
Lecture 30: Sleep and wakeup in 
xv6

Mythili Vutukuru
IIT Bombay

https://www.cse.iitb.ac.in/~mythili/os/



Sleep and wakeup
• A process P1 in kernel mode gives up CPU to block on a event 

– Example: process reads a block from disk, must block until disk read completes
• P1 invokes “sleep” function, which calls sched() and gives up CPU
• Another process P2 in kernel mode calls “wakeup” when event occurs, 

marks P1 as runnable, scheduler loop switches in P1 in future
– Example: disk interrupt occurred when P2 is running, so P2 handles the 

interrupt, and marks P1 as runnable
• How does P2 know which process to wake up? When P1 sleeps, it sets a 

channel (void * chan) in its struct proc, and P2 calls wakeup on same 
channel (channel = any value known to both P1 and P2)
– Example: channel value for disk read can be address of disk block

• Spinlock protects atomicity of sleep: P1 calls sleep with some spinlock L 
held, P2 calls wakeup with same spinlock L held
– Eliminating missed wakeup problem that arises due to P2 issuing wakeup 

between P1 deciding to sleep and actually sleeping
– Lock L released after sleeping, available for wakeup
– Similar concept to condition variables studied before

2



Sleep function
• Sleep calls sched() to give up CPU

– Needs to hold ptable.lock
• Acquire ptable.lock, release the lock 

given to sleep (make it available for 
wakeup)
– Unless lock given is ptable.lock itself, in 

which case no need to acquire again
– One of two locks held at all times

• Calls sched(), switched out of CPU, 
resumes again when woken up and 
ready to run

• Reacquires the lock given to sleep and 
returns back
– Code that invoked sleep with lock held 

returns with lock held again

3



Wakeup function
• Called by another process with lock held 

(same lock as when sleep was called)
• Since it changes ptable, ptable.lock will 

also be held
– If sleep lock is ptable.lock itself, then 

directly call wakeup1
• Sleep holds one of sleep’s lock or 

ptable.lock at all times, so a wakeup 
cannot run in between sleep

• Wakes up all processes sleeping on a 
channel in ptable (more like signal 
broadcast of condition variables)
– Good idea to check condition is still true 

upon waking up (use while loop while 
calling sleep)

4



Example: pipes
• Two processes connected by a pipe (producer consumer)

– Common shared buffer, protected by a spinlock
• One process writes into pipe, another reads from pipe
• Reader sleeps if pipe is empty, writer wakes it up after putting data 
• Writer sleeps when pipe is full, reader wakes it up when data is consumed
• Addresses of pipe structure variables are channels (same channel known to both)

5



Example: wait and exit
• If wait called in parent while children are still running, parent calls sleep 

and gives up CPU
– Here, channel is parent struct proc pointer, lock is ptable.lock

• In exit, child acquires ptable.lock and wakes up sleeping parent

• Here, lock given to sleep is ptable.lock because parent and child both 
access ptable (sleep avoids double locking, doesn’t acquire ptable.lock if it 
is already held before calling sleep)

• Why is terminated process memory cleaned up by parent? When a 
process calls exit, CPU is using its memory (kernel stack is in use, cr3 is 
pointing to page table) so all this memory cannot be cleared until 
terminated process has been taken off the CPU
– Parent code in wait is a good place to clean up child memory after child has 

stopped running
6



Summary

• Sleep and wakeup functionality in kernel for 
processes to wait for or signal each other
– Similar to condition variables for synchronization of 

user space threads
• Examples of sleep/wakeup

– Pipe reader and pipe writer processes
– Parent sleeps for child to die, zombie child wakes up 

parent
• Code calling sleep and wakeup need to hold same 

lock, in order to avoid missed wakeup problem

7


