
Mythili Vutukuru
CSE, IIT Bombay

Demand paging

Recap: Virtual addresses and paging

• Instructions and data of a process in memory assigned virtual addresses
• Starting at 0 for user code (OS code also assigned high virtual addresses)

• Virtual address space of a process divided into fixed size logical pages,
stored in a fixed size physical frames in memory

• Prevents external fragmentation, cannot prevent internal fragmentation

• Page table maps logical page numbers to physical frame numbers
• One per process, maintained by OS as part of PCB
• Used by MMU to translate VA to PA when CPU accesses memory

Demand Paging

• Should all pages of all active processes always be in main memory?
• Not necessary, as process will not use all of it at once
• Not possible, with large address spaces

• Modern operating systems provide virtual memory
• Not all logical pages are assigned frames, some memory is “virtual”
• Why? Virtual memory of processes can be much more than physical memory

in the system, OS overcommits memory

• Some pages in address space are not allocated at all (not valid)
• Some valid pages are allocated physical frames in memory, some are

temporarily saved on disk, brought into DRAM when needed
• No demand paging in the simple xv6 OS

Swap space

• Special area on disk to hold pages that do not fit in DRAM
• Pages pushes to swap space when memory is full, brought into

mmeory when accessed

Image credit: OSTEP

Tracking pages in swap space

• Invalid page addresses
not in use by process, no
need to store any frame
number

• A valid page either has a
physical frame number in
memory, or a disk
address in swap space,
both tracked by page
table

null

null

Memory resident
page table
(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Virtual memory
(disk)

Valid
0

1

1
1
0

1
1

1

Physical page
number or
disk address

PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 6

VP 3

Image credit: CSAPP

Valid and present bits in page table entry

• Valid bit in PTE indicates if
virtual page is in use by
process

• Present bit indicates if
page is allocated frame in
main memory

• Valid bit and present bit
both set page in DRAM

• Valid set, present not set
 page in swap space

null

null

Memory resident
page table
(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Swap space
(disk)

Present
0
1

0
1
0

1
0

1

Physical frame
number or
disk address

PTE 0

PTE 7

PF 0
VP 2
VP 1

PF 3

VP 6

VP 3

0

1
1
1
1
0
1
1

Valid

Image credit: CSAPP

Page fault

• When MMU walks page table to translate a virtual address to physical
address, the various bits in page table entry are also examined

• MMU traps to the OS (page fault) in case of any unexpected behavior
• CPU switches to kernel mode, runs page fault handler code
• How does OS handle page fault?

• Valid bit not set segmentation fault, terminate process
• Any other illegal access (e.g., writing to read-only page) terminate process
• Valid bit set, present bit not set OS allocates memory frame for page in

DRAM, updates page table, restarts process (hopefully, all goes well now!)

Reclaiming memory

• OS usually keeps track of free pages in memory to use in page fault
• If no free frames in DRAM when servicing page fault, OS evicts a

victim page from memory to swap space, allocates the freed up
physical frame to faulting page

• Copy contents of victim page from memory frame to swap space on disk
• Copy contents of allocated page from disk into freed up memory frame
• Update corresponding page table entries, restart process

• Page replacement policy of OS helps to identify suitable victim page
• Victim page can be from same process or from different process

null

null

Memory resident
page table
(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Swap space
(disk)

Present
0
1

0
1
0

1
0

1

Physical frame
number or
disk address VP 2

VP 1

VP 6

VP 3

0

1
1
1
1
0
1
1

Valid

null

null

Memory resident
page table
(DRAM)

Physical memory
(DRAM)

VP 7
VP 3

Swap space
(disk)

Present
0
1

1
0
0

1
0

1

Physical frame
number or
disk address VP 2

VP 1

VP 6

VP 4

0

1
1
1
1
0
1
1

Valid

CPU accesses page 3 (page fault) Page 3 brought into memory,
victim page 4 is moved to swap

Image credit: CSAPP

File backed, anonymous, dirty pages
• Pages in the memory image of a process are of two types

• File-backed pages contain data from files on disk (e.g., page with executable code)
• Anonymous pages are not backed by files on disk (e.g., pages containing stack, heap)

• Further classification into dirty and non-dirty pages
• Dirty pages: pages whose content is different from their copy on disk

• E.g., file-backed pages whose contents have changed from file
• E.g., anonymous pages whose contents have changed since last read from swap

• PTE has information to track these types of pages, including dirty bit

Disk access during page fault
• Actions done by OS when servicing page fault depend on type of pages
• When reclaiming memory from victim page, need to copy content of victim

page to swap space only if victim page is dirty
• For other pages, can simply delete memory content, fetch from disk later

• When allocating memory frame during page fault, free memory frame must
be initialized with content from disk for file-backed and non-empty
anonymous pages

