Lecture 31: Device driver and
block I/O in xv6

Mythili Vutukuru
IIT Bombay
https://www.cse.iitb.ac.in/~mythili/os/

File systems and I/O in xv6

* Multiple layers of abstraction in file systems

— System call implementations (open, read, write)
ystem ¢ plementatiol

— Operations on file system data structures (inodes,
files, directories)

— Block /0 layer (in-memory cache of disk blocks)

— Device driver (communicates with hard disk to
read/write blocks)

 This lecture and next: overview of these
various layers in the xv6 file system

Disk blocks and buffers

Disk maintains data as 512-byte blocks

Disk buffer (struct buf) = copy of disk block in memory

Buffer cache (bcache) is an array of disk buffers
— Pointers across buffers create a linked list, most recently used buffers at head

Reading a block from disk: assign buffer for the block number in buffer

cache, device driver sends read request to disk controller, disk controller
raises interrupt when data is ready, data copied from disk controller into
buffer cache(VALID flag set after data is read)

Writing a block to disk: first write into buffer in buffer cache, device driver
copies data from buffer to disk controller, disk controller raises interrupt
when write completes (DIRTY flag i |s set until disk is updated)

3850 struct buf {

Y//\A

\ BCQJV\Q

3851
3852
3853
3854
3855
3856
3857
3858
3859

3860 1;

int f]ags;ﬁ‘

uint dev;

uint blockno;

struct sleeplock lock;

uint refcnt;

struct buf *prev; // LRU cache Tist
struct buf *next;

struct buf *gnext; // disk queue
uchar data[BSIZE];

S

3861 #define B_VALID O0x2 // buffer has been read from disk
3862 #define B_DIRTY Ox4 // buffer needs to be written to disk

4428 struct {

4429
4430
4431
4432
4433
4434

struct spinlock lock;
struct buf buf[NBUF];

// Linked Tist of all buffers, through prev/next.
// head.next is most recently used.
struct buf head;

4435 } bcache;

f————

4351 // If B_DIRTY is set, write buf to disk, clear B_DIRTY, set B_VALID.
4352 // Else if B_VALID is not set, read buf from disk, set B_VALID.

Device driver (1)

Process that wishes to read/write calls iderw function, buffer as argument
— If buffer is dirty, write request. If buffer is not valid, read request
— Requests added to queue, function idestart issues requests one after another
— Process sleeps until request completes
Communication with disk controller registers via in/out instructions

4350 // Sync buf with disk.

4353 void
4354 iderw(struct buf *b)

4355 ¢
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384 }

struct buf **pp;

if('holdingsleep(&b->Tock))
panic("iderw: buf not Tocked");
if((b—>flags & (B_VALID|B_DIRTY)) == B_VALID)
panic("iderw: nothing to do");
if(b—>dev != 0 & !havediskl)
panic("iderw: ide disk 1 not present");

acquire(&idelock);

// Append b to idequeue.
b->qnext = 0;
for(pp=&idequeue; *pp; pp=&(*pp)->gqnext)

*pp = b;

// Start disk if necessary.
if(idequeue == b)

19estart(b);

// Wait for request to finish.

while((b->flags & (B_VALID|B_DIRTY)) != B_VALID){
sleep(b, &idelock);

P re————

release(&idelock);

4272 // Start the request for b. Caller must hold idelock.
4273 static void
4274 idestart(struct buf *b)

4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299

if(b == 0)
panic("idestart");
if(b->blockno »>= FSSIZE)
panic("incorrect blockno™);
int sector_per_block = BSIZE/SECTOR_SIZE;
int sector = b—>blockno * sector_per_block;
int read_cmd = (sector_per_block == 1) ? IDE_CMD_READ : IDE_CMD_RDMUL;
int write_cmd = (sector_per_block == 1) ? IDE_CMD_WRITE : IDE_CMD_WRMUL;

if (sector_per_block > 7) panic("idestart");

idewait(0);
outh(0x3f6, 0); // generate interrupt
outb(0x1f2, sector_per_block); // number of sectors
SUTbTOX1F3, sector & 0xff);
outb(0x1f4, (sector >> 8) & O0xff);
outb(0x1f5, (sector >> 16) & Oxff);
outb(0x1f6, Oxe0 | ((b->dev&l)<<4) | ((sector>>24)&0x0f));
if(b->flags & B_DIRTY){
outb(0x1f7, write_cmd);
outs1(0x1f0, b->data, BSIZE/4);
} else { —
outb(0x1f7, read_cmd);
} e ——

Device driver (2)

When disk controller completes
read/write operation, it raises an
interrupt

— Data is read from disk controller
into buffer using “in” instruction

— Process sleeping for data is
woken up

— Next request from queue is
issued
No support for DMA in x86. With
DMA, data is copied by disk
controller into memory buffers
directly before raising interrupt

— Interrupt handler need not copy
data using /O instructions

4302 // Interrupt handler.
4303 void
4304 ideintr(void)

