIA.

Abstract
This paper addresses the problem of Rule Ensemble Learning (REL), where the goal is simultaneous discovery of a small set of simple rules and their optimal weights that lead to good generalization. Rules are assumed to be conjunctions of basic propositions concerning the values taken by the input features. From the perspectives of interpretability as well as generalization, it is highly desirable to construct rule ensembles with low training error, having rules that are i) simple, i.e., involve few conjunctions and ii) few in number. We propose to explore the (exponentially) large feature space of all possible conjunctions optimally and efficiently by employing the recently introduced Hierarchical Kernel Learning (HKL) framework. The regularizer employed in the HKL formulation can be interpreted as a potential for discouraging selection of rules involving large number of conjunctions – justifying its suitability for constructing rule ensembles. Simulation results show that, in case of many benchmark datasets, the proposed approach improves over state-of-the-art REL algorithms in terms of generalization and indeed learns simple rules. Unfortunately, HKL selects a conjunction only if all its subsets are selected. We propose a novel convex formulation which alleviates this problem and generalizes the HKL framework. The main technical contribution of this paper is an efficient mirror-descent based active set algorithm for solving the new formulation. Empirical evaluations on REL problems illustrate the utility of generalized HKL.


1. Introduction
One of the most expressive and human readable representations for learned hypotheses is sets of if-then decision rules. A decision rule (Rivest, 1987) is a simple logical pattern of the form: if condition then decision. The condition consists of a conjunction of a small number of simple boolean statements (propositions) concerning the values of the individual input variables while the decision part specifies a value of the function being learned. The dominant paradigm for induction of rule sets, in the form of decision list (DL) models for classification (Rivest, 1987; Michalski, 1983; Clark & Niblett, 1989) has been a greedy sequential covering procedure.

Our work falls in the league of research (Weiss & Indurkhya, 2000; Cohen & Singer, 1999; Friedman & Popescu, 2008; Gao et al., 2007; Demszyński et al., 2008; 2010) on Rule Ensemble Learning (REL). REL is a more general approach that treats decision rules as base classifiers in an ensemble. These models are additive in the rules that have optimized weights (coefficients). This is in contrast to the more restrictive DL models that are disjunctive sets of rules and which use only one in the set for each prediction. As pointed out in (Cohen & Singer, 1999), boosted rule ensembles are in fact simpler, better-understood formally than other state-of-the-art rule learners and also produce comparable predictive accuracy.

REL approaches like SLIPPER (Cohen & Singer, 1999), LRI (Weiss & Indurkhya, 2000), RuleFit (Friedman & Popescu, 2008), ENDER/MLRules (Demszyński et al., 2010; 2008) have additionally addressed the problem of learning a compact set of rules in order to maintain its readability and also learn models that generalize better. Further, a number of rule learners like LRI, RuleFit encourage shorter rules (i.e., fewer conjunctions in the condition part of the rule) or rules with a restricted number of conjunctions, for purposes of interpretation. We build upon this and define our Rule Ensemble Learning (REL) problem as that of
discovering a small set of simple rules and their weights that lead to good generalization. Some of these learners (Friedman & Popescu, 2008; Dembczyński et al., 2010) propose a regularized (empirical) risk minimization problem with a 1-norm regularization term on the weights of individual rules to encourage a compact set of non-trivial rules. However, all of them either approximate such a regularized solution using strategies such as shrinkage (in RuleFit, ENDER/MLRules) or resort to post-pruning (Gao et al., 2007). We provide efficient and optimal solutions to two regularized (empirical) risk minimization formulations for REL. The first is an application of Hierarchical Kernel Learning (Bach, 2009) (HKL), which discourages selection of rules involving large number of conjunctions and efficiently explores the exponentially large space of all possible conjunctions, in time polynomial in the number of selected rules, to yield a small set of simple rules. The second is a generalized formulation of HKL to further discourage glaring redundancies in the selected rule set. Again, for this generalized formulation, we develop an efficient algorithm that yields an optimal solution. Experimental results demonstrate the suitability of the proposed approaches for solving the REL problem. It is interesting to note that the generalized HKL approach, while yielding compact rule sets, achieved a 25% improvement in terms of generalization over state-of-the-art for a benchmark dataset.

We formally state the problem of Rule Ensemble Learning (REL) in Section 2. We note that the size of the space of conjunctions of simple boolean statements concerning values of the individual input variables is exponential in the number of the basic propositions. In Section 3 we solve the REL problem efficiently by posing it as an instance of HKL, which provides for efficient and optimal exploration of this exponentially large search space. Although the HKL formulation encourages selection of a small set of simple rules, it can be shown that if a rule with a particular condition is selected, then every subset of the conjunctions in the condition appears as the condition statement of some other selected rule. Such redundancies can hamper the readability of the rule-set and more importantly contradict our goal of selecting as few rules as possible. In Section 4, we propose a novel convex formulation that not only addresses this problem but also generalizes the HKL framework. We develop an efficient mirror-descent (Ben-Tal & Nemirovski, 2001) based active set algorithm for solving the new formulation. We report empirical evaluations of our HKL and generalized HKL formulations for REL on several publicly available datasets in Section 5. We also compare our results against several state-of-the-art decision list and rule ensemble learners. Results clearly illustrate that without compromising on accuracy, the HKL formulation yields shorter rules than state-of-the-art while generalized HKL additionally yields highly compact rule-sets. We summarize and conclude in Section 6.

2. Rule Ensemble Learning

Let \( D = \{(x_1, y_1), \ldots, (x_m, y_m)\} \) be the training data where \( x_i = [x_{i1}, \ldots, x_{in}]^T \in \mathbb{R}^n \) and \( y_i \in \mathbb{R} \) represent the \( i^{th} \) input data point and the corresponding label respectively. Let \( V \) be a set of indices for the ensembles. Then the prediction model for ensemble learning takes the form (Friedman & Popescu, 2008): 
\[
\sum_{v \in V} f_v(x) - b \text{ where, } x \text{ is the input data point at which the prediction is made, } \phi_v(\cdot) \text{ is the } v^{th} \text{ ensemble function and } f_v \text{ is the weight given to this ensemble function.}
\]

Ensemble learning algorithms differ based on the choice of the ensemble function class and on the learning algorithms employed for deriving the ensemble functions and their weights from the data.

