
Lecture 22: Processes in xv6

Mythili Vutukuru
IIT Bombay

https://www.cse.iitb.ac.in/~mythili/os/



The process abstraction
• The OS is responsible for concurrently running multiple processes 

(on one or more CPU cores/processors)
– Create, run, terminate a process
– Context switch from one process to another
– Handle any events (e.g., system calls from process)

• OS maintains all information about an active process in a process 
control block (PCB)
– Set of PCBs of all active processes is a critical kernel data structure
– Maintained as part of kernel memory (part of RAM that stores kernel 

code and data, more on this later)
• PCB is known by different names in different OS

– struct proc in xv6
– task_struct in Linux

2



PCB in xv6: struct proc

• Page 23, process structure and process states

3



struct proc: kernel stack

• Recall: register state (CPU context) saved on user 
stack during function calls, to restore/resume 
later

• Likewise, CPU context stored on kernel stack 
when process jumps into OS to run kernel code
– Why separate stack? OS does not trust user stack
– Separate area of memory per process within the 

kernel, not accessible by regular user code
– Linked from struct proc of a process

4



struct proc: list of open files

• Array of pointers to open files (struct file has 
information about the open file, more on this later)
– When user opens a file, a new entry is created in this array, 

and the index of that entry is passed as a file descriptor to 
user

– Subsequent read/write calls on a file use this file 
descriptor to refer to the file

– First 3 files (array indices 0,1,2) open by default for every 
process: standard input, output and error

– Subsequent files opened by a process will occupy later 
entries in the array

5



struct proc: page table

• Every instruction or data item in the memory 
image of process (code/data, stack, heap, etc.) 
has an address
– Virtual addresses, starting from 0
– Actual physical addresses in memory can be different 

(all processes cannot store their first instruction at 
address 0)

• Page table of a process maintains a mapping 
between the virtual addresses and physical 
addresses (more on this later)

6



Process table (ptable) in xv6

• ptable: Fixed-size array of all processes 
– Real kernels have dynamic-sized data structures

• CPU scheduler in the OS loops over all runnable processes, 
picks one, and sets it running on the CPU

7



Process state transition examples
• A process that needs to sleep (e.g., for 

disk I/O) will set its state to SLEEPING 
and invoke scheduler

• A process that has run for its fair 
share will set itself to RUNNABLE 
(from RUNNING) and invoke scheduler

• Scheduler will once again find another 
RUNNABLE process and set it to 
RUNNING

8



Summary of xv6 processes

• We have seen basics of PCB structure (struct
proc), list of processes (ptable), scheduler 
code, state transitions

• We will keep revisiting this xv6 code multiple 
times to understand it better
– Each concept will deepen understanding further

9


