Lecture 30: Sleep and wakeup in
XV6

Mythili Vutukuru
IIT Bombay
https://www.cse.iitb.ac.in/~mythili/os/

eepC Sleep and wakeup Wokewp (chan)
\—% ____j
A process Pl in kernel mode gives up CPU to block on a event

— Example: process reads a block from disk, must block until disk read completes
* P1invokes “sleep” function, which calls sched() and gives up CPU

* Another process P2 in kernel mode calls “wakeup” when event occurs,
marks P1 as runnable, scheduler loop switches in P1 in future

— Example: disk interrupt occurred when P2 is running, so P2 handles the
interrupt, and marks P1 as runnable

* How does P2 know which process to wake up? When P1 sleeps, it sets a
channel (void * chan) in its struct proc, and P2 calls wakeup on same
channel (channel = any value known to both P1 and P2)

— Example: channel value for disk read can be address of disk block

« Spinlock protects atomicity of sleep: P1 calls sleep with some spinlock L
held, P2 calls wakeup with same spinlock L held

— Eliminating missed wakeup problem that arises due to P2 issuing wakeup

between P1deciding to sleep and actually sleeping \7\ ? 2
— Lock L released after sleeping, available for wakeup ‘ 1,()0\(\’
— Similar concept to condition variables studied before R,ot, 4\
t§ (\ dove)

s@&

Sleep function

2871 // Atomically release lock and sleep on chan.

Sleep Ca”S SChed() tO give up CPU gg;g \/Ié:eacquires Tock when awakened.
874 sleep(void *chan, struct spinigck *1k)
— Needs to hold ptable.lock — = ,,

Acquire ptable.lock, release the lock

2876 struct proc *p = myproc();

2678 1F(p = O 'P‘}&)AQ : \(IL

given to sleep (make it available for §§§ ;k<01p>
wakeup) 2882 panic("sleep without 1k™);

2884 // Must acquire ptable.lock in order to

— Unless lock given is ptable.lock itself, in
which case no need to acquire again

— Oﬁe of two locks held at all times
Calls sched(), switched out of CPU,

resumes again when woken up and
ready to run

Reacquires the lock given to sleep and
returns back

— Code that invoked sleep with lock held
returns with lock held again

2885 // change p->state and then call sched.
2886 // Once we hold ptable.lock, we can be
2887 // guaranteed that we won’'t miss any wakeup
2888 // (wakeup runs with ptable.lock Tocked),
2889 // so it’s okay to release 1k.

2890 if(lk != &ptable.lock){

2891 _acquire(&ptable.lock):

2892 release(1k);

2893 } e

2894 // Go to sleep.

2895 p->chan = chan;

2896 p->state = SLEEPING;
2897 —_—

2898 SChedéii
289

2900 // Tidy up.

2901 p->chan = 0;

2902

2903 // Reacquire original Tock.
2904 if(lk != &ptable.lock){
2905 release(&ptable.lock);
2906 acquire(lk);

907 } S————

2908 }

Wakeup function

Called by another process with lock held
(same lock as when sleep was called)

Since it changes ptable, ptable.lock will
also be held

— If sleep lock is ptable.lock itself, then
directly call wakeupl

Sleep holds one of sleep’s lock or
ptable.lock at all times, so a wakeup
cannot run in between sleep

Wakes up all processes sleeping on a
channel in ptable (more like signal
broadcast of condition variables)
— Good idea to check condition is still true
upon waking up (use while loop while
calling sleep)

2950 // Wake up all processes sleeping on chan.
2951 // The ptable lock must be held.

2952 static void

2953 wakeupl(void *chan)

2954 -

2955 struct proc *p;

2956

2957 _for(p = ptable.proc; p < &ptable.proc[NPROC]; p++)

2958 if(p->state == SLEEPING && p->chan == chan)
2959 p->state = RUNNABLE; -
2960 }

2961

2962 // Wake up all processes sleeping on chan.
2963 void

294 wakeup(void *chan)
296

2966 acquire(&ptable.lock);
2967 wakeupl(chan);

2968 release(&ptable.lock);
2969 }

[k _L
W o,uw&g

»(Q}QQ./JJL Q,

P 2

e

6762 struct pipe
6763 struct spinlock Tock;

°
] 6764 char data[PIPESIZE];
X o I 6765 OMTTTEad 7/ number of bytes read

6766 uint nwrite; // number of bytes written
6767 int readopen; // read fd is still open
6768 int writeopen; // write fd is still open
6769 };

Two processes connected by a pipe (producer consumer)
— Common shared buffer, protected by a spinlock
One process writes into pipe, another reads from pipe
Reader sleeps if pipe is empty, writer wakes it up after putting data
Writer sleeps when pipe is full, reader wakes it up when data is consumed
Addresses of pipe structure variables are channels (same channel known to both)

6829 1int 6850 int

6830 pipewrite(struct pipe *p, char *addr, int n) 22?; piperead(struct pipe *p, char *addr, int n)
6831 { { e e

6832 int i; 22?3 e

6833 . . 6855 _acquire(&->Tock);

6834 _ggqu+:e£&n;;lnck&__ 6856 while(p—>nread == p->nwrite && p->writeopen){
G5 SRl =6 1 = B 6857 if(myprocO—>killed){

6836 while(p—>nwrite == p->nre SIZE){ 6858 release(&->1ock) ;

6837 if(p->readopen == 0 || myproc(Q->killed){ 6859 return -1:

6838 release(&p->lock); 6860 }

6839 return -1; sleep(&->nread, & —>lock);

6840 } }] ‘ ‘

6841 wakeup (&p->nread) ; for(i = 0; i <nj i+){

6842 sleep(&p—>nwrite, &p->Tock); 1fép~>Eread == p->hwrite)

6843 } reak;

6844 p->data[p->nwrite++ % PIPESIZE] = addr[il; . SAQREY] = prodacalp-+aread e X PIRESIZE);
6845 } " : wakeup (&p->nwrite);

6846 wakeup(&p->nrea)K 6869 ¥V release(&p->Tock) ;

6847 release(&p->1lock); 6870 return i:

6848 return n; 6871 }

6849 } 5

Example: wait and exit

If wait called in parent while children are still running, parent calls sleep
and gives up CPU

— Here, channel is parent struct proc pointer, lock is ptable.lock

2706 // Wait for children to exit. (See wakeupl call in proc_exit.)
2707 sleep(curproc, &ptable.lock);
e —

In exit, child acquires ptable.lock and wakes up sleeping parent

2650 // Parent might be sleeping in wait().
2651 wakeugl(curproc—>parent);

Here, lock given to sleep is ptable.lock because parent and child both
access ptable (sleep avoids double locking, doesn’t acquire ptable.lock if it
is already held before calling sleep)

Why is terminated process memory cleaned up by parent? When a
process calls exit, CPU is using its memory (kernel stack is in use, cr3 is
pointing to page table) so all this memory cannot be cleared unt|I
terminated process has been taken off the CPU

— Parent code in wait is a good place to clean up child memory after child has
stopped running

Summary

e Sleep and wakeup functionality in kernel for
processes to wait for or signal each other

— Similar to condition variables for synchronization of
user space threads

* Examples of sleep/wakeup
— Pipe reader and pipe writer processes

— Parent sleeps for child to die, zombie child wakes up
parent

* Code calling sleep and wakeup need to hold same
lock, in order to avoid missed wakeup problem