Following the works on REL (Friedman & Popescu, 2008; Dembczyński et al., 2010), we assume that each ensemble \( \phi_v(x) \), \( v \in V \) is a conjunction of basic propositions concerning the input feature values of \( x \); thus, \( \phi_v(x) : \mathbb{R}^n \rightarrow [0, 1] \). For a nominal input feature, say \( j \in \{1, 2, \ldots, n\} \), and taking nominal values from the set \( \{a_{j1}, \ldots, a_{jn}\} \), the basic propositions evaluated at a data point \( x \) take one of the forms: \( x_j = a_{jk} \) or \( x_j \neq a_{jk} \) for all \( k = 1, \ldots, n_j \). For a numerical input feature, say \( j \in \{1, 2, \ldots, n\} \), we pick \( n_j \) critical points, say \( a_{j1}, \ldots, a_{jn_j} \). The basic propositions in this case are of one of the following forms: \( x_j \leq a_{jk} \) and \( x_j \geq a_{jk} \) for all \( k = 1, \ldots, n_j \). To summarize, the total number of basic rules are \( p = 2^{\sum_{j=1}^n n_j} \). We consider \( V \) to be the set of all possible conjunctions of the \( p \) propositions. Then, \( \phi_v(x) \) is the \( v^{th} \) conjunction of the basic rules evaluated on \( x \). Denote by \( f \) and \( \phi(\cdot) \) the vectors with entries as \( f_v \) and \( \phi_v(\cdot) \) for all \( v \in V \) respectively. The REL problem can be posed as that of determining the feature weights that minimize a weighted combination of the empirical risk\(^1\) and a regularization term:\(^2\) 
\[
\min_{f, b} \frac{1}{2} \left( \Omega(f) \right)^2 + C \sum_{i=1}^m l(y_i, \langle f, \phi(x) \rangle - b) \text{ where } C \text{ is the regularization parameter and } l \text{ is a convex}
\]

\(^1\)Here, \( \langle u_1, u_2 \rangle \) denotes the inner product of \( u_1, u_2 \).

\(^2\)Note that \( V \) as defined above may include some impossible conjunctions. This inclusion is done only for convenience sake. With any norm-based regularizer, it is easy to see that the weight \( f_v \) given to such conjunctions is always zero. As we shall understand later, the complexity of the proposed active set algorithm is not adversely affected by this.
loss function (e.g., hinge loss, logistic loss, huber loss etc.). The regularization term (Friedman & Popescu, 2008; Dembczyński et al., 2010), \( \Omega(f) = \|f\|_1^2 \), is meant to encourage a sparse \( f \), so that only a few rules are learned. However, to the best of our knowledge, rule ensemble learners that identify the need for sparse \( f \), either approximate the solution or perform post-pruning (Friedman & Popescu, 2008; Dembczyński et al., 2010; Gao et al., 2007). Moreover, as motivated earlier, it is desirable to learn rules which are simple i.e., involving as few rules as possible and for this \( \Omega \) needs to be chosen appropriately.

In this paper, we propose to solve this problem optimally for a family of functions \( \Omega(f) \) which discourage selection of large conjunctive rules. Note that \( V \) has a size exponential in \( p \), the number of basic rules. Thus, our algorithm should also efficiently search this exponentially large space. To achieve this end, we note that \( V \) has a structure; it can be easily verified that the conjunction lattice (Hasse diagram depicting the conjunction lattice) has a structure; it can be easily verified that

\[
\forall \ v_1, v_2 \in V, \ v_1 \subseteq v_2 \iff v_1 \text{ is a subset of the conjunction of } v_2.
\]

In the next section, we leverage the recent work of Hierarchical Kernel Learning (Bach, 2009) to explore this structure in \( V \) and solve the REL problem in time polynomial in the number of selected rules.

Some more notation is in order before we move on. We follow the convention that the top (level 0) of the Hasse diagram depicting the conjunction lattice corresponds to the empty conjunction and the bottom (level \( p \)) to the conjunction of all basic propositions. Under this convention, the nodes at level 1, say, denoted by \( B \), form the set of basic propositions. Let \( D(v) \) and \( A(v) \) represent the set of descendants and ancestors of the node \( v \) in the lattice. We assume that both \( D(v) \) and \( A(v) \) include the node \( v \). For any subset of nodes \( W \subseteq V \), the hull and sources of \( W \) are defined as:

\[
hull(W) = \bigcup_{w \in W} A(w) \quad \text{and} \quad \text{sources}(W) = \{ w \in W \mid A(w) \cap W = \{ w \} \}.
\]

Also, \( |W| \) denotes the size of the set and \( W_c \) the denotes the complement i.e., all the nodes in \( V \) which are not in \( W \). We let \( f_W \) denote the vector with entries \( f_v, v \in W \). In general, the entries in a vector are referred to using an appropriate subscript i.e., entries in \( u_i \in \mathbb{R}^d \) are denoted by \( u_{i1}, \ldots, u_{id} \) etc.

### 3. Rule Ensemble Learning using HKL

One way of discouraging selection of conjunctions involving many basic rules is by employing a \((1,2)\) mixed-norm based regularizer promoting group sparsity: \( \Omega(f) = \sum_{v \in V} \|f_{D(v)}\|_2 \). Since the \( 1 \)-norm is known to promote sparsity (Rakotomamonjy et al., 2008; Bach, 2009), for most of the \( v \in V \), we have that \( \|f_{D(v)}\|_2 = 0 (f_w = 0 \forall w \in D(v)) \). Hence the selection of conjunctions near the bottom of the conjunction lattice, which corresponds to those involving many basic rules, is indeed discouraged. In order to facilitate incorporation of prior information regarding the usefulness of the feature conjunctions, one may also employ a weighted version of the above regularizer: \( \Omega_H(f) = \sum_{v \in V} d_v \|f_{D(v)}\|_2 \) where \( d_v \geq 0 \) is a non-negative weight parameter. This leads to the following hierarchical kernel learning formulation (Bach, 2009):

\[
\min_{f,b} \frac{1}{2} \left( \Omega_H(f) \right)^2 + C \sum_{i=1}^{m} [l(y_i, \langle f, \phi(x_i) \rangle - b)] \tag{1}
\]

where \( \Omega_H(f) = \sum_{v \in V} d_v \|f_{D(v)}\|_2 \).

