
Mythili Vutukuru
CSE, IIT Bombay

Inter-process communication (IPC)

Why inter-process communication
• Application logic in a single system is often distributed across multiple

processes: why?
• Different processes developed independently by different teams
• Different programming languages and frameworks used for different tasks

• Processes in a system do not share any memory with each other by
default, so how do they communicate information with each other?

• Cannot share variables or data structures in programs across processes
• Parent and child have identical but separate memory images after fork, changes

made in one process and not seen by other

• Inter-process communication (IPC) mechanisms, available via operating
system syscalls, allow processes to exchange information

Example: web application architecture

• Example: web applications typically composed of multiple processes
• Web server process handles HTTP (web) requests/responses

• Written in a language like C/C++ for high performance
• Returns responses for static content directly by reading files from disk

• Requests needing dynamic response are handled by application server
• App server parses HTTP requests, generates HTTP response according to the

business logic specified by user, sends response back to client via web server
• Scripting languages may be used for easy text parsing and manipulation

• Application server stores/retrieves app data in a database
• Several web application frameworks available to build web applications

having such architectures, e.g., Python Django, React etc.

IPC mechanisms

• Unix domain sockets: processes open sockets, send and receive
messages to each other via socket system calls

• Message queues: sender posts a message to a mailbox, receiver
retrieves message later on from mailbox

• Pipes: unidirectional communication channel between two processes
• Shared memory: same physical memory frame mapped into virtual

address space of multiple processes in order to share memory
• Signals: specific messages via kill system call
• Different IPC mechanisms are useful in different scenarios

Sockets
• Sockets = abstraction to communicate between two processes

• Each process opens socket, and pair of sockets can be connected
• One process writes a message into one socket, another process can read it,

and vice versa (bidirectional communication)
• Processes can be in same machine or on different machines
• If processes on same machine, messages stored temporarily in OS memory

before delivering to destination process
• If processes on different machines, messages sent over network

Image credit: Dive Into Systems

Types of sockets (1)

• Unix domain (local) sockets are used to communicate between
processes on the same machine

• Internet sockets are used to communicate between processes in
different machines

• Local sockets identified by a pathname, Internet sockets identified by
IP (Internet Protocol) address and port number

• Client-server paradigm: one process opens socket first (server) and
another process connects its socket to the first one (client)

• Client/server sockets differentiated by who starts first and who connects later
• Server sockets started first on a well-known “address”, client process connects

to server using the server address

Types of sockets (2)

• Connection-based sockets: one client socket and one server socket
are explicitly connected to each other

• After connection, the two sockets can only send and receive messages to
each other

• Connection-less sockets: one socket can send/receive messages
to/from multiple other sockets

• Address of other endpoint can be mentioned on each message

• Type of socket (local or internet, connection-oriented or connection-
less) is specified as arguments to system call that creates sockets

Creating a socket

• System call “socket” used to create a socket
• Takes type of socket as arguments
• Returns socket file descriptor (similar to file descriptor when file is opened)
• Used as handle for all future operations on the socket

• A socket can optionally bind to an address (pathname for Unix
domain sockets or IP address/port number for Internet sockets) using
“bind” system call

• Server sockets bind to well known address, so that clients can connect
• Client sockets need not bind, OS can assign temporary address

• Close system call closes a socket when done

sockfd = socket(…)
bind(sockfd, address)
sockfd = socket(…)
bind(sockfd, address)

The concept of file descriptors

• Many IPC mechanisms like sockets return a file descriptor, which is
simply an integer “handle” to access a file or socket or pipe

• PCB of process contains list of all open files/sockets/pipes in an array
• When file or socket or pipe is opened, new entry is created in array,

new index returned
• All future system calls (read, write) will be given the file descriptor as

one of the arguments

File descriptor table
(list of open files of a process)

(part of PCB of process)

fd 0

fd 1

fd 2

fd 3

fd 4

STDIN
STDOUT
STDERR

Information about
file or socket or pipe
Information about

file or socket or pipe

fd = open(“/home/foo/a.txt”)
char buf[64]
read(fd, buf, 64)
buf[0] = …
write(fd, buf, 64)

fd = open(“/home/foo/a.txt”)
char buf[64]
read(fd, buf, 64)
buf[0] = …
write(fd, buf, 64)

Data exchange using connection-less sockets
• Function sendto is used to send a message from one socket to

another connection-less socket in another process
• Arguments: socket fd, message to send, address of remote socket

• Function recvfrom is used to receive a message from a socket
• Arguments: socket fd, message buffer into which received message is copied,

socket address structure into which address of remote endpoint is filled
• When a process receives a message on connection-less socket, it can find out

the address of other endpoint, and use this address to reply back

sockfd = socket(..)
char message[1024]
sendto(sockfd, message, server_sockaddr, ..)

sockfd = socket(..)
char message[1024]
sendto(sockfd, message, server_sockaddr, ..)

