
Lecture 19: File System
Implementation

Lecture 19: File System
Implementation

Mythili Vutukuru
IIT Bombay



File System

• An organization of files and directories on disk
• OS has one or more file systems
• Two main aspects of file systems

– Data structures to organize data and metadata on disk
– Implementation of system calls like open, read, write

using the data structures

• Disks expose a set of blocks (usually 512 bytes)
• File system organizes files onto blocks

– System calls translated into reads and writes on blocks

• An organization of files and directories on disk
• OS has one or more file systems
• Two main aspects of file systems

– Data structures to organize data and metadata on disk
– Implementation of system calls like open, read, write

using the data structures

• Disks expose a set of blocks (usually 512 bytes)
• File system organizes files onto blocks

– System calls translated into reads and writes on blocks

2



Example: a simple file system

• Data blocks: file data stored in one or more blocks
• Metadata about every file stored in inode

– Location of data blocks of a file, permissions etc.
• Inode blocks: each block has one or more inodes
• Bitmaps: indicate which inodes/data blocks are free
• Superblock: holds master plan of all other blocks

(which are inodes, which are data blocks etc.)

• Data blocks: file data stored in one or more blocks
• Metadata about every file stored in inode

– Location of data blocks of a file, permissions etc.
• Inode blocks: each block has one or more inodes
• Bitmaps: indicate which inodes/data blocks are free
• Superblock: holds master plan of all other blocks

(which are inodes, which are data blocks etc.)

3



Inode table
• Usually, inodes (index nodes) stored in array

– Inode number of a file is index into this array

• What does inode store?
– File metadata: permissions, access time, etc.
– Pointers (disk block numbers) of file data

• Usually, inodes (index nodes) stored in array
– Inode number of a file is index into this array

• What does inode store?
– File metadata: permissions, access time, etc.
– Pointers (disk block numbers) of file data

4



Inode structure

• File data not stored contiguously on disk, need
to track multiple block numbers of a file

• How does inode track disk block numbers?
– Direct pointers: numbers of first few blocks are

stored in inode itself (suffices for small files)
– Indirect block: for larger files, inode stores number

of indirect block, which has block numbers of file
data

– Similarly, double and triple indirect blocks (multi-
level index)

• File data not stored contiguously on disk, need
to track multiple block numbers of a file

• How does inode track disk block numbers?
– Direct pointers: numbers of first few blocks are

stored in inode itself (suffices for small files)
– Indirect block: for larger files, inode stores number

of indirect block, which has block numbers of file
data

– Similarly, double and triple indirect blocks (multi-
level index)

5



File Allocation Table (FAT)

• Alternate way to track file blocks
• FAT stores next block pointer for each block

– FAT has one entry per disk block
– Entry has number of next file block, or null (if last

block)
– Pointer to first block stored in inode

• Alternate way to track file blocks
• FAT stores next block pointer for each block

– FAT has one entry per disk block
– Entry has number of next file block, or null (if last

block)
– Pointer to first block stored in inode

6



Directory structure

• Directory stores records mapping filename to
inode number, e.g., as shown below

• Linked list of records, or more complex
structures (hash tables, binary search trees
etc.)

• Directory is a special type of file and has inode
and data blocks (which store the file records)

• Directory stores records mapping filename to
inode number, e.g., as shown below

• Linked list of records, or more complex
structures (hash tables, binary search trees
etc.)

• Directory is a special type of file and has inode
and data blocks (which store the file records)

7



Free space management

• How to track free blocks?
– Bitmaps, for inodes and data blocks, store one bit

per block to indicate if free or not
– Free list, super block stores pointer to first free

block, a free block stores address of next block on
list

– More complex structures can also be used

• How to track free blocks?
– Bitmaps, for inodes and data blocks, store one bit

per block to indicate if free or not
– Free list, super block stores pointer to first free

block, a free block stores address of next block on
list

– More complex structures can also be used

8



Opening a file
• Why open? To have the inode readily available (in

memory) for future operations on file
– Open returns fd which points to in-memory inode
– Reads and writes can access file data from inode

• What happens during open?
– The pathname of the file is traversed, starting at root
– Inode of root is known, to bootstrap the traversal
– Recursively do: fetch inode of parent directory, read

its data blocks, get inode number of child, fetch inode
of child. Repeat until end of path

– If new file, new inode and data blocks will have to be
allocated using bitmap, and directory entry updated

