
Mythili Vutukuru
CSE, IIT Bombay

Files and directories



File System
• An organization of files and directories on disk
• An OS can implement one or more file systems
• Disks expose a set of blocks (usually 512 bytes)
• File system organizes files onto blocks

• System calls translated into reads and writes on blocks

• We will study the following concepts about file systems
• The file abstraction and system call API exposed to users
• Data structures to organize data and metadata on disk and memory
• Implementation of system calls like open, read, write using the data 

structures

2



File abstraction

• File: sequence of bytes, stored persistently on disk
• Directory: container for files and other sub-directories
• Steps to access a file

• Open a file using system call, get a file descriptor
• File descriptor is a handle to refer to file for read/write
• Close file when done accessing it

• Filesystem: OS subsystem that stores files and directories persistently 
on secondary storage like hard disks

• File-related system calls are exposed to users to access files

fd = open(“/home/foo/a.txt”)
read(fd, ..)
write(fd, ..)
close(fd)

fd = open(“/home/foo/a.txt”)
read(fd, ..)
write(fd, ..)
close(fd)



Directory tree

• Files and directories arranged in a tree, starting with root (“/”)

4
Image credit: OSTEP



Reading and writing a file

• After opening a file, process can read/write to a file as a stream
• File descriptor used as handle to refer to the open file stream
• Read system call reads specified number of bytes into a user-defined buffer, 

returns number of bytes read
• Write system call writes specified number of bytes from a user-defined buffer, 

returns number of bytes written

• Read and write system calls update the offset into a file
• After reading N bytes, next read will return the next set of bytes
• Can also update the offset from which to read/write using a seek system call
• Every open file descriptor will read/write file as independent stream, with 

independent offsets

fd = open(“/home/foo/a.txt”)
char buf[64]
n = read(fd, buf, 64)
buf[0] = …
n = write(fd, buf, 64)

fd = open(“/home/foo/a.txt”)
char buf[64]
n = read(fd, buf, 64)
buf[0] = …
n = write(fd, buf, 64)



Sockets, pipes, …

• Opening sockets and pipes also returns file descriptor
• Serves as a handle for stream of data from socket or pipe

• Every process has array of file descriptors
• One file descriptor for every open file / socket / pipe 
• First 3 entries are streams for stdin, stdout, stderr

• Several I/O streams handled via file-like interfaces (everything is a 
file!)



Operations on directories
• Every file is identified by a unique inode number in filesystem
• Directory is a special file that contains mappings between filenames and 

inode number of the file
• Directories can also be accessed like files, e.g., create, open, read, close
• For example, the “ls” program opens and reads all directory entries

• Directory entry contains file name, inode number, type of file (file/directory) etc.

7
Image credit: OSTEP



Hard links
• Hard linking creates another file that points 

to the same inode number (and hence, 
same underlying data)

• If one file deleted, file data can be accessed 
through the other links

• Inode maintains a link count, file data 
deleted only when no further links to it

• You can only unlink, OS decides when to 
delete

8
Image credit: OSTEP



Soft links or symbolic links
• Soft link is a file that simply stores a pointer to another filename

• If the main file is deleted, then the link points to an invalid entry: 
dangling reference

9
Image credit: OSTEP



Mounting a file system

• Mounting a file system connects the files to a specific point in the 
directory tree

• Several devices and file systems are mounted on a typical machine, 
accessed with mount command

10
Image credit: OSTEP


