
Lecture 9: Paging

Mythili Vutukuru
IIT Bombay



Paging
• Allocate memory in fixed size chunks (“pages”)
• Avoids external fragmentation (no small “holes”)
• Has internal fragmentation (partially filled pages)

2



Page table

• Per process data structure to
help VA-PA translation

• Array stores mappings from
virtual page number (VPN) to
physical frame number (PFN)
– E.g., VP 0 PF 3, VP 1 PF 7

• Part of OS memory (in PCB)
• MMU has access to page table

and uses it for address
translation

• OS updates page table upon
context switch

• Per process data structure to
help VA-PA translation

• Array stores mappings from
virtual page number (VPN) to
physical frame number (PFN)
– E.g., VP 0 PF 3, VP 1 PF 7

• Part of OS memory (in PCB)
• MMU has access to page table

and uses it for address
translation

• OS updates page table upon
context switch

3



Page table entry (PTE)
• Simplest page table: linear page table
• Page table is an array of page table entries, one

per virtual page
• VPN (virtual page no.) is index into this array
• Each PTE contains PFN (physical frame number)

and few other bits
– Valid bit: is this page used by process?
– Protection bits: read/write permissions
– Present bit: is this page in memory? (more later)
– Dirty bit: has this page been modified?
– Accessed bit: has this page been recently accessed?

• Simplest page table: linear page table
• Page table is an array of page table entries, one

per virtual page
• VPN (virtual page no.) is index into this array
• Each PTE contains PFN (physical frame number)

and few other bits
– Valid bit: is this page used by process?
– Protection bits: read/write permissions
– Present bit: is this page in memory? (more later)
– Dirty bit: has this page been modified?
– Accessed bit: has this page been recently accessed?

4



Address translation in hardware

• Most significant bits of
VA give the VPN

• Page table maps VPN to
PFN

• PA is obtained from PFN
and offset within a page

• MMU stores (physical)
address of start of page
table, not all entries.

• “Walks” the page table
to get relevant PTE

• Most significant bits of
VA give the VPN

• Page table maps VPN to
PFN

• PA is obtained from PFN
and offset within a page

• MMU stores (physical)
address of start of page
table, not all entries.

• “Walks” the page table
to get relevant PTE

5



What happens on memory access?

• CPU requests code or data at a virtual address
• MMU must translate VA to PA

– First, access memory to read page table entry
– Translate VA to PA
– Then, access memory to fetch code/data

• Paging adds overhead to memory access
• Solution? A cache for VA-PA mappings

• CPU requests code or data at a virtual address
• MMU must translate VA to PA

– First, access memory to read page table entry
– Translate VA to PA
– Then, access memory to fetch code/data

• Paging adds overhead to memory access
• Solution? A cache for VA-PA mappings

6



Translation Lookaside Buffer (TLB)
• A cache of recent VA-PA mappings
• To translate VA to PA, MMU first looks up TLB
• If TLB hit, PA can be directly used
• If TLB miss, then MMU performs additional

memory accesses to “walk” page table
• TLB misses are expensive (multiple memory

accesses)
– Locality of reference helps to have high hit rate

• TLB entries may become invalid on context
switch and change of page tables

• A cache of recent VA-PA mappings
• To translate VA to PA, MMU first looks up TLB
• If TLB hit, PA can be directly used
• If TLB miss, then MMU performs additional

memory accesses to “walk” page table
• TLB misses are expensive (multiple memory

accesses)
– Locality of reference helps to have high hit rate

• TLB entries may become invalid on context
switch and change of page tables

7



How are page tables stored in memory?

• What is typical size of page table?
– 32 bit VA, 4 KB pages, so 2^32 / 2^12 = 2^20 entries
– If each PTE is 4 bytes, then page table is 4MB
– One such page table per process!

• How to reduce the size of page tables?
– Larger pages, so fewer entries

• How does OS allocate memory for such large
tables?
– Page table is itself split into smaller chunks!

• What is typical size of page table?
– 32 bit VA, 4 KB pages, so 2^32 / 2^12 = 2^20 entries
– If each PTE is 4 bytes, then page table is 4MB
– One such page table per process!

• How to reduce the size of page tables?
– Larger pages, so fewer entries

• How does OS allocate memory for such large
tables?
– Page table is itself split into smaller chunks!

8



Multilevel page tables (1)
• A page table is spread over many pages
• An “outer” page table or page directory tracks

the PFNs of the page table pages

9



Multilevel page tables (2)
• Depending on how large the page table is, we may

need more than 2 levels also
– 64-bit architectures may need 7 levels

• What about address translation?
– First few bits of VA to identify outer page table entry
– Next few bits to index into next level of PTEs

• In case of TLB miss, multiple accesses to memory
required to access all the levels of page tables

• Depending on how large the page table is, we may
need more than 2 levels also
– 64-bit architectures may need 7 levels

• What about address translation?
– First few bits of VA to identify outer page table entry
– Next few bits to index into next level of PTEs

• In case of TLB miss, multiple accesses to memory
required to access all the levels of page tables

10