• Why open? To have the inode readily available (in
memory) for future operations on file
– Open returns fd which points to in-memory inode
– Reads and writes can access file data from inode

• What happens during open?
– The pathname of the file is traversed, starting at root
– Inode of root is known, to bootstrap the traversal
– Recursively do: fetch inode of parent directory, read

its data blocks, get inode number of child, fetch inode
of child. Repeat until end of path

– If new file, new inode and data blocks will have to be
allocated using bitmap, and directory entry updated

9



Open file table
• Global open file table

– One entry for every file opened (even sockets, pipes)
– Entry points to in-memory copy of inode (other data

structures for sockets and pipes)
• Per-process open file table

– Array of files opened by a process
– File descriptor number is index into this array
– Per-process table entry points to global open file table

entry
– Every process has three files (standard in/out/err)

open by default (fd 0, 1, 2)
• Open system call creates entries in both tables

and returns fd number

• Global open file table
– One entry for every file opened (even sockets, pipes)
– Entry points to in-memory copy of inode (other data

structures for sockets and pipes)
• Per-process open file table

– Array of files opened by a process
– File descriptor number is index into this array
– Per-process table entry points to global open file table

entry
– Every process has three files (standard in/out/err)

open by default (fd 0, 1, 2)
• Open system call creates entries in both tables

and returns fd number
10



Reading and writing a file

• For reading/writing file
– Access in-memory inode via file descriptor
– Find location of data block at current read/write

offset
– Fetch block from disk and perform operation
– Writes may need to allocate new blocks from disk

using bitmap of free blocks
– Update time of access and other metadata in

inode

• For reading/writing file
– Access in-memory inode via file descriptor
– Find location of data block at current read/write

offset
– Fetch block from disk and perform operation
– Writes may need to allocate new blocks from disk

using bitmap of free blocks
– Update time of access and other metadata in

inode

11



Virtual File System
• File systems differ in implementations of data

structures (e.g., organization of file records in
directory)

• Linux supports virtual file system (VFS) abstraction
• VFS looks at a file system as objects (files, directories,

inodes, superblock) and operations on these objects
(e.g., lookup filename in directory)

• System call logic is written on VFS objects
• To develop a new file system, simply implement

functions on VFS objects and provide pointers to these
functions to kernel

• Syscall implementation does not have to change with
file system implementation details

• File systems differ in implementations of data
structures (e.g., organization of file records in
directory)

• Linux supports virtual file system (VFS) abstraction
• VFS looks at a file system as objects (files, directories,

inodes, superblock) and operations on these objects
(e.g., lookup filename in directory)

• System call logic is written on VFS objects
• To develop a new file system, simply implement

functions on VFS objects and provide pointers to these
functions to kernel

• Syscall implementation does not have to change with
file system implementation details

12



Disk buffer cache (1)
• Results of recently fetched disk blocks are cached

– LRU to evict if cache is full
• File system issues block read/write requests to

block numbers via buffer cache
– If block in cache, served from cache, no disk I/O
– If cache miss, block fetched to cache and returned to

file system
• Writes are applied to cache block first

– Synchronous/write-through cache writes to disk
immediately

– Asynchronous/write-back cache stores dirty block in
memory and writes back after a delay

• Results of recently fetched disk blocks are cached
– LRU to evict if cache is full

• File system issues block read/write requests to
block numbers via buffer cache
– If block in cache, served from cache, no disk I/O
– If cache miss, block fetched to cache and returned to

file system
• Writes are applied to cache block first

– Synchronous/write-through cache writes to disk
immediately

– Asynchronous/write-back cache stores dirty block in
memory and writes back after a delay

13



Disk buffer cache (2)
• Unified page cache in OS

– Free pages allocated to both processes and disk
buffer cache from common pool

• Two benefits
– Improved performance due to reduced disk I/O

(one disk access for multiple reads and writes)
– Single copy of block in memory (no inconsistency

across processes)
• Some applications like databases may avoid

caching altogether, to avoid inconsistencies
due to crashes: direct I/O

• Unified page cache in OS
– Free pages allocated to both processes and disk

buffer cache from common pool
• Two benefits

– Improved performance due to reduced disk I/O
(one disk access for multiple reads and writes)

– Single copy of block in memory (no inconsistency
across processes)

• Some applications like databases may avoid
caching altogether, to avoid inconsistencies
due to crashes: direct I/O

14


