
Lecture 8: Mechanism of Address
Translation

Lecture 8: Mechanism of Address
Translation

Mythili Vutukuru
IIT Bombay

A simple example

• Consider a simple C
function

• It is compiled as follows

• Virtual address space is
setup by OS during
process creation

• Consider a simple C
function

• It is compiled as follows

• Virtual address space is
setup by OS during
process creation

2

Address Translation

• Simplified OS: places
entire memory image in
one chunk

• Need the following
translation from VA to PA
– 128 to 32896 (32KB + 128)
– 1KB to 33 KB
– 20KB? Error!

• Simplified OS: places
entire memory image in
one chunk

• Need the following
translation from VA to PA
– 128 to 32896 (32KB + 128)
– 1KB to 33 KB
– 20KB? Error!

3

Who performs address translation?

• In this simple example, OS tells the hardware
the base (starting address) and bound (total
size of process) values

• Memory hardware Memory Management
Unit (MMU) calculates PA from VA

• MMU also checks if address is beyond bound
• OS is not involved in every translation

• In this simple example, OS tells the hardware
the base (starting address) and bound (total
size of process) values

• Memory hardware Memory Management
Unit (MMU) calculates PA from VA

• MMU also checks if address is beyond bound
• OS is not involved in every translation

4

Role of hardware in translation

• CPU provides privileged mode of execution
• Instruction set has privileged instructions to

set translation information (e.g., base, bound)
• Hardware (MMU) uses this information to

perform translation on every memory access
• MMU generates faults and traps to OS when

access is illegal (e.g., VA is out of bound)

• CPU provides privileged mode of execution
• Instruction set has privileged instructions to

set translation information (e.g., base, bound)
• Hardware (MMU) uses this information to

perform translation on every memory access
• MMU generates faults and traps to OS when

access is illegal (e.g., VA is out of bound)

5

Role of OS in translation

• OS maintains free list of memory
• Allocates space to process during creation (and

when asked) and cleans up when done
• Maintains information of where space is allocated

to each process (in PCB)
• Sets address translation information (e.g., base &

bound) in hardware
• Updates this information upon context switch
• Handles traps due to illegal memory access

• OS maintains free list of memory
• Allocates space to process during creation (and

when asked) and cleans up when done
• Maintains information of where space is allocated

to each process (in PCB)
• Sets address translation information (e.g., base &

bound) in hardware
• Updates this information upon context switch
• Handles traps due to illegal memory access

6

Segmentation
• Generalized base and bounds
• Each segment of memory

image placed separately
• Multiple (base, bound) values

stored in MMU
• Good for sparse address spaces
• But variable sized allocation

leads to external fragmentation
– Small holes in memory left

between segments

• Generalized base and bounds
• Each segment of memory

image placed separately
• Multiple (base, bound) values

stored in MMU
• Good for sparse address spaces
• But variable sized allocation

leads to external fragmentation
– Small holes in memory left

between segments

7

