
Mythili Vutukuru
CSE, IIT Bombay

Memory management system calls

Recap: Virtual memory management

• Code+data of a process assigned virtual addresses
• Fixed size chunks of virtual addresses (pages) mapped to chunks of

physical addresss (frames) in main memory
• Page table of process maps page# to frame#

• Used by MMU for address translation
• Page table mappings cached in TLB

• Demand paging: pages assigned physical frames only when used, else
saved on swap space in disk

Recap: What happens on a memory access

• CPU accesses code/data at a certain virtual address (VA)
• MMU translates VA to PA, memory accessed using PA

• If TLB hit, PA directly available, access memory directly
• If TLB miss, MMU walks page table to compute PA, then access memory

• If any error during memory access, MMU traps to OS
• If page fault due to frame not being allocated to the page, OS allocates free

memory frame, updates page table entry, restarts process
• Other types of page faults handled suitably

• Page replacement policy decides which pages to evict to swap and
which to keep in memory frames

Memory allocation from user point of view

• So far, memory management from OS/hardware point of view
• How OS manages memory, what data structures used, what happens on

memory access, how is address translated, how is page fault handled

• Next: memory management from user program’s view point
• How is memory allocated to store user data in programs?
• What system calls are available to user process for managing its memory?
• How can a process request for more memory from OS as it runs?

Memory allocation system calls

• Address space created during fork, changed during exec
• No system calls needed to allocate memory that is

already part of address space but unallocated by OS
• Valid page but not present in RAM: automatically allocated

memory by OS during page fault handling

• System calls to add pages, expand virtual address space
• sbrk/brk system call adds pages to increase “program break”,

i.e., ending virtual address of heap
• mmap system call adds virtual pages at any address, not just

at end of heap

• Stack expansion automatically handled by OS (stack
pointer crosses existing stack page, page fault occurs)

5

mmap

brk
Program
break

Image credit: OSTEP

System call mmap

• mmap system call used for mapping new memory into
virtual address space of a process

• OS allocates new valid pages to address space,
preferably at the requested starting virtual addresses

• Physical memory allocated on demand

• Syscall returns the starting virtual address of the
allocated chunk, used to read/write into the memory

• Memory contiguous in virtual address space, not
necessarily in physical address space

• Correspondingly unmapped by munmap system call

start
(or address
chosen by
the
kernel)

0

Process
virtual address space

length (bytes)

char *buf = mmap(start, length, ..)
buf[0] = …

munmap(start, length)

char *buf = mmap(start, length, ..)
buf[0] = …

munmap(start, length)

Image credit: CSAPP

More on memory mapping

• Two ways of memory mapping
• Memory map an anonymous page, initialized to zero (e.g., heap page)
• Memory map a file-backed page, initialized with file contents (e.g., code page)

• Physical memory corresponding to the virtual addresses allocated on
demand in both cases

• User accesses page, page fault, OS allocates and initializes physical frames

• How is memory-mapped page used?
• Anonymous pages can be split into smaller chunks by heap manager, or can

directly store user data
• File-backed pages can be used to read/write files

Arguments to mmap

• Starting virtual address (preference)
• Length of memory mapped chunk
• Protocol, i.e., permission bits (read, write)
• Flags (whether private or shared)

• Shared implies changes by one process visible to another, not so with private

• File descriptor and offset if we are memory mapping a file into virtual
address space (e.g., executable code or shared library object)

#include <sys/mman.h>
void *mmap(void *start, size_t length, int prot, int
flags, int fd, off_t offset);

Heap vs Stack
• Program executable already allocates space for compile-time data

(global and static local variables)
• Local variables in a function stored on stack

• Memory allocated dynamically via malloc stored on heap (the virtual
address of allocated chunk on heap may be stored in a local variable
on stack)

Image credit:OSTEP

Memory allocation via malloc

• Normally user programs don’t need to call brk/sbrk/mmap functions
to dynamically allocate memory at run time

• User programs calls C library functions like malloc to allocate chunks
of memory from heap

• C library implementation of malloc uses brk/sbrk/mmap to obtain
memory pages from OS when heap runs out of space

• User program can also directly allocate page-sized memory using
mmap system call, instead of using malloc

Common errors with malloc

• Must allocate memory of the correct size before use

• Allocated memory must be explicitly freed by user, else memory leak
• Some language libraries automatically clean unused chunks via garbage

collection algorithms

Image credit:OSTEP

Types of memory allocators

• General-purpose heap allocators support variable sized memory
allocation using malloc

