
Mythili Vutukuru
CSE, IIT Bombay

Network I/O via Sockets



Sockets

• Computers in a computer system exchange messages over the network
• OS provides system calls to support this communication

• Sockets = abstraction to communicate between two processes
• Each process opens socket, and pair of sockets can be connected
• Client-server paradigm: one process opens socket first (server) and another process 

connects its socket to the first one (client)
• One process writes a message into one socket, another process can read it, and vice 

versa (bidirectional communication)
• Processes can be in same machine or on different machines

• In this lecture: system calls to send/receive messages via sockets
• Next lecture: how socket system calls are implemented



Types of sockets (1)

• Unix domain (local) sockets are used to communicate between processes 
on the same machine

• Server process opens socket, and gives it a name (pathname)
• Client process opens socket, connects to the server socket using its name

• Internet sockets are used to communicate between processes in different 
machines

• Every machine on the Internet has an address = IP address
• Multiple sockets on the machine get unique port numbers (16 bits)
• Server process opens socket at a well known port number
• Client process opens socket, connects to the server socket using its IP address and 

port number
• Client and server sockets differentiated by who starts first and who 

connects later: server sockets listens for communication on a well-known 
“address”, client process connects to server using the server address

• Mechanisms exist for clients to learn server addresses



Types of sockets (2)

• Connection-based sockets: one client socket and one server socket are 
explicitly connected to each other

• After connection, the two sockets can only send and receive messages to each other

• Connection-less sockets: one socket can send/receive messages to/from 
multiple other sockets

• Address of other endpoint can be mentioned on each message

• Type of socket (local or internet, connection-oriented or connection-less) is 
specified as arguments to system call that creates sockets

• Connection-based Internet sockets are called TCP sockets
• TCP is a protocol to guarantee in-order reliable delivery of messages across Internet

• Connection-less Internet sockets are called UDP sockets
• UDP is a protocol to exchange messages on Internet without any reliability

• More on TCP and UDP protocols later in the course



Creating a socket

• System call “socket” used to create a socket
• Takes type of socket as arguments
• Returns socket file descriptor

• Socket file descriptor is similar to file descriptor returned when file is 
opened

• Index of entry in file descriptor array, points to socket-based data structures
• Used as handle for all future operations on the socket

• A socket can optionally bind to an address (pathname or IP address/port 
number) using “bind” system call

• Server sockets must always bind to well known address, so that clients can connect
• Client sockets need not bind, OS can assign temporary address

• Close system call closes a socket when done 

sockfd = socket(…)
bind(sockfd, address)
sockfd = socket(…)
bind(sockfd, address)



Data exchange using connection-less sockets
• Function sendto is used to send a message from one socket to 

another connection-less socket in another process
• Arguments: socket fd, message to send, address of remote socket

• Function recvfrom is used to receive a message from a socket
• Arguments: socket fd, message buffer into which received message is copied, 

socket address structure into which address of remote endpoint is filled

• When a process receives a message on connection-less socket, it can 
find out the address of other endpoint which sent message, and use 
this address to reply back

sockfd = socket(..)
char message[1024]
sendto(sockfd, message, server_sockaddr, ..)

sockfd = socket(..)
char message[1024]
sendto(sockfd, message, server_sockaddr, ..)

Client sockfd = socket(..)
bind(sockfd, server_address)
recvfrom(sockfd, message, client_sockaddr, ..)

sockfd = socket(..)
bind(sockfd, server_address)
recvfrom(sockfd, message, client_sockaddr, ..)

Server



Connecting sockets
• Connection-oriented sockets must be explicitly connected to each other before 

exchanging messages
• After server binds socket to well-known address, it uses “listen” system call to 

make the socket listen for new connections
• Client uses “connect” system call to connect to a server listen socket

• Connect system call blocks until messages exchanged with server to complete connection 
procedure (more later)

• Server uses “accept” system call to accept new connection requests
• Accept system call blocks until new connection is received
• Returns a new socket file descriptor to communicate exclusively with a connected client

• At server: one listen socket to accept new connections, one connected socket for 
every connected client to send/recv messages

sockfd = socket(..)
connect(sockfd, server_sockaddr, ..)
sockfd = socket(..)
connect(sockfd, server_sockaddr, ..)

Client
sockfd = socket(..)
bind(sockfd, server_address)
listen(sockfd, ..)
newsockfd = accept(sockfd, ..)

sockfd = socket(..)
bind(sockfd, server_address)
listen(sockfd, ..)
newsockfd = accept(sockfd, ..)

