Login
Talks & Seminars
Title: Mining Healthcare Systems to Personalize Patient Care & Improve Clinical Decisions
Dr. R. Bharat Rao, Siemens Healthcare, Inc., Malvern PA, USA
Date & Time: October 14, 2010 17:00
Venue: Conference Room, 01st floor, ‘C’ Block, Kanwal Rekhi Bldg.
Abstract:
Healthcare is on the verge of a revolution, which will be driven by knowledge. This knowledge is being derived both by traditional clinical studies and also by mining vast quantities of patient data. Today’s medicine is “one size fits all”, in that treatment and diagnostic decisions are based on set of guidelines that are uniformly applied to the patient population. The use of knowledge by decision-support systems to personalize the delivery of care has the potential to transform the practice of medicine. There is a great need for computerized decision-support systems that can automatically combine relevant knowledge with patient data to assist the physician at the point of care. Widespread use of knowledge-driven systems is hampered by the poor quality of patient data; most of the useful clinical information in patient records is recorded in unstructured form (images, free text, mass-spect arrays) and existing decision-support systems work primarily with structured data. In this talk, we discuss how machine learning & probabilistic inference methods can help deal with the problems of applying medical knowledge to unstructured patient records. The personalization of medicine is being further fueled by recent advances in gene sequencing and molecular imaging technology. Machine learning methods are being used to discover biomarkers – these are essentially, classifiers that extract information from patient data, and can be used to predict the risk of disease, to diagnose a patient, to provide patient prognosis conditioned on different treatments (and thus select therapy), and to monitor the impact of a therapy. In addition to being customized to the individual patient characteristics (in theory, down to the genome), decision-support systems must also be personalized with respect to what is known about each patient (i.e., not all patients come with the same tests, diagnoses, etc.). We conclude by identifying particular machine learning challenges involved with learning from medical data.
Speaker Profile:
R. Bharat Rao, PhD is Senior Director and Head of the Knowledge Solutions (KS) group for the Health Services business unit in Siemens Healthcare , Inc, a subsidiary of Siemens AG . The KS group is headquartered in Malvern, PA, USA, and employs 80+ people in 4 countries & 3 continents. The group focuses on developing products and services that (i) help improve patient outcomes and provide business intelligence by integrating medical knowledge with patient records (free text, images, labs, pharmacy, genomics, billing records, ambulatory data, etc.), and (ii) supports the increasing drive to personalize medicine. The group has developed healthcare data mining & health analytics applications for automated quality measurement, business intelligence, clinical decision-support, computer-aided diagnosis, and personalized medicine. Dr. Rao received a B.Tech in Electronics Engineering from the Indian Institute of Technology, Madras in 1985, and an M.S. and Ph.D. focusing on machine learning from the Dept. of Electrical Engineering, University of Illinois, Urbana-Champaign, in 1993. He joined Siemens Corporate Research in 1993, and formed the Data Mining group there in 1996. In 2002, he moved to Siemens Healthcare to help found the “Computer-Aided Diagnosis & Knowledge Solutions” group. Dr. Rao's research interests include probabilistic inference, machine learning, natural language processing, classification, and graphical models, with a focus on developing decision-support systems that can help physicians improve the quality of patient care. He is particularly interested in the development of novel data mining methods to collectively mine the structured and unstructured parts of a patient record and the automatic integration of medical domain knowledge into the mining process. He has published over 100 papers in peer-reviewed scientific journals and conferences in machine learning and medicine and been granted 20+ patents (with ~50 more pending patents). In 2005, Siemens honored him with its "Inventor of the Year" award for “outstanding contributions related to improving the technical expertise and the economic success of the company” for developing REMIND (Reliable Extraction and Meaningful Inference from Nonstructured Data). The REMIND platform supports the rapid development of decision-support applications that integrate knowledge with data, as well as the discovery of novel medical knowledge to support personalized medicine. Dr. Rao has twice been awarded the Data Mining Practice Prize for the best deployed industrial and government data mining application in 2005 (for REMIND) and 2009 (for Computer-Aided Diagnosis applications). Recently, he was General Chair, for KDD-2010, the largest, most-established data mining conference, attended in Washington DC this year, by over 900 practitioners from academia, industry and government. Dr. Rao's passions outside of the sphere of Science and Business include the sport of Cricket, Classic Rock, the history of Science, and the study of Philosophy and Religion. He is married and has two children.
List of Talks

Webmail

Username:
Password:
Faculty CSE IT
Forgot Password
    [+] Sitemap     Feedback