
Lecture 10: Demand Paging

Mythili Vutukuru
IIT Bombay



Is main memory always enough?
• Are all pages of all active processes always in

main memory?
– Not necessary, with large address spaces

• OS uses a part of disk (swap space) to store
pages that are not in active use

• Are all pages of all active processes always in
main memory?
– Not necessary, with large address spaces

• OS uses a part of disk (swap space) to store
pages that are not in active use

2



Page fault

• Present bit in page table entry: indicates if a
page of a process resides in memory or not

• When translating VA to PA, MMU reads
present bit

• If page present in memory, directly accessed
• If page not in memory, MMU raises a trap to

the OS – page fault

• Present bit in page table entry: indicates if a
page of a process resides in memory or not

• When translating VA to PA, MMU reads
present bit

• If page present in memory, directly accessed
• If page not in memory, MMU raises a trap to

the OS – page fault

3



Page fault handling
• Page fault traps OS and moves CPU to kernel

mode
• OS fetches disk address of page and issues read

to disk
– OS keeps track of disk address (say, in page table)

• OS context switches to another process
– Current process is blocked and cannot run

• When disk read completes, OS updates page
table of process, and marks it as ready

• When process scheduled again, OS restarts the
instruction that caused page fault

• Page fault traps OS and moves CPU to kernel
mode

• OS fetches disk address of page and issues read
to disk
– OS keeps track of disk address (say, in page table)

• OS context switches to another process
– Current process is blocked and cannot run

• When disk read completes, OS updates page
table of process, and marks it as ready

• When process scheduled again, OS restarts the
instruction that caused page fault

4



Summary: what happens on memory
access

• CPU issues load to a VA for code or data
– Checks CPU cache first
– Goes to main memory in case of cache miss

• MMU looks up TLB for VA
– If TLB hit, obtains PA, fetches memory location and returns

to CPU (via CPU caches)
– If TLB miss, MMU accesses memory, walks page table, and

obtains page table entry
• If present bit set in PTE, accesses memory
• If not present but valid, raises page fault. OS handles

page fault and restarts the CPU load instruction
• If invalid page access, trap to OS for illegal access

• CPU issues load to a VA for code or data
– Checks CPU cache first
– Goes to main memory in case of cache miss

• MMU looks up TLB for VA
– If TLB hit, obtains PA, fetches memory location and returns

to CPU (via CPU caches)
– If TLB miss, MMU accesses memory, walks page table, and

obtains page table entry
• If present bit set in PTE, accesses memory
• If not present but valid, raises page fault. OS handles

page fault and restarts the CPU load instruction
• If invalid page access, trap to OS for illegal access 5



More complications in a page fault

• When servicing page fault, what if OS finds that
there is no free page to swap in the faulting page?

• OS must swap out an existing page (if it has been
modified, i.e., dirty) and then swap in the faulting
page – too much work!

• OS may proactively swap out pages to keep list of
free pages handy

• Which pages to swap out? Decided by page
replacement policy.

• When servicing page fault, what if OS finds that
there is no free page to swap in the faulting page?

• OS must swap out an existing page (if it has been
modified, i.e., dirty) and then swap in the faulting
page – too much work!

• OS may proactively swap out pages to keep list of
free pages handy

• Which pages to swap out? Decided by page
replacement policy.

6



Page replacement policies

• Optimal: replace page not needed for longest
time in future (not practical!)

• FIFO: replace page that was brought into
memory earliest (may be a popular page!)

• LRU/LFU: replace the page that was least
recently (or frequently) used in the past

• Optimal: replace page not needed for longest
time in future (not practical!)

• FIFO: replace page that was brought into
memory earliest (may be a popular page!)

• LRU/LFU: replace the page that was least
recently (or frequently) used in the past

7



Example: Optimal policy
• Example: 3 frames for 4 pages (0,1,2,3)
• First few accesses are cold (compulsory) misses

8



Example: FIFO
• Usually worse than optimal
• Belady’s anomaly: performance may get

worse when memory size increases!

9



Example: LRU
• Equivalent to optimal in this simple example
• Works well due to locality of references

10



How is LRU implemented?

• OS is not involved in every memory access – how
does it know which page is LRU?

• Hardware help and some approximations
• MMU sets a bit in PTE (“accessed” bit) when a

page is accessed
• OS periodically looks at this bit to estimate pages

that are active and inactive
• To replace, OS tries to find a page that does not

have access bit set
– May also look for page with dirty bit not set (to avoid

swapping out to disk)

• OS is not involved in every memory access – how
does it know which page is LRU?

• Hardware help and some approximations
• MMU sets a bit in PTE (“accessed” bit) when a

page is accessed
• OS periodically looks at this bit to estimate pages

that are active and inactive
• To replace, OS tries to find a page that does not

have access bit set
– May also look for page with dirty bit not set (to avoid

swapping out to disk)
11


