
Lecture 33: Network I/O using
sockets

Mythili Vutukuru
IIT Bombay

https://www.cse.iitb.ac.in/~mythili/os/

Sockets
• Socket API lets two processes in different machines to communicate

with each other over the TCP/IP network stack
– Unix domain sockets used for Inter Process Communication (IPC)

between processes on the same machine
• Application reads/writes message into sockets, network protocol

processing by kernel and network interface card (NIC)
– Kernel handles protocol processing for higher layers (e.g., L4=TCP/UDP,

L3=IP, L2=Ethernet), and NIC handles lower layers (L1=physical layer)
– Raw sockets: app receives “raw” packets directly with all headers
– Application message boundaries are not preserved in network packets

• TCP sockets: reliable delivery, congestion control (none in UDP)
• Network socket identified by a 16-bit port number on a machine

– Socket bound to IP address of a network interface and a port number
• TCP socket communication: a “server” listens on a well-known port

number, a “client” connects to the server, both exchange messages

2

Socket system calls
• TCP client

– socket: create new socket
(returns socket file descriptor)

– Binding client socket to
IP/port is optional

– connect: connects to a server
socket using the server’s IP
address and port number
(initiates TCP 3 way
handshake to server)

– read: read data from a
connected socket into a
memory buffer

– write: write data from a
memory buffer into socket

3

• TCP server
– socket: create new socket

(returns socket file descriptor)
– bind: bind server socket to

well-known port number and
IP address

– listen: start listening for new
connections on server socket

– accept: accept a new
connection on server socket
(returns a new socket to talk to
this specific client)

– read: read data from client into
memory buffer

– write: write data from memory
buffer into socket connected to
client

Server design for concurrent I/O

• What if server is talking to multiple clients concurrently?
– Read system call blocks waiting for client data (by default)
– Accept system call blocks waiting for new requests
– Single process/thread of server cannot afford to block in any one of these

system calls, will impact performance for other clients
• One way to handle concurrent I/O with blocking sockets: one

process/thread per client
– Multi-process: server forks a new child for each new client accepted, child

process blocks on client reads, main parent server blocks on accept
– Multi-threaded: master-worker thread pool model, master server thread

blocks on accept and obtains new client sockets, worker threads handle client
requests and block as needed

• Advantage of multi process/thread design: easy to scale server to multiple
cores, easy to program (each thread/process is dedicated to handling a
single client and can block for the client)

• Disadvantages of multi process/thread design: large number of concurrent
clients can exhaust server memory due to too many threads/processes in
the system, need for locking and synchronization across processes/threads

4

Alternative: event-driven I/O
• Event-driver I/O: single server process/thread can

simultaneously perform I/O from multiple sockets
– Examples: select, epoll

• Overview of epoll API
– Process creates an epoll instance, adds file descriptors of interest

to be monitored
– Process blocks on epoll_wait, which returns when there is an

event on any of the file descriptors
– Process handles events by performing suitable actions (accept,

read etc.) on the ready file descriptors
– File descriptors set as non-blocking

• Single-threaded server process can handle network I/O from
multiple concurrent clients

• Event-driven APIs available for network, not popular for disk
5

Event-driver I/O: pros and cons
• Easy to write single-threaded server, without locking and

synchronization overheads across threads
• But single-threaded server cannot block for any reason

– If the only server thread blocks, server is unresponsive
• How to handle disk I/O requests from clients?

– In practice, multiple worker threads used in epoll server for disk I/O
• How to utilize multiple CPU cores and achieve multicore scalability?

– One thread receives events in epoll_wait, and distributes event
processing to worker threads across multiple CPU cores

– Or, multiple threads call epoll_wait and process events in parallel
across multiple CPU cores

– Synchronization across threads needed in these scenarios
• Event-driven programming is harder, because logic to handle a

client is split across multiple event handlers
– Using a dedicated thread per client and blocking system calls leads to

more readable code

6

Summary

• Socket API to build networking applications
– Enable processes to communicate across systems

using TCP/IP protocol stack
• Concurrently handling multiple clients at a server

can be done in two ways
– One process/thread dedicated to a client, blocking

system calls for network I/O
– Event-driven I/O, single process can handle multiple

clients concurrently
– Pros and cons of both techniques

7

