
Mythili Vutukuru
CSE, IIT Bombay

Performance Engineering

Multi-tier systems

• Real-world computer systems are built as multi-tier applications
• Multiple components/tiers distributed across several machines

• High-level architecture of a multi-tier application
• Clients access applications hosted in organizations or public clouds
• Front-end components (e.g., web servers) receive user requests, reply to user

with responses, consult various application servers to build responses
• App servers contain business logic to process different types of user requests
• Application data is stored in several database servers in the backend

• Each application is typically a multi-threaded program, running on
multiple cores

Example: e-commerce system

Front end
Web servers
Front end
Web servers

User profile managementUser profile management User profile databaseUser profile database

Product managementProduct management

Shopping cart maintenanceShopping cart maintenance

Order management (purchase, billing,
shipping, cancellations, returns)
Order management (purchase, billing,
shipping, cancellations, returns)

Recommendation algorithmsRecommendation algorithms

Product catalogueProduct catalogue

Shopping cart informationShopping cart information

Order databaseOrder database

Message QueueMessage Queue

Recommendation databaseRecommendation database

User
Requests

Fetch user billing infoUpdate product catalogue

Performance: parameters and metrics

• Given a computer system, how to measure its performance?
• Input parameters on which performance depends / incoming load

• Number of concurrent users/requests in the system
• Rate (requests/sec) of incoming traffic
• Mix of various types of requests (which require different amounts of work)

• Performance metrics / outputs measured
• Throughput of the system in requests/sec (averaged over a time window)
• Response time or latency (averaged, various percentiles)
• Utilization of various resources at components (averaged)
• Various kinds of errors and failures (counts)

• Load testing of a system: vary incoming load, measure performance

Performance bottleneck

• The performance of a system is limited by the slowest component in the
system (bottleneck)

• Consider a web application servicing one type of requests
• Front-end can serve 1000 req/s, app server can handle 5000 req/s, backend database

can process 100 req/s
• Max throughput of the system is 100 req/s (capacity)
• Database component will be the performance bottleneck and will be fully occupied

at peak input load (other components will not be as busy)
• Database component takes approx. 1/100 seconds = 10 milliseconds to process each

request (service demand)
• Response time of system will be at least 10 millisecond + time needed at other

components
• Sometimes, the network can also be a bottleneck, not any component

• Maybe some router on path between clients and server can only forward 50 req/s

Running load test

• The system under test (the entire system or one component) is sent a
large number of requests from a load generator

• Load generators can be software or hardware components that generate a
large amount of synthetic traffic

• The input load is varied across multiple levels, and the output
performance metrics of the system are measured for each input load

• How would you write a simple load generator?
• A multi-threaded application, running on a large multicore machine, with

each thread sending a continuous stream of requests?

What to expect in a load test?

• Consider web application with max throughput (capacity) 100 req/s
• Suppose incoming traffic into system is only 10 req/s

• The system throughput is 10 req/s, no performance bottleneck
• No component overwhelmed, quick (low) response time

• As incoming load approaches capacity, e.g., 90 req/s
• All incoming requests are served, throughput is 90 req/s
• Bottleneck component starts to get busy, queue builds up, responses take longer

• If incoming load exceeds system capacity, e.g., 200 req/s
• Bottleneck component fully saturated, max throughput (capacity) achieved,

throughput flattens (cannot increase any more)
• Response times are higher due to queueing delays, continue to increase with

increasing load

Identifying system capacity

• System developers perform load tests of
their systems to generate graphs of
performance metrics vs input load

• Graphs of throughput and latency help to
identify system capacity

• As input load approaches capacity,
throughput flattens out and latency
increases sharply

• Ideal operating point of a system: just
below max capacity or saturation

• Close to max throughput, not too long
response times, no errors

Capacity?

How to improve system capacity?

• When system is running at capacity or saturation, some hardware resource at
bottleneck is fully (100%) utilized

• E.g., all CPU cores are fully busy with no spare CPU cycles
• E.g., hard disk is running at full capacity performing reads/writes

• How to improve capacity?
• Increase hardware resources at bottleneck component
• Or, optimize system to use hardware resources more efficiently

• Sometimes, bottleneck due to software issues only (no hardware resource is
fully utilized)

• E.g., maximum number of file descriptors opened by process, cannot open any more
• E.g., threads wasting time waiting for locks, even though CPU is free
• E.g., not enough threads to do the work, even though cores are free
• Such issues can be fixed by rewriting code or tuning system parameters

Monitoring usage of hardware resources

• At saturation, performance of bottleneck component cannot increase
further because some hardware resource is fully utilized

