
Lecture 31: Device driver and
block I/O in xv6

Mythili Vutukuru
IIT Bombay

https://www.cse.iitb.ac.in/~mythili/os/

File systems and I/O in xv6

• Multiple layers of abstraction in file systems
– System call implementations (open, read, write)
– Operations on file system data structures (inodes,

files, directories)
– Block I/O layer (in-memory cache of disk blocks)
– Device driver (communicates with hard disk to

read/write blocks)
• This lecture and next: overview of these

various layers in the xv6 file system

2

Disk blocks and buffers
• Disk maintains data as 512-byte blocks
• Disk buffer (struct buf) = copy of disk block in memory
• Buffer cache (bcache) is an array of disk buffers

– Pointers across buffers create a linked list, most recently used buffers at head
• Reading a block from disk: assign buffer for the block number in buffer

cache, device driver sends read request to disk controller, disk controller
raises interrupt when data is ready, data copied from disk controller into
buffer cache(VALID flag set after data is read)

• Writing a block to disk: first write into buffer in buffer cache, device driver
copies data from buffer to disk controller, disk controller raises interrupt
when write completes (DIRTY flag is set until disk is updated)

3

Device driver (1)
• Process that wishes to read/write calls iderw function, buffer as argument

– If buffer is dirty, write request. If buffer is not valid, read request
– Requests added to queue, function idestart issues requests one after another
– Process sleeps until request completes

• Communication with disk controller registers via in/out instructions

4

Device driver (2)

• When disk controller completes
read/write operation, it raises an
interrupt
– Data is read from disk controller

into buffer using “in” instruction
– Process sleeping for data is

woken up
– Next request from queue is

issued
• No support for DMA in x86. With

DMA, data is copied by disk
controller into memory buffers
directly before raising interrupt
– Interrupt handler need not copy

data using I/O instructions

5

Disk buffer cache: block read/write (1)
• All processes access disk via buffer cache only
• Only copy of disk block in cache, only one

process can access it at a time
• Process calls “bread” to read a disk block,

which calls function bget
– Function bget returns buffer if it already exists in

cache and no other process using it
– If valid buffer not returned by bget, read from disk

• Process calls “bwrite” to write a block to disk:
set dirty bit and request device driver to write

• When done with block, process calls brelse to
release block, moves to head of list (most
recently used)

6

Disk buffer cache: block read/write (2)
• Function bget returns pointer to a disk

block if it exists in the cache
– Ensures only one process at a time

accesses a disk buffer
• If block in cache and another process

using it, sleep until the block is released
by the other process

• If block not in cache, find a least recently
used non-dirty buffer and recycle it to
use for this block

• Two goals achieved by buffer cache
– Recently used disk blocks stored in

memory for future use
– Disk blocks modified by one process at a

time

7

Logging layer (overview)
• A system call can change multiple blocks at a time on disk, and we want

atomicity in case the system crashes during a system call. Either all
changes are made or none is made
– Example: we do not want disk block added to the inode of a file but the file

data not yet written to it
• Logging ensures atomicity by grouping disk block changes into

transactions
– Every system call starts a transaction in the log, writes all changed disk blocks

in the log, and commits the transaction
– Later, the log installs the changes in the original disk blocks one by one
– If crash happens before log is written fully, no changes made
– If crash happens after log entry is committed, log entries are replayed when

system restarts after crash
• In xv6, changes of multiple system calls are collected in memory and

committed to log together. Actual changes happen to disk blocks only
after the group transaction commits
– Process must call “log_write” instead of “bwrite” during system call

8

Summary

• Device driver in xv6 communicates with disk
controller using in/out instructions to read/write
disk blocks
– Simple driver with no DMA capability

• Buffer cache stores all recently read disk blocks in
memory, and synchronizes access to disk blocks
across processes

• All blocks changed in a system call are logged on
disk and changes are installed atomically

• Next: File system code translates system calls into
block read/write operations

9