Client
sockfd = socket(..)
bind(sockfd, server_address)
recvfrom(sockfd, message, client_sockaddr, ..)

sockfd = socket(..)
bind(sockfd, server_address)
recvfrom(sockfd, message, client_sockaddr, ..)

Server

Connecting sockets
• Connection-oriented sockets must be explicitly connected to each other before

exchanging messages
• After server binds socket to well-known address, it uses “listen” system call to

make the socket listen for new connections
• Client uses “connect” system call to connect to a server listen socket

• Connect system call blocks until messages exchanged with server to complete connection
procedure (more later)

• Server uses “accept” system call to accept new connection requests
• Accept system call blocks until new connection is received
• Returns a new socket file descriptor to communicate exclusively with a connected client

• At server: one listen socket to accept new connections, one connected socket for
every connected client to send/recv messages

sockfd = socket(..)
connect(sockfd, server_sockaddr, ..)
sockfd = socket(..)
connect(sockfd, server_sockaddr, ..)

Client sockfd = socket(..)
bind(sockfd, server_address)
listen(sockfd, ..)
newsockfd = accept(sockfd, ..)

sockfd = socket(..)
bind(sockfd, server_address)
listen(sockfd, ..)
newsockfd = accept(sockfd, ..)

Server

Data exchange using connected sockets

• After client connects to server, pair of sockets used to exchange data
• Note that per-client connected socket is used at server, not listen socket
• System calls send/write used to send message on a connected socket
• System calls recv/read used to receive message on a connected socket

• Arguments to send/recv: socket fd, message buffer, buffer length, flags
• Return value is number of bytes read/written or error
• No need to specify socket address on every message, as connected already
• Send/recv has extra flags argument, as compared to read/write system calls
• Flags control where system call blocks and other behavior

sockfd = socket(..)
connect(sockfd, server_sockaddr, ..)
n = send(sockfd, req_buf, req_len, ..)
n = recv(sockfd, resp_buf, resp_len, ..)

sockfd = socket(..)
connect(sockfd, server_sockaddr, ..)
n = send(sockfd, req_buf, req_len, ..)
n = recv(sockfd, resp_buf, resp_len, ..)

Client sockfd = socket(..)
bind(sockfd, server_address)
listen(sockfd, ..)
newsockfd = accept(sockfd, ..)
n = recv(newsockfd, req_buf, req_len, ..)
n = send(newsockfd, resp_buf, resp_len, ..)

sockfd = socket(..)
bind(sockfd, server_address)
listen(sockfd, ..)
newsockfd = accept(sockfd, ..)
n = recv(newsockfd, req_buf, req_len, ..)
n = send(newsockfd, resp_buf, resp_len, ..)

Server

Message queues

• Message queues used for exchanging messages between processes
• Open connection to message queue identified by a “key”, get a handle
• Sender opens connection to message queue, sends message
• Receiver opens connection to message queue, retrieves message later on
• Message buffered within message queue / mailbox until retrieved by receiver

• Example: IPC in web application using message queues
• Web server posts dynamic HTTP requests into message queue
• App server retrieves requests and processes them
• App server posts responses into message queue for web server

msgid = msgget(key, …)
msgsnd(msgid, message, …)
msgrcv(msgid, message, …)

msgid = msgget(key, …)
msgsnd(msgid, message, …)
msgrcv(msgid, message, …)

Pipes
• Pipe is a unidirectional FIFO channel

into which bytes are written at one end,
read from other end

• System call “pipe” creates a pipe
channel, with two file descriptors for
endpoints, returns 2 integers

• One file descriptor used to write into
pipe, one to read from pipe

• Data written into pipe is stored in a
buffer of the pipe channel until read

• Bi-directional communication needs
two pipes

int fd[2]
pipe(fd) //anonymous
read(fd[0], message, ..)
write(fd[1], message, ..)

int fd[2]
pipe(fd) //anonymous
read(fd[0], message, ..)
write(fd[1], message, ..)

