
Lecture 6: Inter Process
Communication (IPC)

Lecture 6: Inter Process
Communication (IPC)

Mythili Vutukuru
IIT Bombay

Inter Process Communication (IPC)

• Processes do not share any memory with each
other

• Some processes might want to work together
for a task, so need to communicate
information

• IPC mechanisms to share information
between processes

• Processes do not share any memory with each
other

• Some processes might want to work together
for a task, so need to communicate
information

• IPC mechanisms to share information
between processes

2

Shared Memory

• Processes can both access same region of
memory via shmget()system call

• int shmget (key_t key, int size, int shmflg)

• By providing same key, two processes can get
same segment of memory

• Can read/write to memory to communicate
• Need to take care that one is not overwriting

other’s data: how?

• Processes can both access same region of
memory via shmget()system call

• int shmget (key_t key, int size, int shmflg)

• By providing same key, two processes can get
same segment of memory

• Can read/write to memory to communicate
• Need to take care that one is not overwriting

other’s data: how?

3

Signals
• A certain set of signals supported by OS

– Some signals have fixed meaning (e.g., signal to
terminate process)

– Some signals can be user-defined
• Signals can be sent to a process by OS or another

process (e.g., if you type Ctrl+C, OS sends SIGINT
signal to running process)

• Signal handler: every process has a default code
to execute for each signal
– Exit on terminate signal

• Some signal handlers can be overridden to do
other things

• A certain set of signals supported by OS
– Some signals have fixed meaning (e.g., signal to

terminate process)
– Some signals can be user-defined

• Signals can be sent to a process by OS or another
process (e.g., if you type Ctrl+C, OS sends SIGINT
signal to running process)

• Signal handler: every process has a default code
to execute for each signal
– Exit on terminate signal

• Some signal handlers can be overridden to do
other things

4

Sockets
• Sockets can be used for two processes on

same machine or different machines to
communicate
– TCP/UDP sockets across machines
– Unix sockets in local machine

• Communicating with sockets
– Processes open sockets and connect them to

each other
– Messages written into one socket can be read

from another
– OS transfers data across socket buffers

• Sockets can be used for two processes on
same machine or different machines to
communicate
– TCP/UDP sockets across machines
– Unix sockets in local machine

• Communicating with sockets
– Processes open sockets and connect them to

each other
– Messages written into one socket can be read

from another
– OS transfers data across socket buffers

5

Pipes
• Pipe system call returns two file descriptors

– Read handle and write handle
– A pipe is a half-duplex communication
– Data written in one file descriptor can be read

through another
• Regular pipes: both fd are in same process (how

it is useful?)
– Parent and child share fd after fork
– Parent uses one end and child uses other end

• Named pipes: two endpoints of a pipe can be in
different processes

• Pipe data buffered in OS buffers between write
and read

• Pipe system call returns two file descriptors
– Read handle and write handle
– A pipe is a half-duplex communication
– Data written in one file descriptor can be read

through another
• Regular pipes: both fd are in same process (how

it is useful?)
– Parent and child share fd after fork
– Parent uses one end and child uses other end

• Named pipes: two endpoints of a pipe can be in
different processes

• Pipe data buffered in OS buffers between write
and read

6

Message Queues

• Mailbox abstraction
• Process can open a mailbox at a specified

location
• Processes can send/receive messages from

mailbox
• OS buffers messages between send and

receive

7

• Mailbox abstraction
• Process can open a mailbox at a specified

location
• Processes can send/receive messages from

mailbox
• OS buffers messages between send and

receive

Blocking vs. non-blocking
communication

• Some IPC actions can block
– Reading from socket/pipe that has no data, or

reading from empty message queue
– Writing to a full socket/pipe/message queue

• The system calls to read/write have versions
that block or can return with an error code in
case of failure
– A socket read can return error indicating no data

to be read, instead of blocking

8

• Some IPC actions can block
– Reading from socket/pipe that has no data, or

reading from empty message queue
– Writing to a full socket/pipe/message queue

• The system calls to read/write have versions
that block or can return with an error code in
case of failure
– A socket read can return error indicating no data

to be read, instead of blocking

