
Lecture 20: Hard disk internals

Mythili Vutukuru
IIT Bombay



Hard disk

• Interface: a set of 512-byte blocks (sectors),
that can be read or written atomically

• Internals: one or more platters, connected by
a spindle, spinning at ~10K RPM (rotations per
minute)

• Each platter has a disk head and arm
• A platter is divided into multiple tracks, and

each track into 512-byte sectors

• Interface: a set of 512-byte blocks (sectors),
that can be read or written atomically

• Internals: one or more platters, connected by
a spindle, spinning at ~10K RPM (rotations per
minute)

• Each platter has a disk head and arm
• A platter is divided into multiple tracks, and

each track into 512-byte sectors

2



What happens when accessing a
sector?

• Suppose disk head at 30, need to access 11
• Seek to the correct track, wait for disk to rotate

3



Time taken for I/O operation

• Time taken to read/write a block consists of
– Seek time to get to the right track (few ms)
– Rotational latency for disk to spin to correct sector on

the track (few ms)
– Transfer time to read sector (few tens microsec)

• Given high seek and rotational latency, usually
rate of sequential access > rate of random access

• Time taken to read/write a block consists of
– Seek time to get to the right track (few ms)
– Rotational latency for disk to spin to correct sector on

the track (few ms)
– Transfer time to read sector (few tens microsec)

• Given high seek and rotational latency, usually
rate of sequential access > rate of random access

4



Disk Scheduling

• Requests to disk are not served in FIFO, they
are reordered with other pending requests

• Why? In order to read blocks in sequence as
far as possible, to minimize seek time and
rotational delay

• Who does scheduling? OS does not know
internal geometry of disk, so scheduling done
mostly by disk controller

• Requests to disk are not served in FIFO, they
are reordered with other pending requests

• Why? In order to read blocks in sequence as
far as possible, to minimize seek time and
rotational delay

• Who does scheduling? OS does not know
internal geometry of disk, so scheduling done
mostly by disk controller

5



Shortest Seek Time First (SSTF)

• Access block that we can
seek to fastest
– Go to 21 (one track away)

before 2 (two tracks away)
• Problem: starvation

(some requests that are
far from current position
of head may never get
served)

• Access block that we can
seek to fastest
– Go to 21 (one track away)

before 2 (two tracks away)
• Problem: starvation

(some requests that are
far from current position
of head may never get
served)

6



Elevator/SCAN algorithm

• Disk head does one sweep over tracks and
serves requests that fall on the path

• Elevator/SCAN: sweep outer to inner, then
inner to outer

• C-SCAN: sweep only one direction (say, outer
to inner) and circle back, start again
– Why? Sweeping back and forth favors middle

tracks more
• F-SCAN: freeze queue while scanning

– Why? Avoid starving far away requests

• Disk head does one sweep over tracks and
serves requests that fall on the path

• Elevator/SCAN: sweep outer to inner, then
inner to outer

• C-SCAN: sweep only one direction (say, outer
to inner) and circle back, start again
– Why? Sweeping back and forth favors middle

tracks more
• F-SCAN: freeze queue while scanning

– Why? Avoid starving far away requests
7



Shortest Positioning Time First (SPTF)

• Considers both seek time
and rotational latency
– Better to serve 8 before 16,

even though seek time is
higher

– Why? 16 incurs a much
higher rotational latency

• Considers both seek time
and rotational latency
– Better to serve 8 before 16,

even though seek time is
higher

– Why? 16 incurs a much
higher rotational latency

8



Data storage on disk
• Bits stored on disk with some error

detection/correction bits
– Correct random bit flips
– Detect corruption of data

• Disk controller or OS can handle some errors
(e.g., blacklisting certain sectors)

• If errors cannot be masked, user perceives hard
disk failures

• Technologies such as RAID (Redundant Array of
Inexpensive Disks) provide high reliability and
performance by replicating across multiple disks.

• Bits stored on disk with some error
detection/correction bits
– Correct random bit flips
– Detect corruption of data

• Disk controller or OS can handle some errors
(e.g., blacklisting certain sectors)

• If errors cannot be masked, user perceives hard
disk failures

• Technologies such as RAID (Redundant Array of
Inexpensive Disks) provide high reliability and
performance by replicating across multiple disks.

9