Server



Data exchange using connected sockets
• After client connects to server, pair of sockets used to exchange data

• Note that per-client connected socket is used at server, not listen socket
• System calls send/write used to send message on a connected socket
• System calls recv/read used to receive message on a connected socket

• Arguments to send/recv: socket fd, message buffer, buffer length, flags
• Return value is number of bytes read/written or error 
• No need to specify socket address on every message, as connected already
• Send/recv has extra flags argument, as compared to read/write system calls
• Flags control where system call blocks and other behavior

sockfd = socket(..)
connect(sockfd, server_sockaddr, ..)
n = send(sockfd, req_buf, req_len, ..)
n = recv(sockfd, resp_buf, resp_len, ..)

sockfd = socket(..)
connect(sockfd, server_sockaddr, ..)
n = send(sockfd, req_buf, req_len, ..)
n = recv(sockfd, resp_buf, resp_len, ..)

Client
sockfd = socket(..)
bind(sockfd, server_address)
listen(sockfd, ..)
newsockfd = accept(sockfd, ..)
n = recv(newsockfd, req_buf, req_len, ..)
n = send(newsockfd, resp_buf, resp_len, ..)

sockfd = socket(..)
bind(sockfd, server_address)
listen(sockfd, ..)
newsockfd = accept(sockfd, ..)
n = recv(newsockfd, req_buf, req_len, ..)
n = send(newsockfd, resp_buf, resp_len, ..)

Server



Concurrent network I/O

• What if server is connected to multiple clients?
• Multiple sockets to manage: listen socket, per-client connected sockets
• Accept on listen socket, read/recv on connected socket can block until data arrives
• If server process blocks on one socket, it can neglect other sockets

• How to concurrently handle multiple clients?
• Server process can create multiple child processes/threads, one per connected client
• Main server process blocks at accept on listen socket
• Child processes/threads can block at reading from connected client sockets
• New client connections as well as existing client communication handled
• Processes/threads multiplexed on same core, or run in parallel on different cores 

• Cannot support very large number of clients due to limit on number of 
processes or threads a system can support

sockfd = socket(..)
bind(sockfd, server_address)
listen(sockfd, ..)
newsockfd = accept(sockfd, ..)
n = recv(newsockfd, req_buf, req_len)
n = send(newsockfd, resp_buf, resp_len)

sockfd = socket(..)
bind(sockfd, server_address)
listen(sockfd, ..)
newsockfd = accept(sockfd, ..)
n = recv(newsockfd, req_buf, req_len)
n = send(newsockfd, resp_buf, resp_len)



Event-driven I/O

• Event-driven or asynchronous I/O API used to concurrently handle I/O from 
multiple sockets in a single process

• Example: select, epoll

• Overview of epoll API
• Process creates an epoll instance, adds file descriptors of interest to be monitored
• Process blocks on epoll_wait, which returns when there is an event on any of the 

socket file descriptors (OS takes care of monitoring all fds)
• When epoll_wait returns, process handles events by performing suitable actions 

(accept, recv etc.) on the ready file descriptors, and calls epoll_wait when done
• Single-threaded process enough to handle I/O from multiple concurrent clients
• Process should not do any blocking action when handling event

• Event-driven APIs available for network I/O, not popular for disk

epollfd = epoll_create(..)
epollctl(epollfd, EPOLL_CTL_ADD, sockfd)
while(1)

ready_fds = epoll_wait(epollfd, ..)
for each fd in ready_fds

handle event on fd
add any new fds to epoll instance

epollfd = epoll_create(..)
epollctl(epollfd, EPOLL_CTL_ADD, sockfd)
while(1)

ready_fds = epoll_wait(epollfd, ..)
for each fd in ready_fds

handle event on fd
add any new fds to epoll instance



Network I/O architecture

• Most components in a computer system need to do some network I/O, 
sometimes as clients and sometimes as servers

• Web server receives requests from users, contacts database, returns response

• Programming language libraries may provide better APIs for network I/O than 
the basic socket API discussed here

• Example: remote procedure call (RPC) APIs invoke server code like function calls

• With any API, design choice to be made between two architectures
• One thread per connection, blocking/synchronous API
• Fewer threads, event-driven/asynchronous API

• Event-driven APIs usually have lesser overhead and higher performance, but 
harder to program, difficult to scale to multiple cores



Summary

• In this lecture:
• Socket API to communicate between processes 
• Multi-process/multi-thread vs event-driven architecture

• Programming exercise: write code for a client and server that 
exchange data using sockets. Add functionality for concurrent 
handling of multiple clients.