HKL was introduced as a generic framework for performing non-linear feature selection. In the context of the HKL formulation (1), \( V \) can be a set of nodes in any directed acyclic graph and need not be restricted to those in the conjunction lattice; i.e., \( \phi_v(\cdot) \) is not restricted to be a boolean value, but may be any vector in the RKHS induced by a kernel, say \( k_v \) i.e., \( k_v(x_i, x_j) = \langle \phi_v(x_i), \phi_v(x_j) \rangle \). In this case \( f_v \) must itself be a vector in this RKHS and \( (f, \phi(x)) = \sum_{v \in V} (f_v, \phi_v(x)) \). Accordingly, \( f_{D(v)} \) is now defined as the vector with entries given by \( \|f_w\|_2, \forall w \in D(v) \).

Note that this generalization in the notation is indeed consistent with that introduced previously in the context of REL — where \( V \) represents the set of nodes in the conjunction lattice and \( \phi_v(\cdot) \) and \( f_v \) are one dimensional. In the remainder of this paper we follow this generalized notation while keeping in mind the specialization in the context of REL.

The dual of (1) turns out to be the problem of learning sparse (non-negative) linear combinations of the exponentially large number of kernels \( k_v \). Such problems have also been studied in the name of Multiple Kernel Learning (MKL) (Rakotomamonjy et al., 2008).

Typically in the setting of MKL problems, few base kernels are given and the goal is to optimally combine them in order to achieve good generalization. Thus MKL formulation is an extreme case of MKL where the number of base kernels is exponential. Since the RKHS induced by sum of kernels is the concatenation of those induced by the individual kernels, selection of kernels is equivalent to selection of the corresponding induced RKHS/feature spaces. More specifically, in the context of REL, selection of kernels is equivalent to selection of conjunctive rules. The mixed-norm regularizer \( \Omega_H(f) \) employed in the HKL formulation
was introduced by the authors from a purely computational perspective – in order to restrict the sparsity patterns such that an active set algorithm (refer figure 6 in Bach (2009)) can be used to efficiently solve the formulation. In fact, a key result in Bach (2009) is that the computational complexity of the active set algorithm is polynomial in the number of selected kernels — provided the kernels \( k_v(\cdot, \cdot) \) are such that they can be summed over the descendants of a given node in polynomial time in the number of input features.

Note that, in our case of REL, the kernels do satisfy this criterion: the RKHS in which \( \phi_v(\cdot) \) lies is essentially the one dimensional Euclidean space induced by the \( v^{th} \) conjunction and \( k_v(x_i, x_j) \) is simply the product of the \( v^{th} \) conjunction evaluated on the examples \( x_i \) and \( x_j \). Since the basic rules are boolean, \( k_v(x_i, x_j) \) is further equal to the product of evaluations of all the basic rules corresponding to the \( v^{th} \) conjunction on these two examples. It is easy to see that in this case the sum of these products over any sub-lattice formed by the descendants can be computed efficiently by re-writing it as product of sums; for e.g., \( \sum_{v \in V} k_v(x_i, x_j) = \prod_{k \in B} (1 + \phi_k(x_i) \phi_k(x_j)) \) (recall that \( B \) is the set of level 1 nodes in the lattice i.e., the basic rules themselves). Hence the active set algorithm (figure 6 in Bach (2009)) can be employed for efficiently solving the HKL formulation in the context of REL — enabling us to explore the exponentially large space of conjunctive rules in polynomial time. Empirical results in Section 5 show that the rule ensembles constructed using the HKL framework indeed learn simple conjunctive rules with better generalization in many datasets.

Although these results are encouraging, it must be noted that under very mild conditions on the kernels, it can be shown that the HKL algorithm selects a conjunction only after selecting all conjunctions\(^3\) which are subsets of it (refer theorem 6 in Bach (2009)). This, particularly in the context of REL, is psycho-visually redundant, because a rule with \( k \) propositional statements, if included in the result, will necessarily entail the inclusion of \( 2^k \) more general rules in the result. This violates the important requirement for a small set (Friedman & Popescu, 2008; Gao et al., 2007; Dembczyński et al., 2010) of human-readable rules (c.f. Section 1).

The key reason for this restrictive scheme of rule/feature selection in HKL is the presence of the 2-norm (which is known to promote non-sparse solutions) over the feature weights of the descendants (i.e., \( \|f_{D(v)}\|_2 \)). To achieve our desired objective, we generalize the HKL formulation and employ the regularizer\(^4\): \( \Omega_S(f) = \sum_{v \in V} d_v \|f_{D(v)}\|_{\rho}, \rho \in (1, 2] \). Since the 1-norm promotes sparsity, as in case of the original HKL formulation, for most of \( v \in V \) we have that \( \|f_{D(v)}\|_{\rho} = 0 \) (for \( w \neq 0 \) for all \( v \in D(v) \)). But now, even in cases where \( \|f_{D(v)}\|_{\rho} \) is not forced to zero by the 1-norm, many of the feature weights of its descendants (i.e., \( f_w \) for \( w \in D(v) \)) will be forced to zero as it is known that norms between \( (1, 2) \) promote sparse solutions (for e.g., (Szafranski et al., 2008)). This translates into relaxing the restrictive scheme of feature selection in HKL. The details of the generalized HKL formulation and an efficient algorithm for solving it are presented in the subsequent section.

4. Generalized HKL Formulation

In this section we present the main technical contribution of the paper — the generalized HKL formulation and an efficient mirror-descent based active set algorithm for solving it. In order to keep the expressions simple, in the remainder of this paper we focus on the case of binary classification (labels \( y_i \in \{-1, 1\} \)) and present the details using the hinge-loss as the loss function \( l \). It is easy to extend the following results for other learning problems with appropriate choices of loss functions and kernels.

