
Lecture 26: Process creation in 
xv6

Mythili Vutukuru
IIT Bombay

https://www.cse.iitb.ac.in/~mythili/os/



New process creation in xv6

• Init process: first process created by xv6 after boot up
– This init process forks shell process, which in turn forks 

other processes to run user commands
– The init process is the ancestor of all processes in Unix-like 

systems
• After init, every other process is created by the fork 

system call, where a parent forks/spawns a child 
process

• The function “allocproc” called during both init process 
creation and in fork system call
– Allocates new process structure, PID etc
– Sets up the kernel stack of process so that it is ready to be 

context switched in by scheduler

2



allocproc
• Find unused entry in ptable, mark is as embryo

– Marked as runnable after process creation 
completes

• New PID allocated
• New memory allocated for kernel stack
• Go to bottom of stack, leave space for 

trapframe (more later)
• Push return address of “trapret”
• Push context structure, with eip pointing to 

function “forkret”
• Why? When this new process is scheduled, it 

begins execution at forkret, then returns to 
trapret, then returns from trap to userspace

• Allocproc has created a hand-crafted kernel 
stack to make the process look like it had a 
trap and was context switched out in the past
– Scheduler can switch this process in like any other

3



Init process creation
• Alloc proc has created new 

process
– When scheduled, it runs 

function forkret, then 
trapret

• Trapframe of process set to 
make process return to first 
instruction of init code 
(initcode.S) in userspace

• The code “initcode.S” 
simply performs “exec” 
system call to run the init
program

4



Init process

• Init program opens STDIN, 
STDOUT, STDERR files
– Inherited by all subsequent 

processes as child inherits 
parent’s files

• Forks a child, execs shell 
executable in the child, 
waits for child to die

• Reaps dead children (its 
own or other orphan 
descendants)

5



Forking new process
• Fork allocates new process via allocproc
• Parent memory and file descriptors 

copied (more later)
• Trapframe of child copied from that of 

parent
– Result: child returns from trap to exact 

line of code as parent
– Different physical memory but same 

virtual address (location in code)
– Only return value in eax is changed, so 

parent and child have different return 
values from fork

• State of new child set to runnable, so 
scheduler thread will context switch to 
child process sometime in future

• Parent returns normally from 
trap/system call, child runs later when 
scheduled

6



Summary of new process creation

• New process created by marking a new entry in 
ptable as RUNNABLE, after configuring the kernel 
stack, memory image etc of new process

• Neat hack: kernel stack of new process made to 
look like that of a process that had been context 
switched out in the past, so that scheduler can 
context switch it in like any other process
– No special treatment for newly forked process during 

“swtch”

7