• Complex data structures to keep track of variable sized free chunks
• Frequent calls to malloc/free can slow down user programs

• Some heap allocators optimize for fixed size allocation
• Useful for user applications that allocate memory in fixed sizes
• Heap memory is divided into fixed size chunks for allocation
• More efficient than general-purpose variable sized allocation

• Choice of allocator managed by programming language libraries, but
can be configured/changed by users

Variable sized memory allocation

• How do we design a general purpose memory allocator?
• Given a large block of memory (one or more pages), how do we use it

to satisfy variable-sized memory allocation requests?
• Challenge: need to track information about variable sized chunks,

which chunks are allocated and which are free
• External fragmentation: after memory is allocated and freed-up,

many gaps of different sizes throughout heap

13Image credit:OSTEP

Free list

• Free list: data structure (e.g., linked list) to track free chunks in heap
• Initialized with entire heap, changes with alloc/free operations
• Malloc searches free list to find a suitable chunk
• Freed up chunks added back to free list
• Example: 30 bytes heap, three chunks of 10 types each allocated, two

chunks freed up

Image credit:OSTEP

Splitting and coalescing
• Exact size free chunk needed for alloc may not be available
• May need to split a bigger chunk, e.g., request to allocate 1 byte, split

10 byte chunk into 1 byte and 9 byte chunks

• May need to coalesce adjacent free chunks into bigger chunk, e.g.,
once middle 10 byte chunk is also free, can coalesce all free chunks
into one 30 byte chunk, to satisfy requests for larger than 10 bytes

Image credit:OSTEP

Which free chunk to pick in malloc?

• First fit: allocate first free chunk that fits
• Best fit: allocate free chunk that is closest in size
• Worst fit: allocate free chunk that is farthest in size
• Example, consider this free list, and request for malloc(15)

• Best fit allocates the 20-byte chunk
• Worst fit allocates 30-byte chunk, remaining chunk is bigger and more usable

16Image credit:OSTEP

Headers
• Allocated chunk stores some

metadata (header), not used by
user calling malloc

• Header stores size of allocation
• Why? We should know how much

to free later

• Header also has some random
number (“magic”)

• Detects if previous chunk has
overflown into this chunk

17
Image credit:OSTEP

Embedded free list
• Where is free list stored? Information

can be embedded within free chunk
itself

• Pointer to the next free chunk is
embedded within the free chunk

• Need to only remember head of list
within allocator, e.g., allocations
happen from the head, free chunks
added back to head

• Example: 100 bytes allocated on heap

18
Image credit:OSTEP

Example (contd)

• Heap has 4088 bytes initially (4KB =
4096, less 8 byte header)

• Three calls to malloc for 100 bytes each
• Each call allocates 108 bytes on heap

(100 bytes to user, 8 byte header)
• Free list has one chunk left of 3764

bytes

Image credit:OSTEP

Example (contd)

• Now the middle chunk
pointed to by sptr is freed

• What is the free list now?
Two non-contiguous chunks
of 100 bytes each

• Free space scattered due to
external fragmentation

• Cannot satisfy a request for
3800 bytes even though we
have the free space in heap

20
Image credit:OSTEP

Example (contd)
• Suppose all the three chunks are

freed
• The list now has a bunch of free

chunks that are adjacent
• A smart algorithm would merge

them all into a bigger free chunk
• Must split and coalesce free chunks

to satisfy variable sized requests
• Lot of work to perform variable

sized memory allocation

21
Image credit:OSTEP

Segregated free lists and slab allocators

• One idea for efficiency: maintain separate free lists for free chunks of
different sizes

• Useful when application calls malloc with popular chunk sizes
• Requests that cannot be satisfied by segregated lists are handled by variable

sized allocator
• Less worry about external fragmentation, no need to split/coalesce

• Slab allocator: slab of memory with chunks of a particular size pre-
allocated, easily available for use

• Even more efficient than segregated free list, avoids alloc/free overheads

Buddy allocation for easy coalescing
• Allocate memory in size of

power of 2
• E.g., for a request of 7000

bytes, allocate 8 KB cunk

• Why? 2 adjacent power-of-2
chunks can be merged to
form a bigger power-of-2
chunk

• E.g., if 8KB block and its
“buddy” are free, they can
form a 16KB chunk

23Image credit:OSTEP