As discussed in the previous section, we generalize the HKL formulation by replacing the 2-norm with a \( \rho \)-norm \( \| \cdot \|_{\rho} \) over the weights of the descendants:

\[
\min_{f, b, \xi} \quad \frac{1}{2} \left( \sum_{v \in V} d_v \|f_{D(v)}\|_{\rho} \right)^2 + C \sum_{i=1}^{m} \xi_i \\
\text{s.t.} \quad y_i \left( \sum_{v \in V} (f_v, \phi_v(x_i)) - b \right) \geq 1 - \xi_i, \xi_i \geq 0 \quad (2)
\]

To the best of our knowledge such generalizations of HKL have not been studied in the literature. In the following text, we present an efficient mirror-descent based active set algorithm for solving this (exponentially large) convex problem (2). The computational complexity of this algorithm is polynomial in the size of the hull of the selected kernels.

We begin by making the following observation: the problem (2) remains the same when solved with the original set of variables (i.e., \( f, b, \xi \)) or when solved with only those \( f_i \neq 0 \) at optimality and \( b, \xi \). However the computational effort required in the later case can be far lower, as it is expected that most of the variables \( f_v \) will be zero at optimality. This motivates us to

\(^3\)This includes the empty conjunction as well.

\(^4\)We, on purpose do not wish to include the case \( \rho = 1 \) as then there will be no hope of solving it in polynomial time.
Algorithm 1 Active Set Algorithm

**Input:** Training data \( D \), Oracle for computing \( k_w \), Maximum tolerance \( \epsilon \).

Initialize \( W \) as set containing only the top node.

Compute \( \eta, \alpha \) by solving (14) using mirror-descent.

while suff. cond. (13) is not met do

Add suff. cond. (13) violating nodes to \( W \)

Recompute \( \eta, \alpha \) by solving (14)

end while

**Output:** \( W, \eta, \alpha \)

and the minimum is attained at

\[
\eta_i = \frac{a_i}{\left( \sum_{i=1}^{d} a_i \right)^{1+rac{1}{r}}} \tag{4}
\]

Here, by convention, \( a/0 = 0 \) if \( a = 0 \) and is \( \infty \) otherwise. In the limit \( r \to \infty \) the following holds

\[
\min_{\eta \in \Delta_{d, \infty}} \sum_{i=1}^{d} \frac{a_i}{\eta_i} = \sum_{i=1}^{d} a_i \tag{5}
\]

and equality is attained when \( \eta_i = 1 \forall a_i > 0 \).

With repeated application of the above lemma, it can be shown that

\[
\Omega_S(f)^2 = \min_{\gamma \in \Delta_{|V|, 1}} \min_{\lambda \in \Delta_{|D(v)|, 1}} \sum_{v \in V} \sum_{w \in V} \delta_w^{-1}(\gamma, \lambda) \| f_w \|^2
\]

where \( \delta_w^{-1}(\gamma, \lambda) = \sum_{v \in A(w)} \frac{a^2}{\gamma \lambda w} \) and \( \hat{\rho} = \frac{\rho}{2 - \rho} \).

**Proof.** Applying Lemma 4.1 we have that:

\[
\Omega_S(f)^2 = \left( \sum_{v \in V} \delta_w^{-1}(\gamma, \lambda) \| f_w \|^2 \right) = \min_{\gamma \in \Delta_{|V|, 1}} \sum_{v \in V} \delta_w^{-1}(\gamma, \lambda) \| f_w \|^2
\]

Applying the lemma again, we have: \( \| f_D(v) \|^2 = \min_{\gamma \in \Delta_{|V|, 1}} \sum_{w \in V} \delta_w^{-1}(\gamma, \lambda) \| f_w \|^2 \) where \( \hat{\rho} = \frac{\rho}{2 - \rho} \). Thus we have the following variational characterization:

\[
\Omega_S(f)^2 = \min_{\gamma \in \Delta_{|V|, 1}} \min_{\lambda \in \Delta_{|D(v)|, 1}} \sum_{v \in V} \sum_{w \in V} \delta_w^{-1}(\gamma, \lambda) \| f_w \|^2
\]

where \( \delta_w^{-1}(\gamma, \lambda) = \sum_{v \in A(w)} \frac{a^2}{\gamma \lambda w} \).

Using this variational characterization and applying the representer theorem (see also Rakotomamonjy et al. (2008)), we derive a partial-dual (dual wrt. variables \( f, b, \xi \) alone) of (2):

\[
\min_{\gamma \in \Delta_{|V|, 1}} \min_{\lambda \in \Delta_{|D(v)|, 1}} \max_{\alpha \in S(y, C)} G(\gamma, \lambda, \alpha) \tag{6}
\]

where

\[
G(\gamma, \lambda, \alpha) = \frac{1}{2} \alpha^T \left( \sum_{w \in V} \delta_w(\gamma, \lambda) K_w \right) \alpha
\]

and \( S(y, C) = \{ \alpha \in \mathbb{R}^m \mid 0 \leq \alpha \leq C, \sum_{i=1}^{m} y_i \alpha_i = 0 \} \). It turns out that at optimality: \( \Omega_S(f)^2 = \sum_{w \in V} \delta_w(\gamma, \lambda) \alpha^T K_w \alpha \) (this can be realized from the KKT conditions associated with this primal-dual pair). We state and prove another lemma which will be used for proving the next theorem.
Lemma 4.2. At optimality, the objective value of partial-dual obtained in (6) is also given by:

\[
\min_{\gamma \in \Delta_{|V|}, \lambda \in \Delta_{|D(v)|}, \pi \forall v \in V} \max_{\alpha \in S(y, C)} G(\gamma, \lambda, \alpha) = \max_{\alpha \in S(y, C)} \min_{\gamma \in \Delta_{|V|}, \lambda \in \Delta_{|D(v)|}, \pi \forall v \in V} G(\gamma, \lambda, \alpha)
\]

Proof. By a change of variable given by \(\pi_{vw} = \gamma_{v} \lambda_{w}, \forall w \in D(v), \forall v \in V\) (for e.g., (Zafaranski et al., 2008)). Then the constraints over \(\gamma\) and \(\lambda\) can be jointly written, in terms of \(\pi\) as:

\[
\sum_{v \in V} \sum_{w \in D(v)} (\pi_{vw})^\rho = 1
\]

