
Lecture 23: System calls for 
process management in xv6

Mythili Vutukuru
IIT Bombay

https://www.cse.iitb.ac.in/~mythili/os/



Process system calls: Shell

• When xv6 boots up, it starts init process (first user process)
• Init forks shell (another user process, which prompts for input)
• Shell executes user commands as follows

– Shell reads command from terminal
– Shell forks child (new process created in ptable)
– When child runs, it calls exec (rewrite code/data with that of command)
– Shell (parent) waits for child to terminate
– The whole process repeats again

• Some commands have to be executed by parent process itself, and not 
by child.
– For example, “cd” command should change the current directory of 

parent (shell), not of child
– Such commands are directly executed by shell itself without forking a child

2



Main function of shell

3



What happens on a system call? (1)

• System calls available to 
user programs are 
defined in user library 
header “user.h”
– Equivalent to C library 

headers (xv6 doesn’t use 
standard C library)

– Note that this user code 
is not available in the 
PDF source code (which 
covers only kernel code)

4



What happens on a system call? (2)

• System call implementation 
invokes special “trap” 
instruction called “int” in x86 
(see usys.S)

• The trap (int) instruction 
causes a jump to kernel code 
that handles the system call
– System call number moved 

into eax, to let kernel run the 
suitable code 

– More on trap instruction 
later

5



Fork system call: overview
• Parent allocates new process in ptable, copies parent state to child
• Child process set to runnable, scheduler runs it at a later time
• Return value in parent is PID of child, return value in child is set to 0

6



Exec system call: overview

• Key steps:
– Copy new executable into memory
– Create new stack, heap
– Switch process page table to use new memory 

image
– Process begins to run new code after system call 

ends
• See page 66 of source code PDF for full 

implementation

7



Exit system call: overview
• Exiting process cleans up state (e.g., close files) 
• Pass abandoned children (orphans) to init
• Mark itself as zombie and invoke scheduler 

8



Wait system call overview

• Search for dead children in 
process table

• If dead child found, clean 
up memory of zombie, 
return PID of dead child

• If no dead child, sleep until 
one dies

9



Summary of process management 
system calls in xv6

• Fork – process marks new child’s struct proc as 
RUNNABLE, initializes child memory image and other 
state that is needed to run when scheduled

• Exec – process reinitializes memory image of user 
code, data, stack, heap and returns to run new code

• Exit – process marks itself as ZOMBIE, cleans up 
some of its state, and invokes scheduler

• Wait – parent finds any ZOMBIE child and cleans up 
all its state. If no dead child yet, it sleeps (marks itself 
as SLEEPING and invokes scheduler)

10


