
Kernel-bypass techniques for              
high-speed network packet processing

CS 744

Presenters: Rinku Shah, Priyanka Naik
                 {rinku, ppnaik}@cse.iitb.ac.in

Course Instructor: Prof. Umesh Bellur
         

                   Department of Computer Science & Engineering
Indian Institute of Technology Bombay

         



Outline

● The journey of a packet through the Linux network stack

● Need for kernel bypass techniques for packet processing

● Kernel-bypass techniques

○ User-space packet processing

■ Data Plane Development Kit (DPDK)

■ Netmap

○ User-space network stack

■ mTCP

● What’s trending?

2



Typical packet flow
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What does a packet contain?
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Ethernet header IP header TCP header          payload FCS
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FCS: Frame Check Sequence
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Hardware
RX queue

RX path: Packet arrives at the destination NIC
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TX/RX rings
● Circular queue
● Shared between NIC and NIC driver
● Content: Length + packet buffer pointer

NIC receives the packet

● Match destination MAC address

● Verify Ethernet checksum (FCS)

Packets accepted at the NIC

● DMA the packet to RX ring buffer

● NIC triggers an interrupt
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Interrupt processing in the linux kernel
● Top-half 

○ Minimal processing

● Bottom-half 

○ Rest of interrupt processing
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Top-half interrupt processing
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Switch from user space to kernel space

CPU interrupts the process in execution

Top-half interrupt processing

● Lookup IDT (Interrupt Descriptor Table)

● Call corresponding ISR (Interrupt Service Routine)

○ Acknowledge the interrupt

○ Schedule bottom-half processing

● Switch back to user space



Bottom-half processing
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Switch from user space to kernel space

CPU initiates the bottom-half when it is free (soft-irq)

sk-buff

In-memory data structure that contains packet metadata

● Pointers to packet headers and payload

● More packet related information ...

(sk-buff tutorial link)

Driver dynamically allocates an sk-buff (a.k.a., skb)

Oops!!
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https://www.linuxjournal.com/article/1312


Bottom-half processing
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Call L3 protocol handler

NIC driver processing

1. Driver dynamically allocates an sk-buff 

2. Update sk-buff with packet metadata

3. Remove the Ethernet header

4. Pass sk-buff to the network stackFo
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L3/L4 processing
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Common processing

1. Match destination IP/socket

2. Verify checksum

3. Remove header

L3-specific  processing

1. Route lookup

2. Combine fragmented packets

3. Call L4 protocol handler

L4-specific processing



L3/L4 processing
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L3-specific  processing

1. Route lookup

2. Combine fragmented packets

3. Call L4 protocol handler

L4-specific processing

1. Handle TCP state machine

2. Enqueue to socket read queue

3. Signal the socket
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Application processing 

On socket read:

● Dequeue packet from socket receive queue 

(kernel space)

● Copy packet to application buffer (user space)

● Release sk-buff

● Return back to the application
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kernel space to user space

user space to kernel space
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Transmit path of an application packet
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On socket write:

● Writes the packet to the kernel buffer

● Calls socket’s send function (e.g., sendmsg)

user space to kernel space
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L4/L3 processing
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L4-specific  processing
1. Allocate sk-buff
2. Enqueue sk-buff to socket write queue
3. Call L3 protocol handler

L3-specific processing
1. Fragment, if needed
2. Call L2 protocol handler
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Common processing
1. Build header
2. Add header to packet buffer
3. Update sk-buff



                                                User space
 

                                         Kernel space

L2 processing
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Enqueue packet to queue discipline (qdisc)

● Hold packets in a queue

● Apply scheduling policies (e.g. FIFO, priority)

qdisc
● Dequeue sk-buff (if NIC has free buffers)

● Post process sk-buff 

○ Calculate IP/TCP checksum 

○ … (tasks that h/w cannot do)

● Call NIC driver’s send function

qdisc 
queue

TXRX

NIC

NIC driver

H
ar

dw
ar

e 
in

te
rr

up
t

Application

W
Q

R
Q

skb

packet 
buffer
packet 
buffer

packet 
buffer

...



                                                User space
 

                                         Kernel space

NIC processing
NIC driver

● If hardware transmit queue full
○ Stop qdisc queue

● Otherwise:
○ Map packet data for DMA
○ Tells NIC to send the packet
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NIC
● Calculates ethernet frame checksum (FCS)
● Sends packet to the wire
● Sends an interrupt “Packet is sent” (kernel 

space to user space)
● Driver frees the sk-buff; starts the qdisc queue
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TX queue Transmit and receive packet processing pipeline DONE!!
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Packet processing overheads in the kernel 
● Too many context switches!!

○ Pollutes CPU cache

● Per-packet interrupt overhead

● Dynamic allocation of sk-buff

● Packet copy between kernel and user space

● Shared data structures
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Cannot achieve line-rate for recent high speed NICs!! (40Gbps/100Gbps)



Optimizations to accelerate kernel packet processing

● NAPI (New API) Reading link

● GRO (Generic Receive Offload) GRO+GSO 

● GSO (Generic Segmentation Offload) GRO+GSO with DPDK

● Use of multiple hardware queues Multiqueue NIC, Supplement: RSS+RPS+...