Overloading the functions of \((\gamma, \lambda), \delta_w, \) and \(G,\) by corresponding \(\pi\) variables, we get \(G(\pi, \alpha) = \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \alpha^\top (\sum_{w \in D(v)} \delta_w(\pi)K_w) \alpha\) with \(G(\pi, \alpha) = G(\gamma, \lambda, \alpha).\) Note that \(G(\pi, \alpha)\) is concave in \(\alpha\) and convex in \(\pi\) (proof of convexity similar to lemma 10 in (Bach, 2009)). Also the feasibility sets involved are convex and compact. Using the Sion-Kakutani minmax theorem (Sion, 1958), we have that the min and max can be interchanged leading to: min\(\pi\) max\(\alpha\) \(G(\pi, \alpha) = \max\alpha\min\pi\) \(G(\pi, \alpha)\) (with constraints over \(\pi\) and \(\alpha\) as stated before). We revert back to the original variables \((\gamma, \lambda)\) by taking \(\gamma_v = \sum_{w \in D(v)} (\pi_{vw})^\rho\) and \(\lambda_{vw} = \frac{\pi_{vw}}{(\gamma_v)^\rho},\) which gives us the equivalent

\[
\max_{\alpha \in S(y, C)} \min_{\gamma \in \Delta_{|V|}, \lambda \in \Delta_{|D(v)|}, \pi \forall v \in V} G(\gamma, \lambda, \alpha) = \max_{\alpha \in S(y, C)} \min_{\gamma \in \Delta_{|V|}, \lambda \in \Delta_{|D(v)|}, \pi \forall v \in V} G(\gamma, \lambda, \alpha) \tag{7}
\]

We now note the following key theorem which provides a sufficient condition for optimality of the reduced solution:

Theorem 1. Suppose the active set \(W\) is such that \(W = \text{hull}(W)\). Let the reduced solution with this \(W\) be \((f_W, b_W, \xi_W)\) and the corresponding dual variables be \((\gamma_W, \lambda_W, \alpha_W)\). The reduced solution is a solution of (2) with a duality gap less than \(\epsilon\) if:

\[
\max_{t \in \text{sources}(W)} \| \beta_t \|_\rho \leq (\Omega_S(f_W))^2 + 2(\epsilon - \epsilon_W) \tag{8}
\]

where \(\beta_t\) is the vector with \(|D(t)|\) number of entries and the \(w^{th}\) \((w \in D(t))\) entry being \(\frac{\kappa_{vw}K_w\alpha_W}{d^\rho_w} \),

\(\rho = \frac{\rho}{2(\rho - 1)}\) and \(\epsilon_W\) is a duality gap term associated with the computation of the reduced solution.

Proof. From Lemma 4.2, the duality gap with a given triplet \((\gamma, \lambda, \alpha)\) is given by \((f, b, \xi)\) representing the associated primal solution:

\[
\max_{\gamma \in \Delta_{|V|}, \lambda \in \Delta_{|D(v)|}, \pi \forall v \in V} G(\gamma, \lambda, \alpha) - \min_{\alpha \in S(y, C)} G(\gamma, \lambda, \alpha) = \max_{\alpha \in S(y, C)} \min_{\gamma \in \Delta_{|V|}, \lambda \in \Delta_{|D(v)|}, \pi \forall v \in V} G(\gamma, \lambda, \alpha) \tag{9}
\]

\[
\leq \frac{1}{2} \Omega_S(f)^2 + C \sum_{i=1}^{m} \xi_i - \min_{\gamma \in \Delta_{|V|}, \lambda \in \Delta_{|D(v)|}, \pi \forall v \in V} G(\gamma, \lambda, \alpha) \tag{10}
\]

Gap in solving the problem with fixed \((\gamma, \lambda)\)

\[
\frac{1}{2} \left( \max_{\gamma \in \Delta_{|V|}, \lambda \in \Delta_{|D(v)|}, \pi \forall v \in V} \min_{\alpha \in S(y, C)} H_V - \Omega_S(f)^2 \right) \tag{11}
\]

Gap in solving the problem with fixed \(\alpha\)

where \(H_V = \sum_{w \in V} \delta_w(\gamma, \lambda)^\top K_w \alpha_W\) in (11). With this upper bound on duality gap, it is easy to see that the following condition is sufficient for the reduced solution with \(W\) having a duality gap less than \(\epsilon\):

\[
\max_{\gamma \in \Delta_{|V|}, \lambda \in \Delta_{|D(v)|}, \pi \forall v \in V} \sum_{w \in V} \delta_w(\gamma, \lambda)^\top K_w \alpha_W \leq \Omega_S(f)^2 + 2(\epsilon - \epsilon_W) \]

where \(\epsilon_W\) is the gap\(^5\) associated with the computation of the \(\alpha_W\). In the following we obtain an upper bound on the maximization term (wrt. \((\gamma, \lambda)\)) leading to the result (5) in this theorem. We have:

\[
\max_{\gamma \in \Delta_{|V|}, \lambda \in \Delta_{|D(v)|}, \pi \forall v \in V} \sum_{w \in V} \delta_w(\gamma, \lambda)^\top K_w \alpha_W \leq \max_{\gamma \in \Delta_{|V|}, \lambda \in \Delta_{|D(v)|}, \pi \forall v \in V} \sum_{w \in V} \delta_w(\gamma, \lambda)^\top K_w \alpha_W \leq \frac{\kappa_{vw}^2 \lambda_{vw} \alpha_W^\top K_w \alpha}{d^\rho_w} \tag{12}
\]

(Lagrange dual wrt. \(\gamma\))

\[
\min_{\kappa \in L} \max_{\gamma \in \Delta_{|V|}, \lambda \in \Delta_{|D(v)|}, \pi \forall v \in V} \sum_{w \in V} \kappa_{vw}^2 \lambda_{vw} \alpha_W^\top K_w \alpha \]

(By Sion-Kakutani theorem)

\[
\min_{\kappa \in L} \max_{\gamma \in \Delta_{|V|}, \lambda \in \Delta_{|D(v)|}, \pi \forall v \in V} \sum_{w \in V} \kappa_{vw}^2 \lambda_{vw} \alpha_W^\top K_w \alpha \]

(By Lemma (4.1))

where, \(L = \{\kappa \in \mathbb{R}^{|V| \times |V|} \mid \kappa_{vw} \geq 0, \sum_{v \in A(w)} \kappa_{vw} = 1, \sum_{v \in A(w)} \kappa_{vw} = 0 \forall w \in V\}.