• For empty anonymous page that has never been used, can just give empty frame

• Process may be blocked multiple times for disk I/O during page fault!
• Average memory access time (weighted avg across different scenarios during

mem access) increases greatly if too many page faults

Summary: What happens on memory access

• CPU accesses code/data using VA
• MMU looks up TLB for VA

• If TLB hit, get PA, access memory only once to fetch code/data
• If TLB miss, access memory to walk page table, get PTE

• If PTE is valid and present, compute PA, access memory once to fetch code/data
• Else, MMU traps to OS

• If invalid or illegal access, terminate process
• If valid but page not present, allocate free memory frame (maybe by

swapping out victim page), swap in contents of page (if needed), update page
table, restart process

• Where do CPU caches fit in in this story?
• Caches can be checked before address translation (virtually addressed caches) or after

address translation (physically addressed caches)
• DRAM accessed only on cache miss

TLB hit, page in memory

TLB miss, page in memory

TLB miss, page not in memory

Summary: TLB hit, page in memory

1. CPU accesses virtual address
2. MMU looks up page number

in TLB
3. If TLB hit, page table entry is

available, physical address
computed

4. CPU directly accesses
required code/data using
physical address

VAProcessor Trans-
lation

Cache/
memoryPA

Data

CPU chip

TLB

VPN Page table entry

1

2
3

4

5

Image credit: CSAPP

Summary: TLB miss, page in memory

1. CPU accesses virtual address
2. MMU looks up page number in

TLB, cannot find entry
3. MMU looks up page table in

memory to find page table entry
4. Page table entry populated in TLB

for future use
5. MMU computes physical address

using which CPU accesses main
memory

VAProcessor Trans-
lation

Cache/
memory

Lookup page table entry

Data

CPU chip

TLB

VPN Page table entry

PA

1

2

3

4

5

6

Image credit: CSAPP

Summary: TLB miss,
page fault

1. CPU accesses VA
2. TLB miss, walk page table
3. Get PTE, cannot compute PA
4. MMU traps to OS
5. OS swaps out victim page (if needed)
6. OS swaps in new page (if needed), updates PTE to reflect new mapping
7. Restart original process, memory access succeeds (hopefully!)

Page fault handler of OSTrap

VA

1
Processor MMU Cache/

memory

4

5

CPU chip

Disk

Victim page

New page

6

7

Walk page table

PTE

2

3

Image credit: CSAPP

Summary: Virtual memory and caches

Image credit: CSAPP

VAProcessor MMU

PTE addr

PTE

PA

Data

CPU chip

Memory
PAPA

miss

Fetch PTEPTE addr
miss

PTE addr
hit

PA
hit

Data

PTE

CPU cache
(physically addressed,
so accessed after address translation)

TLB hit

TLB miss

Thrashing
• Causes for application slowdown: CPU cache miss, TLB miss, page fault, ..
• Page fault particularly dangerous, may involve multiple disk access
• OS should allocate enough physical memory to avoid page faults, but how much?
• Every process has a working set: frequently used pages in memory image

• Can change from time to time, based on code being executed
• Usually smaller than total virtual memory of process
• If memory assigned to is less than working set, frequent page faults

• Thrashing = system spends too much time servicing page faults and swapping
back and forth from disk, and too little time doing useful application work,
significant slowdown noticeable by users

• Solution: users can reduce working set of processes, OS can terminate some
processes or clean up unnecessary memory, …

Page replacement policies

• Page replacement policy: which victim page should OS pick to evict?
• Goal: Minimize page faults, evict pages not likely to be used immediately
• Simple policy: First In First Out (FIFO) evicts pages in the order in which they

have been brought into memory
• May be suboptimal, e.g., the first assigned pages may be important pages that are in

use very often, leading to another page fault in near future

• Most commonly used policy: evict the Least Recently Used (LRU) page
• Page has not been used for sometime, so less likelihood that it will be used in future

• Optimal policy: evict page not needed for longest time in future (impractical!)

Example: Optimal policy

19

• Example: Process accessed 4 pages (0,1,2,3), only 3 physical frames in memory
• First few accesses are cold (compulsory) misses (if OS doesn’t assign any

memory to process at start)
• Hit rate = 6/(6+5) = 54.5%
• Hit rate modulo compulsory misses 85%

Image credit: OSTEP

Example: FIFO
• Usually worse than optimal
• Belady’s anomaly: performance may get worse when memory size

increases!

20Image credit: OSTEP

Example: LRU
• Equivalent to optimal in this simple example
• Works well due to locality of references (recently used pages accessed again

with high probability)

21Image credit: OSTEP

LRU implementation

• How does OS know which page is LRU?
• OS is not involved in every memory access, so doesn’t know which pages have

been recently used
• Solution: MMU sets the accessed bit for every page table entry it

accesses
• Accessed bit is set implies page has been recently used

• Modern operating systems implement approximate LRU
• Periodically, look at accessed bit of pages to classify pages into active and

inactive pages
• Pick pages that have been inactive for eviction
• May also avoid dirty pages for eviction, since it requires extra disk write

