
Lecture 28: Memory management of 
user processes in xv6

Mythili Vutukuru
IIT Bombay

https://www.cse.iitb.ac.in/~mythili/os/



Memory management of user 
processes

• User process needs memory pages to build its address space
– User part of memory image (user code/data/stack/heap)
– Page table (mappings to user memory image, as well as to kernel code/data)

• Free list of kernel used to allocate memory for user processes via kalloc()
• New virtual address space for a process is created during:

– init process creation
– fork system call
– exec system call

• Existing virtual address space modified in sbrk system call (expand heap)
• How is page table of a process constructed?

– Start with one page for the outer page directory
– Allocate inner page tables on demand (if no entries present in inner page 

table, no need to allocate a page for it) as memory image created or updated

2



Functions to build page table (1)
• Every page table begins 

with setting up kernel 
mappings in setupkvm()

• Outer pgdir allocated
• Kernel mappings 

defined in “kmap” 
added to page table by 
calling “mappages”

• After setupkvm(), user 
page table mappings 
added

3



Functions to build page table (2)
• Page table entries added by “mappages” 

– Arguments: page directory, range of virtual addresses, physical addresses to map to, 
permissions of the pages

– For each page, walks page table, get pointer to PTE via function “walkpgdir”, fills it with 
physical address and permissions

• Function “walkpgdir” walks page table, returns PTE of a virtual address
– Can allocate inner page table if it doesn’t exist

4



Fork: copying memory image

• Function “copyuvm” called by parent to copy 
parent memory image to child
– Create new page table for child
– Walk through parent memory image page by page 

and copy it to child, while adding child page table 
mappings

• For each page in parent
– fetch PTE, get physical address, permissions
– Allocate new page for child, and copy contents of 

parent’s page to new page of child
– Add a PTE from virtual address to physical address of 

new page in child page table
• Real operating systems do copy-on-write: child 

page table also points to parent pages until either 
of them modifies it
– Here, xv6 creates separate memory images for 

parent and child right away

5



Growing memory image: sbrk
• Initially heap is empty, program “break” (end of user 

memory) is at end of stack
– Sbrk() system call invoked by malloc to expand heap

• To grow memory, allocuvm allocates new pages, adds 
mappings into page table for new pages

• Whenever page table updated, must update cr3 register 
and TLB (done even during context switching)

6



allocuvm: grow address space
• Walk through new 

virtual addresses to be 
added in page size 
chunks

• Allocate new page, add 
it to page table with 
suitable user 
permissions

• Similarly deallocuvm
shrinks memory image, 
frees up pages

7



Exec system call (1)
• Read ELF binary file from disk into memory
• Start with new page table, add mappings to new executable 

pages and grow virtual address space
– Do not overwrite old page table yet 

8



Exec system call (2)
• After executable is copied to memory image, allocate 2 pages for stack 

(one is guard page, permissions cleared, access will trap)
• Push exec arguments onto user stack for main function of new program

– Stack has return address, argc, argv array (pointers to variable sized 
arguments), and the arguments themselves

9



Exec system call (3)
• If no errors so far, switch to new page table that is pointing to new memory image

– If any error, go back to old memory image (exec returns with error)
• Set eip in trapframe to start at entry point of new program

– Returning from trap, process will run new executable

10



Summary

• Memory management for user processes
– Build page table: start with kernel mappings, add 

user entries to build virtual address space
– Memory management code in fork, exec, sbrk

11