\(^5\)This is given by the gap associated with the \(\rho\)-norm MKL solver employed in the mirror-descent algorithm for solving the small problem (3).
Now, we obtain an upper bound by choosing a specific \( \kappa \); for all \( w \in W \) we simply take it to be the optimal \( \kappa \) obtained by solving the small problem (3). This is fine because \( W = \text{hull}(W) \). For all \( w \in W^c \), any suitable \( \kappa \in L \) will be an upper bound on (12). Thus, we solve (12) for \( \rho = 1 \) case to obtain \( \kappa_{uv} = d_w \left( \sum_{v \in A(v) \cap W^c} d_u \right)^{-1} \) (also see section A.5 (Bach, 2009)). With this choice we have that:

\[
\begin{align*}
&\max_{\gamma \in \Delta_{|V|}, \lambda, \in \Delta_{|D|}, \nu \in V} \sum_{w \in V} \delta_w (\gamma, \lambda) \alpha^\top \mathbf{K}_w \alpha \\
&\leq \max \left\{ \Omega_S(f_W)^2, B_1 \right\}; \text{Specific choice of } \kappa \\
&= \max \left\{ \Omega_S(f_W)^2, B_2 \right\}; \text{\( W = \text{hull}(W) \)} \\
&\leq \max \left\{ \Omega_S(f_W)^2, B_3 \right\}; \sum_{v \in A(w) \cap W^c} d_v \geq \sum_{v \in A(w) \cap D(v)} d_v
\end{align*}
\]

where

\[
B_1 = \max_{t \in W^c} \left( \sum_{w \in D(t)} \left( \frac{\alpha^\top \mathbf{K}_w \alpha}{\sum_{v \in A(w) \cap W^c} d_v} \right)^\frac{1}{2} \right)^\frac{1}{2}
\]

\[
B_2 = \max_{t \in \text{sources}(W^c)} \left( \sum_{w \in D(t)} \left( \frac{\alpha^\top \mathbf{K}_w \alpha}{\sum_{v \in A(w) \cap W^c} d_v} \right)^\frac{1}{2} \right)^\frac{1}{2}
\]

\[
B_3 = \max_{t \in \text{sources}(W^c)} \left( \sum_{w \in D(t)} \left( \frac{\alpha^\top \mathbf{K}_w \alpha}{\sum_{v \in A(w) \cap D(v)} d_v} \right)^\frac{1}{2} \right)^\frac{1}{2}
\]

Employing this upper bound in (12) leads to the result in Theorem 1.

In the special case \( \rho = 1 \) (i.e., \( \rho = 2 \)), this condition is same that obtained in Bach (2009) and can be verified efficiently: size of \( \text{sources}(W^c) \) is upper-bounded by \( p|W| \) and the sum of the quadratic terms \( \alpha^\top \mathbf{K}_w \alpha \) can be done efficiently as we assumed that the kernels are easily summable over the descendants. Similarly, the terms involving the weights \( d_v \) also do not pose a problem as long as we choose the \( d_v \) such that they decompose as products. In this case \( \sum_{v \in A(w) \cap D(v)} d_v \) can be computed in linear time in \( p \). When \( \rho \in (1, 2) \) (i.e., \( \rho \in (1, \infty) \)), we still insist on \( \max_{t \in \text{sources}(W^c)} \| \beta_t \|_1 \leq \text{RHS of (8)} \). This will be fine because for any \( \beta_t \), \( \| \beta_t \|_\rho \leq \| \beta_t \|_1 \). At first, this may seem to be a pessimistic approach, however, in the context of REL problems, it is easy to see that each \( \beta_t \) will be a highly sparse vector as the most of the matrices \( \mathbf{K}_w \) especially near the bottom of the lattice, will be (near) zero-matrices. This is because the larger the conjunctive rule, the fewer are the examples which may satisfy it. Thus effectively for all \( \rho \in (1, 2) \) we use the following sufficient condition:

\[
\max_{t \in \text{sources}(W^c)} \| \beta_t \|_1 \leq (\Omega_S(f_W))^2 + 2(\varepsilon - \epsilon_W) \quad (13)
\]

In case the sufficiency criterion is satisfied at an iteration, the active set algorithm terminates; else the nodes in \( \text{sources}(W^c) \) which violate the condition are appended to the active set\(^6\).

We now focus on the issue of solving the small problem (3) efficiently. Existing optimization tools like cvx\(^7\) are capable of solving this problem; however our initial simulations showed that they are not scalable and impractical to work with real-world REL tasks. Also the wrapper approaches presented in (Szafranski et al., 2008; Bach, 2009) cannot be applied either to the primal form (3) or the dual form (7). The following important theorem presents a highly specialized dual of (2) which motivates a simple mirror-descent based algorithm:

**Theorem 2.** The following is a dual of (2) and the objectives of (2), (7) and (14) are equal at optimality:

\[
\min_{\eta \in \Delta_{|V|}, \lambda} g(\eta) \quad (14)
\]

where \( g(\eta) \) is the optimal objective value of the following convex problem:

\[
\max_{\alpha \in S(\mathbf{y}, \mathbf{x})} \sum_{i=1}^m \alpha_i - \frac{1}{2} \left( \sum_{v \in V} \rho_v (\alpha^\top \mathbf{K}_w \alpha)^\frac{1}{2} \right)^2
\]

where \( \rho_v (\alpha^\top \mathbf{K}_w \alpha)^\frac{1}{2} \) and \( \mathbf{K}_w \) is the \( m \times m \) matrix with entries as: \( y_i y_j k_w(x_i, x_j) \).