• Monitor usage of all hardware resources using various tools:
• Tools to monitor CPU utilization, what fraction of CPU cycles in each CPU core are

fully utilized and by which processes, e.g., “top” in Linux.
• Tools to monitor memory usage, what fraction of main memory is free and what

fraction is used by user/kernel, e.g., “free” in Linux
• Tools to monitor memory bandwidth usage, how much of the memory bus

bandwidth is utilized by ongoing memory accesses, for local and NUMA memory
• Tools to monitor utilization of various I/O devices like disk and network card, and rate

of data transfer to/from device, e.g., “iostat” in Linux

• Once we identify which hardware resource is saturated, identify why the
hardware resource is being used so heavily: profiling tools

Profiling tools

• Performance profiling software (e.g., perf, oprofile) help us identify the
root cause of performance issues

• Profilers monitor the execution of a program and help to:
• Count various hardware events (e.g., cache misses) and software events (e.g., page

faults) occurring in the system
• Attribute events to parts of program code responsible for events
• Understand how CPU time is spent in executing various user/system functions
• Understand how various hardware resources are utilized

• By analyzing profiler output, we can identify
• Parts of code that are performing inefficiently
• Hardware or software events that contribute to poor performance

• Profiling is a starting point for performance optimization

Optimizing CPU performance

• If all CPU cores are saturated by application, identify which parts of
the code are leading to high CPU usage via profiling, and optimize

• If user functions/libraries using more CPU than required, optimize/rewrite the
code to be more efficient, or use high-performance libraries

• If excessive CPU usage by kernel code, optimize where possible, e.g.,
• High CPU usage due to frequent interrupt handling with high speed network

card move to a more optimized device driver which generates fewer
interrupts or split interrupt processing to multiple CPU cores

• Upgrade to better file systems to reduce file I/O overhead
• Tune CPU scheduler parameters to minimize context switching overhead

Using multiple cores better

• Having multiple threads helps utilize multiple cores better, in most cases
• However, threads cannot execute in parallel all the times

• Example: only one thread at a time can execute critical section
• Amdahl’s law: estimate performance gains due to parallelism

• Let T1 = time required to perform a task on one CPU core
• Let Tp = time required to perform task when running in parallel on “p” cores
• Let α = fraction of task that can be parallelized
• We have Tp = (α * T1 / p) + (1- α) * T1
• Speedup due to using multiple cores = T1/Tp (ideally p if α=1)
• For large values of p, speedup approx. 1/(1- α)
• If α is small, speedup is small, poor multicore scalability

• Minimize code that cannot be parallelized, for better multicore scaling

Optimizing memory/cache usage

• If memory usage too high, system performance may be sub-optimal
due to thrashing (too many page faults, excessive swapping to disk)

• Reduce memory foot-print of application, so avoid swapping
• Improve locality of reference within program, so that working set size

(amount of memory being actively used) is low
• Using huge pages (larger page size) improves TLB hit rates

• If poor cache hit rates and high memory bandwidth utilization (even
though memory is free) CPU wasted in waiting for memory access

• Write code in a way that optimizes cache usage, and reduces need to fetch
data from main memory

CPU caches

• CPU fetches instructions/data from memory of process
• Faster memory access implies faster application performance

• First step in a memory access: check CPU caches if data is present
• CPU caches store recently accessed memory in 64 byte cache lines
• Uses locality of reference to avoid expensive main memory access

• Multiple levels of cache, some private, some common across cores
• Memory location is cached in the private cache of one core C0, another core

C1 also wishes to access the same memory contents cache line is shared
across cores via cache coherence mechanism

• Cache coherence protocol ensures consistent view of memory across cores
• But cache coherence mechanisms add overhead to memory access

Optimizing cache usage (1)

• Align data structures to cache lines using language library primitives
or compiler hints

• Store frequently accessed variables together in the same 64 byte
cache line

• Write code with lower working set size (frequently accessed code
sections or data structures) that fits in CPU caches

• Write code to increase locality of reference (access data that is
already in cache as far as possible)

• Example: access matrix along rows rather than along columns
• Example: merge two for-loops that loop over same array

Optimizing cache usage (2)

• When accessing data from multiple cores, avoid cross-core cache
coherence traffic to make cache access faster

• Threads of program running on separate cores should access data in
separate cache lines as far as possible

• True sharing: two threads read same memory address from separate cores
• False sharing: two threads read separate memory addresses, but both locations are

on the same cache line
• Both cause cache line to bounce across cores, false sharing to be avoided

• Avoid shared data and lock contention between threads as far as possible
• Shared lock variable accessed from multiple cores, cache line bounces across cores
• Use newer techniques (optimized locks, lockfree data structures)

More on optimizing memory

• DRAM allows random access of memory (jump to any address), but
sequential access of memory is better for performance

