
Kernel-bypass techniques for
high-speed network packet processing

CS 744

Presenters: Rinku Shah, Priyanka Naik
 {rinku, ppnaik}@cse.iitb.ac.in

Course Instructor: Prof. Umesh Bellur

 Department of Computer Science & Engineering
Indian Institute of Technology Bombay

Outline

● The journey of a packet through the Linux network stack

● Need for kernel bypass techniques for packet processing

● Kernel-bypass techniques

○ User-space packet processing

■ Data Plane Development Kit (DPDK)

■ Netmap

○ User-space network stack

■ mTCP

● What’s trending?

2

Typical packet flow

3

TX

Application

Transport (L4)

Network (L3)

Data link (L2)

NIC driver

NIC hardware

RX

Application

Transport (L4)

Network (L3)

Data link (L2)

NIC driver

NIC hardware

What does a packet contain?

4

Ethernet header IP header TCP header payload FCS

dest
MAC

src
MAC

type

... length ... IP
type

header
csum

src
IP

dst
IP

src
port

dst
port

... checksum ...

FCS: Frame Check Sequence

Outline

● The journey of a packet through the Linux network stack

● Need for kernel bypass techniques for packet processing

● Kernel-bypass techniques

○ User-space packet processing

■ Data Plane Development Kit (DPDK)

■ Netmap

○ User-space network stack

■ mTCP

● What’s next??
5

Hardware
RX queue

RX path: Packet arrives at the destination NIC

6

TX/RX rings
● Circular queue
● Shared between NIC and NIC driver
● Content: Length + packet buffer pointer

NIC receives the packet

● Match destination MAC address

● Verify Ethernet checksum (FCS)

Packets accepted at the NIC

● DMA the packet to RX ring buffer

● NIC triggers an interrupt

 User space

 Kernel space

NIC

RXTX

NIC driver

H
ar

dw
ar

e
in

te
rr

up
t

Applications

packet
buffer
packet
buffer

packet
buffer

...

Interrupt processing in the linux kernel
● Top-half

○ Minimal processing

● Bottom-half

○ Rest of interrupt processing

7

Top-half interrupt processing

8

RX

Application

Transport (L4)

Network (L3)

Data link (L2)

NIC driver

NIC hardware

Switch from user space to kernel space

CPU interrupts the process in execution

Top-half interrupt processing

● Lookup IDT (Interrupt Descriptor Table)

● Call corresponding ISR (Interrupt Service Routine)

○ Acknowledge the interrupt

○ Schedule bottom-half processing

● Switch back to user space

Bottom-half processing

9

Switch from user space to kernel space

CPU initiates the bottom-half when it is free (soft-irq)

sk-buff

In-memory data structure that contains packet metadata

● Pointers to packet headers and payload

● More packet related information ...

(sk-buff tutorial link)

Driver dynamically allocates an sk-buff (a.k.a., skb)

Oops!!

 User space

 Kernel space

RXTX

NIC

NIC driver

H
ar

dw
ar

e
in

te
rr

up
t

Applications

packet
buffer
packet
buffer

packet
buffer

...

s
k
b

https://www.linuxjournal.com/article/1312

Bottom-half processing

10

Call L3 protocol handler

NIC driver processing

1. Driver dynamically allocates an sk-buff

2. Update sk-buff with packet metadata

3. Remove the Ethernet header

4. Pass sk-buff to the network stackFo
r a

ll
pa

ck
et

s
in

 b
uf

fe
r

 User space

 Kernel space

RXTX

NIC

NIC driver

H
ar

dw
ar

e
in

te
rr

up
t

Applications

packet
buffer
packet
buffer

packet
buffer

...

s
k
b

L3/L4 processing

11

RX

Application

Transport (L4)

Network (L3)

Data link (L2)

NIC driver

NIC hardware

Common processing

1. Match destination IP/socket

2. Verify checksum

3. Remove header

L3-specific processing

1. Route lookup

2. Combine fragmented packets

3. Call L4 protocol handler

L4-specific processing

L3/L4 processing

12

L3-specific processing

1. Route lookup

2. Combine fragmented packets

3. Call L4 protocol handler

L4-specific processing

1. Handle TCP state machine

2. Enqueue to socket read queue

3. Signal the socket

 User space

 Kernel space

RXTX

NIC

NIC driver

H
ar

dw
ar

e
in

te
rr

up
t

Application

Network stack W
Q

R
Q

skb

packet
buffer
packet
buffer

packet
buffer

...

Application processing

On socket read:

● Dequeue packet from socket receive queue

(kernel space)

● Copy packet to application buffer (user space)

● Release sk-buff

● Return back to the application

13

kernel space to user space

user space to kernel space

 User space

 Kernel space

RXTX

NIC

NIC driver

H
ar

dw
ar

e
in

te
rr

up
t

Application

Network stack

System calls

W
Q

R
Q

skb

packet
buffer
packet
buffer

packet
buffer

...