**Proof.** We begin by writing down a dual of (12): let us denote the optimal value of (12) by \( \mathcal{O} \). Consider the following problem which has optimal value \( \mathcal{O} \):

\[
\min_{\kappa \in L} \max_{x \in V} d_v^{-\beta} \sum_{w \in D(v)} (\kappa v w \alpha^\top \mathbf{K}_w \alpha)^\beta.
\]

The Lagrangian is:

\[
\mathcal{L}(\kappa, A, \eta) = \mathcal{A} + \sum_{v \in V} \eta_v \left( d_v^{-\beta} \sum_{w \in D(v)} (\kappa v w \alpha^\top \mathbf{K}_w \alpha)^\beta - A \right).
\]

Minimization of Lagrangian wrt. \( A \) leads to the constraint \( \eta \in \Delta_{|V|},1 \). The minimization problem wrt. \( \kappa \) is given by:

\[
\min_{\kappa \in L} \sum_{v \in V} \sum_{w \in D(v)} \eta_v \left( d_v^{-\beta} \kappa v w \alpha^\top \mathbf{K}_w \alpha \right)^\beta.
\]

Using the special structure of \( L \), we can re-write this minimization problem as:

\[
\sum_{v \in V} \left( \alpha^\top \mathbf{K}_w \alpha \right)^\beta \min_{\kappa \in \Delta_{|A(x)|},1} \sum_{v \in A(x)} \eta_v \left( d_v^{-\beta} \kappa v w \alpha^\top \mathbf{K}_w \alpha \right)^\beta.
\]

Using Holder’s inequality\(^8\), we have that:

\[
\min_{\kappa \in \Delta_{|A(x)|},1} \sum_{v \in A(x)} \left( \eta_v d_v^{-\beta} \kappa v w \alpha^\top \mathbf{K}_w \alpha \right)^\beta = \sum_{v \in A(x)} \eta_v d_v^{-\beta} \kappa v w \alpha^\top \mathbf{K}_w \alpha.
\]

\(^6\)It is easy to see that with this update scheme of the active set, \( W \) is always equal to \( \text{hull}(W) \) and hence theorem 1 holds.

\(^7\)Available at http://cvxr.com/cvx/

\(^8\)Take vectors \( u_1 \) and \( u_2 \) as those with entries \( d_v^{-\beta} \eta_v \kappa v w \) and \( d_v^{-\beta} \eta_v \kappa v w \) for all \( v \in A(x) \) respectively. The result follows from the Holder’s inequality: \( u_1^\top u_2 \leq \| u_1 \|_p \| u_2 \|_q \).
is assumed that there exists an oracle which computes the (sub)gradient of \( h \) at any given \( x \in X \). Mirror-descent algorithms are known to efficiently solve such problems, especially those with feasibility set being a simplex. We note the following theorem which justifies the applicability of mirror-descent for solving (14):

**Theorem 3.** The function \( g(\eta) \) given by (15) is convex. Also, the \( t \)th entry in the sub-gradient \( (\nabla g(\eta))_t \) is zero whenever \( \rho \in [1,2] \) and \( \eta \) is a weighted \( q \)-norm in \( \eta \), where \( q \in [-1,0) \) and hence is concave in the first quadrant). By simple observations regarding operations preserving convexity we have that the objective in (15) is a convex function of \( \eta \) for a fixed value of \( \alpha \). Hence \( g(\eta) \), which is a point-wise maximum over convex functions, is itself convex. The sub-gradient follows from the Danskin’s theorem (prop. B.25 in Bertsekas (1999)).

**Proof.** We begin by noting that \( \zeta_w(\eta) \) is a concave function of \( \eta \) for all \( v \) (this is because when \( \rho \in (1,2) \) and hence is concave in the first quadrant). By simple observations regarding operations preserving convexity we have that the objective in (15) is a convex function of \( \eta \) for a fixed value of \( \alpha \). Hence \( g(\eta) \), which is a point-wise maximum over convex functions, is itself convex. The sub-gradient follows from the Danskin’s theorem (prop. B.25 in Bertsekas (1999)).

We show that \( g \) is Lipschitz continuous by showing that the sub-gradient is bounded. Since \( \rho \in [1,\infty) \), we have that \( |T_1| \leq 1/2 \). Let the maximum and minimum eigenvalues over all \( K_w \) be \( \mu, \sigma \) respectively. Then, we have that \( \mu ||\bar{\alpha}||^2 \leq \bar{\alpha}^T K_w \bar{\alpha} \leq \sigma ||\bar{\alpha}||^2 \).

Using this, our obtain: \( \sum_{w \in V} \zeta_w(\eta) (\bar{\alpha}^T K_w \bar{\alpha})^\beta \geq \mu^\beta ||\bar{\alpha}||^{2\beta} \sum_{w \in V} \zeta_w(\eta) \). Note that \( \zeta_w(\eta) \) is zero whenever any \( \eta_w \neq 0 \) and \( v \in A(w) \). Hence, by (16) it is clear that the set of non-zero \( \eta \) is such that it is equal to its hull. Also, since \( \eta \in \Delta|\mathcal{V}|,\) we must have that at least one \( \eta_v \geq \frac{1}{|\mathcal{V}|} \). This gives us that \( \sum_{w \in V} \zeta_w(\eta) \geq d_{\max}^{-1/\rho} ||V|| \) where \( d_{\max} \) is the maximum of \( d_v \), \( v \in \mathcal{V} \). Thus we obtain: \( T_2 \leq (\mu ||\bar{\alpha}||^2 ||V||^{1/\rho}) \frac{1}{d_{\max}^{2/(1-\rho)}} \). Now, it is easy to see that: \( \eta_v^\rho \zeta_w(\eta) \eta_v \leq \eta_v^\rho \bar{\alpha} \). Hence \( T_3 \leq ||V||^{\rho \beta} \bar{\alpha}^{2\beta} d_{\max}^{\rho \beta} d_{\min}^{2/(1-\rho)} \). Also, because \( 0 \leq \bar{\alpha} \leq C \), we have that \( ||\bar{\alpha}|| \leq \sqrt{mC} \).

Summarizing these finding we obtain the following bound on the sub-gradient:

\[
\|\nabla g(\eta)\|_1 \leq \frac{mC^2}{2} \mu^{1-\rho} \sigma^\rho ||V||^{\frac{\rho}{2}} d_{\max}^{\rho+\rho} d_{\min}^{2/(1-\rho)}
\]

It is clear from the above theorem that computing the gradient of \( h \) involves solving (15) which is, as noted before, equivalent to solving a \( \rho \)-norm MKL.
problem. This can be done using cutting planes algorithms (Kloft et al., 2009). In the special case \( \rho = 2 \), (15) is simply a regular SVM problem.