File descriptor table
(list of open files of a process)

(part of PCB of process)

fd 0

fd 1

fd 2

fd 3

fd 4

STDIN
STDOUT
STDERR

PIPE
BUFFER

PIPE
BUFFER

Anonymous pipes
• Anonymous pipes (using pipe system call) only available for use within

process and its children
• Open pipe before fork, so pipe file descriptors shared between parent and

child, point to same pipe structure
• One of parent/child closes read end, other closes write end
• Pipe file descriptors used to read/write messages between parent/child

File descriptor
table of parent

fd 0

fd 1

fd 2

fd 3

fd 4

STDIN
STDOUT
STDERR

PIPE
BUFFER

PIPE
BUFFER

File descriptor
table of child

fd 0

fd 1

fd 2

fd 3

fd 4

Pipes in shell commands

• How does shell run commands with pipes (output of one command
given as input to another command)?

• Shell opens a pipe, shared with child processes that run commands
• Shell duplicates stdout of first child to write end of pipe, read end of

pipe to stdin of second process
• Processes must close file descriptors they are not using

$cat foo.txt | grep something

Process P1
STDOUT of P1

Process P2
STDIN of P2

Pipe buffer

Named pipes

• How to use pipes between unrelated processes? Named pipes
• Named pipes opened with a pathname, accessible across processes
• One process accesses read end of pipe, another opens write end
• Named pipe also provides uni-directional communication
• Writing to pipe with no reader open will throw an error

mkfifo(name, ..)
fd = open(name, O_RDONLY)
read(fd, message, ..)

mkfifo(name, ..)
fd = open(name, O_RDONLY)
read(fd, message, ..)

fd = open(name, O_WRONLY)
write(fd, message, …)
fd = open(name, O_WRONLY)
write(fd, message, …)

Reader

Writer

Blocking vs. non-blocking IPC

• Same high level concept across sockets, pipes, message queues
• Sender sends message, temporarily stored in some memory inside OS
• Receiver retrieves message later on from temporary OS memory

• Send/receive system calls can block
• Sender can block if temporary buffer is full
• Receiver can block if temporary buffer is empty

• Possible to configure IPC to be non-blocking using syscalls
• Send/receive will return with error instead of blocking

Shared memory

• Processes in a system do not share any memory by default
• Child process gets copy of parent memory image, modifies independently

• Shared memory: a way for two processes to share memory
• Same memory appears in memory image of multiple processes
• Shared memory segment identified by a unique key
• Process can request to map or “attach” a specific shared memory segment into its

memory image by using key
• Processes may need extra mechanisms for coordination besides shared

memory
• E.g., how does one process know when another process has modified shared

memory?

shmid = shmget(key, ..)
char *data = shmat(shmid, ..)
shmid = shmget(key, ..)
char *data = shmat(shmid, ..)

Signals
• Signal: a way to send notifications to processes
• Standard signals available in operating systems, each corresponding to a

specific event, and with a specific signal number

Image credit: Dive Into Systems

How to send signals?
• System call kill can be used to send a signal from one process to other

• Kill system call can send all signals, not just SIGKILL
• Some restrictions on who can send to whom for isolation and security

• Kill command uses this syscall, e.g., “kill -9 <pid>” sends SIGKILL (#9)
• Signals can also be generated by OS for a process, e.g., when it handles

interrupt due to Ctrl+C keyboard event
• Interrupt handler for Ctrl+C sends the signal to the process in foreground

Signal handling

• Signals to a process are queued up by OS and delivered when process
goes from kernel mode to user mode next

• Default behavior defined by OS for a process receiving a signal
• Ignore some signals (e.g., SIGCHLD)
• Terminate when some signals are received (e.g., SIGINT)

• User processes can define their own signal handler functions to be
executed when a signal is received

• Override default behavior defined for a signal
• Some signals (e.g., SIGKILL) cannot be overridden

• Process jumps to signal handler, executes it, resumes normal execution
afterwards (if still alive)

Process groups

• When we type Ctrl+C on keyboard, which processes get the signal?
• Processes are organized into process groups, every process belongs

by default to process group of its parent
• When signal is sent to a process, it is delivered to all processes in its

process group by default
• Example: when we hit Ctrl+C on keyboard, signal sent to all processes

in the foreground process group
• System call setpgid can be used to change process group of signals, to

control signal distribution

Examples: sending and catching signals

• Parent sends SIGKILL to child
using kill system call

• Child runs in infinite loop until
killed by parent

int pid = fork()
if(pid == 0) {
while(1); //infinite loop
//terminates on SIGKILL

}
//parent
kill(pid, SIGKILL)

void sigint_handler(int sig) {
print “caught signal”
exit()

}
int main() {
signal(SIGINT, sigint_handler)
…

}

• Default SIGINT hander
overridden

• Process prints message before
terminating on SIGINT