• CPU prefetcher predicts which memory will be accessed next (estimates
stride length of access) and fetches it into cache

• Pre-allocation of memory is better than dynamic allocation via malloc
• General purpose malloc that does variable sized allocation can be slow

• Custom memory allocators better than general purpose allocators
• Slab allocators are better when malloc is in a few fixed sizes
• Store data in memory-mapped anonymous pages instead of heap

• Avoid copying memory contents unnecessarily
• Memory mapping a file avoids copying file data from kernel memory to user

buffers

Other optimizations (beyond CPU, memory)

• Compiler optimization turned on, to enable generation of optimized binary
application code

• Advanced techniques used to generate efficient machine code in compilers
• Some parts of application code can be offloaded to hardware accelerators

to run quicker
• Graphics Processing Units (GPUs) are used to run video processing and rendering

algorithms efficiently
• When I/O is bottleneck, consider caching result of I/O in storage that can

be accessed faster, for future use
• If nothing else works, add more hardware resources to increase

performance and handle incoming load
• Vertical scaling: add more hardware resources to the bottleneck machine
• Horizontal scaling: add additional machines to handle extra load

Software bottlenecks

• Sometimes, system performance bottleneck is not hardware
• Adding more resources will not help fix the problem

• How to identify such cases?
• Throughput flattens out even when no resource is fully utilized
• Performance does not increase by adding more resources

• Software bottlenecks harder to identify, fixed by carefully tuning
system parameters

• Example: process hits maximum limit on file descriptors, so cannot
handle new requests even though there are enough resources

• Other parameters: number of threads, queue sizes

Optimum number of threads in thread pool

• Consider a multithreaded server with a thread pool of workers
• Master thread places new clients/requests in shared queue
• Worker threads in thread pool retrieve requests one by one and process
• Worker thread can block multiple times to service one client
• Too low number of worker threads cannot efficiently use CPU cores

• Min no. of threads in thread pool to fully utilize a single CPU?
• Suppose each worker thread performs 0.01 seconds of computation on CPU to

process client request (service demand) and 1 second waiting for I/O before
running on CPU again (turnaround time)

• Optimum number of threads = turnaround time / service demand = 100
• What if fewer than 100 threads? 50 threads will lead to 50% CPU utili, but still

throughput flattens out

Sizing buffers, queues in system

• Many buffers in a system, e.g., buffer to hold requests between threads in
a pipeline, buffer to hold incoming data from I/O devices

• Essential to handle bursts of data coming into system
• If buffer size too low, threads/processes may not have enough work

• Little’s law (famous queueing theory formula): N = R * W, where
• N = expected number of requests being served in the system
• R = rate of arrival of requests
• W = average time spent by a request in the system (time to process request + time

spent waiting in various queues)

• Very general principle, useful in many scenarios
• Requests arrive at 100 req/s, each worker thread takes 2 seconds for processing a

request, then we need a buffer of at least 200 requests between master and worker
• What if buffer size < 200? Some requests have to be dropped while all threads are

busy, threads may not have work when they are free

Network I/O architecture

• Most components in a computer system need to do some network I/O,
sometimes as clients and sometimes as servers

• Web server receives requests from users, contacts database, returns response

• Programming language libraries may provide better APIs for network I/O than
the basic socket API discussed here

• Example: remote procedure call (RPC) APIs invoke server code like function calls

• With any API, design choice to be made between two architectures
• One thread per connection, blocking/synchronous API
• Fewer threads, event-driven/asynchronous API

• Event-driven APIs usually have lesser overhead and higher performance, but
harder to program, difficult to scale to multiple cores

Throughput vs response time

• Response time of the system is sum of time spent at each component
• Time at each component is service demand (processing time) + queueing

delay (waiting time)
• Throughput of the entire system is determined by service demand of

slowest component (bottleneck)
• Service demands of non-bottleneck components impact response time
• What if you optimize and reduce service demand of a non-bottleneck

component? Throughput may not change, but response time will improve
• Most performance engineering starts with optimizing the bottleneck

• Once the slowest component is optimized, bottleneck shifts elsewhere!
• Performance engineering is an iterative process

The performance engineering workflow

• Build a multi-tier system based on functional requirements
• Perform a load test, identify capacity and bottleneck component

• If hardware bottleneck, try to optimize hardware resource usage
• If software bottleneck, tune system parameters (threads, buffers, …)

• If bottleneck capacity improves, overall system performance is better,
bottleneck may shift elsewhere

• Repeat the process until satisfied with overall system performance
• Other ways to improve system performance: scaling (adding more

replicas of a component), caching, …
• What beyond performance engineering? Reliability, fault tolerance

