Lecture 33: Network 1/O using
sockets

Mythili Vutukuru
IIT Bombay
https://www.cse.iitb.ac.in/~mythili/os/

A v2 ogp [|

Sockets Tk
(A= (0 [)

Socket API lets two processes in different machines to communicate
with each other over the TCP/IP network stack

— Unix-domain sockets used for Inter Process Communication (IPC)
between processes on the same machine

Application reads/writes message into sockets, network protocol
processing by kernel and network interface card (NIC)

— Kernel handles protocol processing for higher layers (e.g., L4=TCP/UDP,
L3=IP, L2=Ethernet), and NIC handles lower layers (L1=physical layer)

— Raw sockets: app receives “raw” packets directly with all headers

— Application message boundaries are not preserved in network packets
TCP sockets: reliable delivery, congestion control (none in UDP)
Network socket identified by a 16-bit port number on a machine

— Socket bound to IP address of a network interface and a port number

TCP socket communication: a “server” listens on a well-known port
number, a “client” connects to the server, both exchange messages

docke's

Socket system calls

e TCP client e TCP server
— socket: create new socket — _socket: create new socket
mns socket file descriptor) (returns socket file descriptor)

— bind: bind server socket to

— Binding client socket to well-known port number and

IP/port is optional IP address

— connect: connects to a server — listen: start listening for new
socket using the server’s IP connections on server socket
a.dfjfess and port number — accept: accept a new
(initiates TCP 3 way connection on server socket
handshake to server) (returns a new socket to talk to

— read: read data from a this specific client)
‘connected socket into a — read: read data from client into
memory buffer memory buffer

— write: write data from a — write: write data from memory

buffer into socket connected to

@Iient |

memory buffer into socket

Server design for concurre%t I/(;Q ¢

— Accept system call blocks waiting for new reque

— Single process/thread of server cannot afford to block in
system calls, will impact performance for other clients

One way to handle concurrent I/O with blocking sockets: one
process/thread per client

— Multi-process: server forks a new child for each new client accepted, child
process blocks on client reads, main parent server blocks on accept

— Multi-threaded: master-worker thread pool model, master server thread
blocks on accept and obtains new client sockets, worker threads handle client
requests and block as needed

Advantage of multi process/thread design: easy to scale server to multiple
cores, easy to program (each thread/process is dedicated to handling a
single client and can block for the client)

Disadvantages of multi process/thread design: large number of concurrent

clients can exhaust server memory due to too many threads/processes in

the system, need for locking and synchronization across processes/threads
4

Alternative: event-driven /O

SN
Event-driver |/O: single server process/thread can
simultaneously perform 1/O from multiple sockets
— Examples: select, epoll fa LAV m
Overview of epoll API 2 pald —waak

Process creates an epoll instance, adds file descriptors of interest
to be monitored

Process blocks on epoll_wait, which returns when there is an
event on any of the file descriptors

Process handles events by performing suitable actions (accept,
read etc.) on the ready file descriptors

File descriptors set as non-blocking

Single-threaded server process can handle network /0 from
multiple concurrent clients

Event-driven APls available for network, not popular for disk

5

Event-driver I/O: pros and cons %%

Easy to write single-threaded server, without locking and S 2 g ,23“
synchronization overheads across threads |
epll Ny

But single-threaded server cannot block for any reason
— If the only server thread blocks, server is unresponsive
How to handle disk I/O requests from clients?

— In practice, multiple worker threads used in epoll server for disk I/O
How to utilize multiple CPU cores and achieve multicore scalability?
— One thread receives events in epoll_wait, and distributes event

processing to worker threads across multiple CPU cores S
— Or, multiple threads call epoll_wait and process events in parallel
across multiple CPUTores e,v;u qﬁu

— Synchronization across threads needed in these scenarios

Event-driven programming is_harder, because logic to handle a
client is split across multiple event handlers

— Using a dedicated thread per client and blocking system calls leads to
more readable code

Summary

* Socket API to build networking applications

— Enable processes to communicate across systems
using TCP/IP protocol stack

* Concurrently handling multiple clients at a server
can be done in two ways

— One process/thread dedicated to a client, blocking
system calls for network I/O

— Event-driven 1/0O, single process can handle multiple
clients concurrently

— Pros and cons of both techniques