In the following text, the computational complexity of the active set algorithm is estimated assuming \( R \) is the final active set size. We need to solve (14) \( O(R) \) times. Each mirror descent run takes \( \log(R) \) iterations (Ben-Tal & Nemirovski, 2001) with dominant computation at each iteration being that of solving \( \hat{\rho} \)-norm MKL whose conservative complexity estimate is \( O(m^3 R^2) \). This amounts to \( O(m^3 R^3 \log(R)) \). The cost for computing gram-matrices is \( O(m^2 R \hat{\rho}) \); whereas that of verifying the sufficient conditions is \( O(m^2 R^2 \hat{\rho}) \). Thus the overall computational complexity is: \( O(m^3 R^3 \log(R) + m^2 R \hat{\rho} + m^2 R^2 \hat{\rho}) \).

5. Experimental Results

In this section, we report the results of our simulations on classification datasets from the UCI repository. The goal is to compare various rule ensemble learners on the basis of (a) generalization — measured by the predictive performance on unseen test data (b) interpretability — measured using i) number of conjunctive rules employed ii) average number of propositions per rule.

The following methods were compared.

**HKL\(_{\rho}\):** The proposed REL algorithms described in Sections 3 & 4. We consider three different values of \( \rho: 2, 1.5 \) and 1.1. Note that with \( \rho = 2 \), the formulation is the same as (Bach, 2009). In each case, a 3-fold cross validation procedure was employed to tune the \( C \) parameter with values in \( \{10^{-3}, 10^{-2}, \ldots, 10^3\} \). Weight parameters \( d_v \) increased exponentially with the depth of the node \( v \). Such a scheme of weights is consistent with our policy of discouraging selection of large conjunctions. For each numerical input feature \( (j) \), the number of critical values \( n_j \) was chosen to be 4 with critical values distributed uniformly. Code is available at [http://www.cse.iitb.ac.in/~pratik.j/REL-HKL.tar.gz](http://www.cse.iitb.ac.in/~pratik.j/REL-HKL.tar.gz).

**ENDER\(_M\):** State-of-the-art rule ensemble algorithm (Dembczyński et al., 2010). Note that for a classification problem, ENDER is same as MLRules (Dembczyński et al., 2008)\(^{11}\). The parameters were set to default values mentioned by the authors, in particular, the number of rules (say, denoted by \( M \)) was set to 500. Additionally, to enable comparisons between ENDER and the proposed methods, we also considered \( M = \theta = \max(N_{13}, N_{11}) \), where \( N_{\rho} \) is the number of rules computed by HKL\(_{\rho}\). The Newton method was used for minimization.

**SLI:** The SLIPPER algorithm (Cohen & Singer, 1999). Following Dembczyński et al. (2010), the limit on maximum number of iterations \( (T_{\text{max}}) \) was set to 500 and internal cross-validation for selecting the best \( T_{\text{max}} \) was performed.

**RuleFit:** Rule ensemble algorithm as in Friedman & Popescu (2008)\(^{12}\). The parameter settings were the same as those specified by the authors.

We experimented with the following benchmark datasets from the UCI repository:\(^{13}\) tic-tac-toe, balance, haberman, car, blood transfusion, cmc, monks-3, vote, breast cancer, mammographic mass. In case of multi-class datasets, we picked the two most populated classes for binary classification.

For each dataset, we created 5 random train-test splits with 10% train data\(^{14}\). Since most datasets were highly unbalanced, we report the average F1-score (with standard deviation) for each dataset in Table 1. We also report the number of rules produced and the average length (number of propositions) of the rules\(^{15}\). It is desirable that REL algorithms achieve high F1-score with a small set of simple rules i.e., compact set of rules. In order to be comparable with other REL works we also report the corresponding error percentage obtained in Table 2.

We observe in Table 1 that the generalization of the proposed HKL\(_{\rho}\) is atleast as good as that of state-of-the-art, with the additional advantage that HKL\(_{\rho}\) learns rules with small number of conjunctions. More interestingly, HKL\(_{1.1}\) yields extremely small to medium-sized accurate rule sets. Wilcoxon sign rank test shows that there is only a small evidence (probabilities of 0.027, 0.049 and 0.02 respectively) in favour of the null hypotheses that the median F1-score with HKL\(_{1.1}\) is the same as those with RuleFit, SLI and ENDER\(_\rho\). Some observations from the table are noteworthy. For instance, HKL\(_{1.1}\) benefits from its optimal search and chooses a moderate sized ruleset for the tic-tac-toe dataset leading to substantial gain in F1-score. Whereas, in cases like monk-3, vote and


\(^{12}\) Code available at [www-stat.stanford.edu/~jhf](http://www-stat.stanford.edu/~jhf)


\(^{14}\) Except for monk-3 where train-test split was given.

\(^{15}\) Specified below each F1-score as: (number of rules, average length of rules)
blood trans. HKL$_{1,1}$ selects extremely compact rule-sets while performing comparably or marginally better in terms of F1-score. As expected, the compactness in the ruleset rapidly increases as ρ decreases while sometimes even improving on the F1-score. In fact we observed that the percentage of non-selected rules in the final hull for different HKL methods are: HKL$_{2}$ 0%, HKL$_{1,5}$ 48.1% and HKL$_{1,1}$ 86.8% — which substantiates our intuition behind generalizing HKL. It is also interesting to note that HKL$_{1,1}$ generalizes better even with the default configuration in ENDer which allows it to learn up to 500 rules.

In Table 2, which shows the corresponding error percentage, we see a similar trend with HKL$_{ρ}$ performing well especially in tic-tac-toe, balance, car datasets. Result from only haberman dataset deviated from what we observed in Table 1. Moreover we also see that in bcancer dataset, the error percentage
of $\text{HKL}_\rho$ is much higher that the rest. The latter is because $\text{HKL}_\rho$ did not performed well on one of the splits (in which all test examples were assigned to minor class). It is worth noting that these two were higly imbalanced datasets, with only around 25% data belonging to one class and hence none of the methods were able to overcome a trivial baseline of assigning all test examples to the major class.

6. Conclusions

We posed the problem of learning compact rule ensembles as a hierarchical kernel learning problem. In order to overcome the redundancies in the rule-set induced by HKL, we generalized the 1-norm in HKL to $\rho$-norm. We developed an efficient algorithm to optimally solve this generalization. This generalization of HKL could prove useful in other machine learning applications as well. Experimental results clearly illustrate that the generalized HKL can indeed learn a small set of simple and accurate rules.

Acknowledgments

We acknowledge Chiranjib Bhattacharyya for initiating discussions on optimal learning of rule ensembles.

References