4305 {
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
43
1

4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331 }

struct buf *b;

// First queued buffer is the active request.
acquire(&idelock);

if((b = idequeue) == 0){
release(&idelock);
return;

}

idequeue = b->gnext;

// Read data if needed.

if(l(b->flags B_DIRTY) && idewait(1l) >= 0)
ins1(0x1f0, b->data, BSIZE/4);
N ————

// Wake process waiting for this buf.
b->flags |= B_VALID;

b->flags &= ~B_DIRTY;

wakeup(b);

// Start disk on next buf in queue.
if(idequeue != 0)
idestart(idequeue);

release(&idelock);

Disk buffer cache: block read/write (1)

4513 // Write b’s contents to disk. Must be Tocked.

» All processes access disk via buffer cache only 4514 void
. . 4515 bwrite(struct buf *b)
* Only copy of disk block in cache, only one 4516 {
Ty - e if('holdingslee —>lo
process can access it at a time ol s

* Process calls “bread” to read a disk block, 8520 iderachy; ——r
which calls function bget 45213 ——

— Function bget returns buffer if it already exists in
cache and no other process using it

— If valid buffer not returned by bget, read from disk 4525 void)
* Process calls “bwrite” to write a block to disk: Zggg%ﬁmm e
set dirty bit and request device driver to write 4528 if(!holdingsleep(&b->Tock))
4529 panic("brelse");
« When done with block, process calls brelse to 4530
release block, moves to head of list (most ey, e
recently USEd) 4533 acquire(&bcache.lock);

4534 b—>refcnt—;
4535 if (b->refcnt == 0) {
4536 // no one 1is waiting for it.

4537 b->next->prev = b->prev;
4538 b->prev->next = b->next;
4500 // Return a locked buf with the contents of the indicated block. 4539 b->next = bcache.head.next;
:gg% ;tFU;E ?Uf*d o 4540 b->prev = &bcache.head;
read(uint dev, uint 0CKno _1 =
el — 50 Boheteninot ok
4504 struct buf *b; . : .l
4506 b = bget(dev, blockno); 4544
4507 if((B->TTags & B_VALID) == 0) { 4545 release(&bcache.lock);
4508 iderw(b);
S5 5 dderw(b) 4546 }
4510 return b; 6

4511 }

Disk buffer cache: block read/write (2)

Function bget returns pointer to a disk
block if it exists in the cache

_— .
— Ensures only one process at alme

accesses a disk buffer
* |f block in cache and another process

using it, sleep until the block is released
by the other process

* |If block not in cache, find a least recently
used non-dirty buffer and recycle it to
use for this block

 Two goals achieved by buffer cache

— Recently used disk blocks stored in
memory for future use

— Disk blocks modified by one process at a
time

4465 static struct buf*
4466 bget(uint dev, uint blockno)

4467 {
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497 }

struct buf *b;
acquire(&bcache.lock);

// Is the block already cached?
for(b = bcache.head.next; b != &bcache.head; b = b->next){
if(b->dev == dev && b->blockno == blockno){
b->refcnt++; -
release(&bcache.lock);
acquiresleep(&b—>Tock);
return b;
} —
s

// Not cached; recycle an unused buffer.
// Even if refcnt==0, B_DIRTY indicates a buffer 1is in use
// because log.c has modified it but not yet committed it.
for(b = bcache.head.prev; b != &bcache.head; b = b—>prev){
if(b—>refcnt == 0 && (b—>flags & B_DIRTY) == 0) {
b->dev = dev;
b->blockno = blockno;
b->flags = 0;
b->refcnt = 1;
release(&cache.lock);
acquiresleep(&b->Tock);
return b;
¥
1

panic("bget: no buffers");

. . ML
Logging layer (overview) s

* A system call can change multiple blocks at a time on disk, and we want
atomicity in case the system crashes during a system call. Either all
changes are made or none is made

— Example: we do not want disk block added to the inode of a file but the file
data not yet written to it

* Logging ensures atomicity by grouping disk block changes into —
transactions

— Every system call starts a transaction in the log, writes all changed disk blo
in the log, and commits the transaction

— Later, the log installs the changes in the original disk blocks one by one
— If crash happens before log is written fully, no changes made

— If crash happens after log entry is committed, log entries are replayed when
system restarts after crash

* In xv6, changes of multiple system calls are collected in memory and
committed to log together. Actual changes happen to disk blocks only
after the group transaction commits

— Process must call “log_write” instead of “bwrite” during system call
.ﬁ

Summary

Device driver in xv6 communicates with disk
controller using in/out instructions to read/write

disk blocks
— Simple driver with no DMA capability

Buffer cache stores all recently read disk blocks in
memory, and synchronizes access to disk blocks
across processes

All blocks changed in a system call are logged on
disk and changes are installed atomically

Next: File system code translates system calls into
block read/write operations