Transmit path of an application packet

14

On socket write:

● Writes the packet to the kernel buffer

● Calls socket’s send function (e.g., sendmsg)

user space to kernel space

 User space

 Kernel space

TXRX

NIC

NIC driver

H
ar

dw
ar

e
in

te
rr

up
t

Application

Network stack

System calls

packet
buffer
packet
buffer

packet
buffer

...

L4/L3 processing

15

L4-specific processing
1. Allocate sk-buff
2. Enqueue sk-buff to socket write queue
3. Call L3 protocol handler

L3-specific processing
1. Fragment, if needed
2. Call L2 protocol handler

 User space

 Kernel space

TXRX

NIC

NIC driver

H
ar

dw
ar

e
in

te
rr

up
t

Application

Network stack W
Q

R
Q

skb

packet
buffer
packet
buffer

packet
buffer

...

Common processing
1. Build header
2. Add header to packet buffer
3. Update sk-buff

 User space

 Kernel space

L2 processing

16

Enqueue packet to queue discipline (qdisc)

● Hold packets in a queue

● Apply scheduling policies (e.g. FIFO, priority)

qdisc
● Dequeue sk-buff (if NIC has free buffers)

● Post process sk-buff

○ Calculate IP/TCP checksum

○ … (tasks that h/w cannot do)

● Call NIC driver’s send function

qdisc
queue

TXRX

NIC

NIC driver

H
ar

dw
ar

e
in

te
rr

up
t

Application

W
Q

R
Q

skb

packet
buffer
packet
buffer

packet
buffer

...

 User space

 Kernel space

NIC processing
NIC driver

● If hardware transmit queue full
○ Stop qdisc queue

● Otherwise:
○ Map packet data for DMA
○ Tells NIC to send the packet

17

NIC
● Calculates ethernet frame checksum (FCS)
● Sends packet to the wire
● Sends an interrupt “Packet is sent” (kernel

space to user space)
● Driver frees the sk-buff; starts the qdisc queue

TXRX

NIC

NIC driver

H
ar

dw
ar

e
in

te
rr

up
t

Application

packet
buffer
packet
buffer

packet
buffer

...

Hardware
TX queue Transmit and receive packet processing pipeline DONE!!

qdisc
queue

Packet processing overheads in the kernel
● Too many context switches!!

○ Pollutes CPU cache

● Per-packet interrupt overhead

● Dynamic allocation of sk-buff

● Packet copy between kernel and user space

● Shared data structures

18

Cannot achieve line-rate for recent high speed NICs!! (40Gbps/100Gbps)

Optimizations to accelerate kernel packet processing

● NAPI (New API) Reading link

● GRO (Generic Receive Offload) GRO+GSO

● GSO (Generic Segmentation Offload) GRO+GSO with DPDK

● Use of multiple hardware queues Multiqueue NIC, Supplement: RSS+RPS+...

● ...

19

http://linuxshowcase.org/2001/full_papers/jamal/jamal_html/napi2.html
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/performance_tuning_guide/network-nic-offloads
https://www.dpdk.org/wp-content/uploads/sites/35/2018/06/GRO-GSO-Libraries-Bring-Significant-Performance-Gains-to-DPDK-based-Applications.pdf
https://singhblogging.wordpress.com/2017/02/10/crash-course-to-multi-queue-nics/
https://www.kernel.org/doc/Documentation/networking/scaling.txt

Outline

● The journey of a packet through the Linux network stack

● Need for kernel bypass techniques for packet processing

● Kernel-bypass techniques

○ User-space packet processing

■ Data Plane Development Kit (DPDK)

■ Netmap

○ User-space network stack

■ mTCP

● What’s trending?

20

Packet Processing Overheads in Kernel

● Context switch between kernel and userspace
Application

Kernel

NIC

read user space

kernel space

21

Packet Processing Overheads in Kernel

● Context switch between kernel and userspace

● Packet copy between kernel and userspace
Application

Kernel

NIC

read user space

kernel spaceBuffer in kernel
memory

Application buffer
in userspace

22

Packet Processing Overheads in Kernel

● Context switch between kernel and userspace

● Packet copy between kernel and userspace

● Dynamic allocation of sk_buff

● Per packet interrupt

● Shared data structures

Application

Kernel

NIC

skb

23

receive transmit
skb

Overcome Overheads in Kernel: Bypass the kernel

NIC

user space

Application

Kernel

NIC

user space

kernel space

L2-L4 packet
processing

Context switch between kernel and userspace

 Packet copy between kernel and userspace

Shared
buffersPre-allocated

 Dynamic allocation of sk_buff

24

Application

Packet processing

Interrupt vs Poll Mode

Interrupt Mode Poll Mode

NICCPU

● NIC notifies it needs servicing

● Interrupt is a hardware mechanism

● Handled using interrupt handler

● Interrupt overhead for high speed

traffic

NICCPU

● CPU keeps checking the NIC

● Polling is done with help of control

bits (Command-ready bit)