● ...
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http://linuxshowcase.org/2001/full_papers/jamal/jamal_html/napi2.html
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/performance_tuning_guide/network-nic-offloads
https://www.dpdk.org/wp-content/uploads/sites/35/2018/06/GRO-GSO-Libraries-Bring-Significant-Performance-Gains-to-DPDK-based-Applications.pdf
https://singhblogging.wordpress.com/2017/02/10/crash-course-to-multi-queue-nics/
https://www.kernel.org/doc/Documentation/networking/scaling.txt
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Packet Processing Overheads in Kernel

● Context switch between kernel and userspace
Application

Kernel

NIC

read user space

kernel space
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Packet Processing Overheads in Kernel

● Context switch between kernel and userspace

● Packet copy between kernel and userspace
Application

Kernel

NIC

read user space

kernel spaceBuffer in kernel 
memory

Application buffer 
in userspace
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Packet Processing Overheads in Kernel

● Context switch between kernel and userspace

● Packet copy between kernel and userspace

● Dynamic allocation of sk_buff

● Per packet interrupt

● Shared data structures

Application

Kernel

NIC

skb

23

receive transmit
skb



Overcome Overheads in Kernel: Bypass the kernel

NIC

user space

Application

Kernel

NIC

user space

kernel space

L2-L4 packet 
processing

Context switch between kernel and userspace

  Packet copy between kernel and userspace

Shared 
buffersPre-allocated

  Dynamic allocation of sk_buff
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Application
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Interrupt vs Poll Mode

Interrupt Mode Poll Mode

NICCPU

● NIC notifies it needs servicing

● Interrupt is a hardware mechanism

● Handled using interrupt handler

● Interrupt overhead for high speed 

traffic

NICCPU

● CPU keeps checking the NIC

● Polling is done with help of control 

bits (Command-ready bit)

● Handled by the CPU

● Consumes CPU cycles but handles 

high speed traffic 
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● Interrupt for a batch of packets



Interrupt vs Poll Mode: Kernel bypass techniques

Interrupt Mode Poll Mode

NICCPU

● NIC notifies it needs servicing

● Interrupt is a hardware mechanism

● Handled using interrupt handler

● Interrupt overhead for high speed 

traffic

NICCPU

● CPU keeps checking the NIC

● Polling is done with help of control 

bits(Command-ready bit)

● Handled by the CPU

● Consumes CPU cycles but handles 

high speed traffic 

Netmap DPDK
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      NIC
Kernel Space

Poll Mode Drivers

Application

User Space

Intel Data Plane Development Kit (DPDK)

rte_mbuf

rte_mempoolrte_ring

• Mempool: HUGE pages to avoid TLB misses.

• Poll mode user space drivers (uio)

○ Unbinds NIC from kernel

• Rte_mbuf: metadata+ pkt buffer

• Cooperative multiprocessing

○ Safe for trusted application

DPDK

https://doc.dpdk.org/guides/linux_gsg/


    NIC
Kernel Space

User Space

Application

Kernel TCP 
Stack

Sockets

Netmap driver Drivers (ixgbe)

• Netmap Rings are memory regions in 

kernel space shared between application 

and kernel

• No extra copy of a packet

• NIC can work with netmap as well as 

kernel drivers (transparent mode)

Netmap

DPDK, netmap manage processing till 
L2 of network stack

29netmap

https://www.usenix.org/conference/atc12/technical-sessions/presentation/rizzo


What about L3-L7 processing?

    NIC

Kernel network 
processing

Application

Shared socket 
and TCP data 

structure

● Overheads with L3-L7 processing in kernel
● Shared data structure 

● Userspace network stack
○ Over netmap or DPDK

● mTCP: multicore TCP

CPU core
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RX queue

TX queue

Receive Side Scaling (RSS)NIC
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Incoming packet to NIC
Hash of (src_ip, dst_ip, src_port, dst_port)

Application 
Cores

Application

Multiqueue NIC



mTCP: Userspace network stack

● Designed for multicore scalable application

● Per core TCP data structures

○ E.g. accept queue, socket list

○ Lock free

○ Connection locality 

● Leverages multiqueue support of NIC

NIC

Per core mTCP 
thread

Application

32

    
netmap/ DPDK

Incoming packets

Shared data structures

mTCP

https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/jeong
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What’s trending?

● Offload application processing to the kernel 
○ BPF (Berkeley Packet Filter) 
○ eBPF (eXtended BPF)  BPF+eBPF+XDP link-1, BPF+eBPF+XDP tutorial link-2

● Offload application processing to the NIC driver
○ XDP (eXpress DataPath) Sample apps for eBPF + XDP

● Offload application processing to programmable hardware 
○ Programmable SmartNICs (NPU/DPU)

■ Netronome, Mellanox, Bluefield, Pensando Video on smartNIC architecture + Netronome 
NIC specifics

○ Programmable FPGAs
■ Xilinx, Altera

○ Programmable hardware ASICs Programmable network: Intro video ,  Detailed video link
■ Barefoot Tofino, Cisco’s Doppler, Intel Flexpipe, Cavium’s Xpliant
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https://www.netronome.com/blog/bpf-ebpf-xdp-and-bpfilter-what-are-these-things-and-what-do-they-mean-enterprise/
https://qmonnet.github.io/whirl-offload/2016/09/01/dive-into-bpf/
https://github.com/Netronome/bpf-samples
https://www.youtube.com/watch?v=Bffoywnkytc
https://www.youtube.com/watch?v=Bffoywnkytc
https://www.youtube.com/watch?v=JWyyTlkJ84w
https://www.youtube.com/watch?v=DptVDfxjoSk