● Handled by the CPU

● Consumes CPU cycles but handles

high speed traffic

25

● Interrupt for a batch of packets

Interrupt vs Poll Mode: Kernel bypass techniques

Interrupt Mode Poll Mode

NICCPU

● NIC notifies it needs servicing

● Interrupt is a hardware mechanism

● Handled using interrupt handler

● Interrupt overhead for high speed

traffic

NICCPU

● CPU keeps checking the NIC

● Polling is done with help of control

bits(Command-ready bit)

● Handled by the CPU

● Consumes CPU cycles but handles

high speed traffic

Netmap DPDK
26

Outline

● The journey of a packet through the Linux network stack

● Need for kernel bypass techniques for packet processing

● Kernel-bypass techniques

○ User-space packet processing

■ Data Plane Development Kit (DPDK)

■ Netmap

○ User-space network stack

■ mTCP

● What’s trending?

27

28

 NIC
Kernel Space

Poll Mode Drivers

Application

User Space

Intel Data Plane Development Kit (DPDK)

rte_mbuf

rte_mempoolrte_ring

• Mempool: HUGE pages to avoid TLB misses.

• Poll mode user space drivers (uio)

○ Unbinds NIC from kernel

• Rte_mbuf: metadata+ pkt buffer

• Cooperative multiprocessing

○ Safe for trusted application

DPDK

https://doc.dpdk.org/guides/linux_gsg/

 NIC
Kernel Space

User Space

Application

Kernel TCP
Stack

Sockets

Netmap driver Drivers (ixgbe)

• Netmap Rings are memory regions in

kernel space shared between application

and kernel

• No extra copy of a packet

• NIC can work with netmap as well as

kernel drivers (transparent mode)

Netmap

DPDK, netmap manage processing till
L2 of network stack

29netmap

https://www.usenix.org/conference/atc12/technical-sessions/presentation/rizzo

What about L3-L7 processing?

 NIC

Kernel network
processing

Application

Shared socket
and TCP data

structure

● Overheads with L3-L7 processing in kernel
● Shared data structure

● Userspace network stack
○ Over netmap or DPDK

● mTCP: multicore TCP

CPU core

30

RX queue

TX queue

Receive Side Scaling (RSS)NIC

31

Incoming packet to NIC
Hash of (src_ip, dst_ip, src_port, dst_port)

Application
Cores

Application

Multiqueue NIC

mTCP: Userspace network stack

● Designed for multicore scalable application

● Per core TCP data structures

○ E.g. accept queue, socket list

○ Lock free

○ Connection locality

● Leverages multiqueue support of NIC

NIC

Per core mTCP
thread

Application

32

netmap/ DPDK

Incoming packets

Shared data structures

mTCP

https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/jeong

Outline

● The journey of a packet through the Linux network stack

● Need for kernel bypass techniques for packet processing

● Kernel-bypass techniques

○ User-space packet processing

■ Data Plane Development Kit (DPDK)

■ Netmap

○ User-space network stack

■ mTCP

● What’s trending?

33

What’s trending?

● Offload application processing to the kernel
○ BPF (Berkeley Packet Filter)
○ eBPF (eXtended BPF) BPF+eBPF+XDP link-1, BPF+eBPF+XDP tutorial link-2

● Offload application processing to the NIC driver
○ XDP (eXpress DataPath) Sample apps for eBPF + XDP

● Offload application processing to programmable hardware
○ Programmable SmartNICs (NPU/DPU)

■ Netronome, Mellanox, Bluefield, Pensando Video on smartNIC architecture + Netronome
NIC specifics

○ Programmable FPGAs
■ Xilinx, Altera

○ Programmable hardware ASICs Programmable network: Intro video , Detailed video link
■ Barefoot Tofino, Cisco’s Doppler, Intel Flexpipe, Cavium’s Xpliant

34

https://www.netronome.com/blog/bpf-ebpf-xdp-and-bpfilter-what-are-these-things-and-what-do-they-mean-enterprise/
https://qmonnet.github.io/whirl-offload/2016/09/01/dive-into-bpf/
https://github.com/Netronome/bpf-samples
https://www.youtube.com/watch?v=Bffoywnkytc
https://www.youtube.com/watch?v=Bffoywnkytc
https://www.youtube.com/watch?v=JWyyTlkJ84w
https://www.youtube.com/watch?v=DptVDfxjoSk

